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1 Introduction

In this paper, for m≤n, we specify the ranges of indices as follows

1≤α,β,γ,σ,ρ,···≤n, 1≤ j,k,l,···≤m,
m+1≤ a,b,c,···≤n, 1≤A,B,C,···≤2n.

1.1 The Heisenberg groups

The origin of pseudohermitian geometry came from the construction of a pseudohermi-
tian connection, independently by N. Tanaka [15] and S. Webster [16]. In this paper, the
Heisenberg group is a pseudohermitian manifold and it plays the role of the model in
pseudohermitian geometry. That is, any pseudohermitian manifold with vanishing cur-
vature and torsion locally is part of the Heisenberg group. Let Hn be the Heisenberg
group, with coordinates (xβ,yβ,t). The group multiplication is defined by

(x,y,t)◦(x′,y′,t′)=(x+x′,y+y′,t+t′+yx′−xy′).

∗Corresponding author. Email address: hlchiu@math.nthu.edu.tw (H. Chiu)
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The associated standard CR structure J and contact form Θ are defined respectively by

Je̊β = e̊n+β, Je̊n+β =−e̊β,

Θ=dt+
n

∑
β=1

xβdyβ−yβdxβ,

where

e̊β =
∂

∂xβ
+yβ

∂

∂t
, e̊n+β =

∂

∂yβ
+xβ

∂

∂t
.

The contact bundle is ξ =kerΘ. We refer the reader to [2, 3, 5] for the details about the
Heisenberg groups, and to [6, 11, 12, 15, 16] for pseudohermitian geometry.

The symmetry group PSH(n) of Hn is the group consisting of all pseudohermitian
transformations. Left translations Lp are symmetries. Another kind of examples are a
rotation ΦR around the t-axis which is defined by

ΦR

 x
y
t

=

(
R 0
0 1

) x
y
t

,

where R=

(
A −B
B A

)
∈SO(2n). In [5], we showed that each symmetry Φ∈PSH(n) has

the unique decomposition Φ= Lp◦ΦR, for some p∈Hn and R∈SO(2n). Since the action
of PSH(n) on Hn is transitive, the associated geometry is a kind of Klein geometry. The
corresponding Cartan geometry is just pseudohermitian geometry.

1.2 Pseudohermitian submanifolds

We now give the definition of pseudohermitian submanifold.

Definition 1.1. A (2m+1)-dimensional pseudohermitian manifold (M, Ĵ, θ̂) is called a pseudo-
hermitian† submanifold of Hn, 1≤m≤n, if

• ξ̂=TM∩ξ;

• Ĵ= J|ξ̂ ;

• θ̂=Θ|M,

where ξ̂=kerθ̂ is the contact structure on M. The number m is called the CR dimension of M.

Example 1.1. Suppose M ↪→Hn is an embedded submanifold with CR dimension n−1.
Then it is not hard to see that

†In [6], S. Dragomir and G. Tomassini call it isopseudo-hermitian, instead of pseudohermitian.
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• In general, dim(Tp M∩ξp)≥2n−2, for all p∈M.

• dim(Tp M∩ξp)=2n−2, for a generic point p∈M.

All the generic points constitute the regular part of M, and those points p such that
dim(Tp M∩ξp) = 2n−1 are called the singular points. On the regular part Mre, assume
that Tp M∩ξ is invariant under J, then it inherits a pseudohermitian structure ( Ĵ, θ̂) from
Hn such that (Mre, Ĵ, θ̂) is a pseudohermitian submanifold of Hn.

In Section 3, we define some local invariants for pseudohermitian submanifolds, in-
cluding the second fundamental form, the normal connection and the fundamental vec-
tor field ν (see the definition after Proposition 3.1). In addition, from Proposition 3.1, we
see that the fundamental vector field ν actually describes the difference between the two
Reeb vector fields T and T̂, which are, respectively, associated with Hn and the pseudo-
hermitian submanifold M. Hence if ν= 0, then T̂ =T. That means that T = ∂

∂t is always
tangent to M at each point. Therefore, for such a submanifold, we call it vertical‡. On the
other hand, if ν 6=0 at each point, we call it completely non-vertical.

Example 1.2. The subspace Hm={(z,t)∈Hn | za=0}⊂Hn is a pseudohermitian subman-
ifold of Hn. It is easy to see that Hm is vertical.

Example 1.3. Let S2n−1⊂Hn be the sphere defined by

S2n−1=

{
(z,0)∈Cn⊂Hn |

n

∑
β=1

zβzβ̄ =1

}
.

There are two pseudohermitian structures induced on S2n−1, one is from Hn and the
other is from Cn. In Subsection 4.2, we show that these two induced pseudohermitian
structures coincide. In addition, S2n−1 is completely non-vertical.

1.3 Main theorems

There are many literatures which were given for the problem about CR embeddability of
CR manifolds into spheres [4,9,10,17]. In this paper, we obtain the fundamental theorems
and rigidity theorems for pseudohermitian submanifolds in the Heisenberg groups. We
have

Theorem 1.1 (Theorem A). The induced pseudohermitian structure, the second fundamental
form, the normal connection, as well as the fundamental vector field constitute a complete set of
invariants for pseudohermitian submanifolds of the Heisenberg groups.

‡In [6], S. Dragomir and G. Tomassini call it pseuo-Hermitian, instead of vertical pseudohermitian.
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Theorem A is shown in Section 5. It specifies that there are only four invariants for
pseudohermitian submanifolds. That is, if two pseudohermitian submanifolds have the
same such four invariants, then they are locally congruent with each other in the sense
that they differ from each other by nothing more than an action of a symmetry.

Any pseudohermitian submanifold M⊂Hn automatically satisfies a natural geometric
condition which we call the integrability condition (defined in Subsection 5.2). Conversely,
we will show that it is also a condition for an arbitrary pseudohermitian manifold to be
(locally) embedded as a pseudohermitian submanifold of Hn.

Theorem 1.2 (Theorem B). Let (M2m+1, JM,θM) be a simply connected pseudohermitian man-
ifold satisfying the integrability condition for some n≥m. Then M can be embedded as a pseudo-
hermitian submanifold of the Heisenberg group Hn.

Theorem B is shown in Section 6. In [9], S.-Y. Kim and J.-W. Oh also studied the prob-
lem of characterizing pseudohermitian manifolds which are pseudohermitian embed-
dable into the Heisenberg groups§. In the case that M is nondegenerate, S.-Y. Kim and
J.-W. Oh used Cartan’s prolongation method to show that the induced pseudohermitian
structure constitutes a complete set of invariants. In addition, they gave a necessary and
sufficient condition, in terms of Webster curvature and torsion tensor, for pseudoher-
mitian manifolds to be embeddable into the Heisenberg groups nondegenerately. This
condition is just equivalent to the integrability condition which we define in Subsection
5.2. However, S.-Y. Kim and J.-W. Oh did not deal with the degenerate cases.

In the case of CR codimension one, the nondegeneracy just means that the second
fundamental form does not vanish at each point. In such a case, we basically recover the
results of S.-Y. Kim and J.-W. Oh. Moreover, we give the rigidity theorems for pseudo-
hermitian degenerate submanifolds, which are shown in Section 7. We have

Theorem 1.3 (Theorem C). Let (M, Ĵ, θ̂) be a vertical, simply connected pseudohermitian sub-
manifold of Hn with CR dimension m=n−1. Then we have
(i) if the second fundamental form II 6=0 at each point, then the induced pseudohermitian struc-
ture ( Ĵ, θ̂) constitutes a complete set of invariants.
(ii) if I I=0, then M is an open part of Hn−1={zn =0}, after a Heisenberg rigid motion.

Theorem 1.4 (Theorem D). Let (M, Ĵ, θ̂) be a completely non-vertical, simply connected
pseudohermitian submanifold of Hn with CR dimension m=n−1. Then we have
(i) the induced pseudohermitian structure ( Ĵ, θ̂) constitutes a complete set of invariants.
(ii) if the second fundamental form II = 0 (or, equivalently, the pseudohermitian torsion Ajk =

0, 1≤ j,k≤m), then M is an open part of the standard sphere S2m+1⊂Hn, after a Heisenberg
rigid motion.

Finally, in subsection 4.1, we study the general properties of vertical pseudohermitian
submanifolds and obtain

§In their paper, they used the pseudohermitian flat sphere as the ambient space, instead of the Heisenberg
group. But after a Cayley transformation, this two spaces are isomorphic as pseudohermitian manifolds
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Theorem 1.5 (Theorem E). Let (M, Ĵ, θ̂) be a vertical pseudohermitian submanifold of Hn.
Then we have that the Webster-torsion vanishes and the Webster-Ricci tensor is non-positive,
as well as the pseudohermitian connection and the tangential connection (see the definition in
subsection 3.3) coincide.

For the fundamental theorems, we used Cartan’s method of moving frame as well
as calculus on Lie groups. And we prove (ii) of Theorem D by means of the motions
equation of the Darboux frame. Therefore, in Section 2, we give a brief review of Car-
tan’s method of moving frame, which includes the motion equations and the structure
equations. We would like to end the introduction by pointing out that, in [4], Curry and
Gover recently addressed the so called CR Bonnet theorem. They formulated and proved
the theorem inspired by the conformal Bonnet theorem formulated and proved in terms
of standard conformal tractors.

2 Cartan’s method of moving frame

In this section, we give a brief review of Cartan’s method of moving frame and Calculus
on Lie groups. For the details, we refer the reader to [5]. Let (X,G) be a Klein geome-
try. The philosophy of Elie Cartan is that in many cases, the symmetry group G may be
identified with a set of frame on X. Then to investigate the geometry of a submanifold
M of X, one associates the submanifold with a natural set of frames. In this situation, the
infinitesimal motion of this natural frame should contain all the geometric information
of the submanifold M. Now we will go along the idea of Elie Cartan to get a complete set
of invariants for M.

2.1 The frames on Hn

An frame for Hn is a set of vectors of the form

(p;eβ,en+β,T),

where p∈ Hn, eβ ∈ ξ(p) and en+β = Jeβ, for 1≤ β≤ n. In addition {eβ,en+β,T} is an or-
thonormal frame with respect to the adapted metric gθ , which is defined by viewing the
basis e̊β, e̊n+β,T as an orthonormal basis.

2.2 Identifying PSH(n) with a set of frames

We identify a symmetry Φ with a frame (p;eβ,en+β,T), provided that Φ is the unique
transformation on Hn mapping the frame (0; e̊β, e̊n+β,T) to the given frame (p;eβ,en+β,T).
That is

Φ∗(0; e̊β, e̊n+β,T)=(Φ(0);Φ∗ e̊β,Φ∗ e̊n+β,Φ∗T)=(p;eβ,en+β,T).
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2.3 The matrix group representation of PSH(n)

If we identify points of Hn and 1×Hn by

p↔
(

1
p

)
,

hence a vector X∈THn can be identified by

X↔
(

0
X

)
.

We thus identify Φ with a matrix A∈GL(2n+2,R) by

Φ↔ (p;eβ,en+β,T)↔A=

(
1 0 0 0
p eβ en+β T

)
. (2.1)

We have

A
(

1
q

)
=

(
1
q̃

)
, q̃=Φ(q).

This shows that (2.1) gives a matrix group representation of PSH(n).

2.4 The motion equations

Let ω be the (left) Maurer Cartan form of PSH(n). This is a psh(n)-valued one form
defined by

ω(v)=Lg−1∗v, (2.2)

for each v∈TgG, where G=PSH(n),g∈G. That is, the Maurer Cartan form moves each
vector v to the identity element by the left translations. It is a natural way for us to
identify each vector v with a vector tangent to the identity. Since PSH(n) has a matrix
group representation, The Maurer Cartan form has the simple elegant expression

ω=A−1dA, (2.3)

where A∈PSH(n) is the moving point. This formula (2.3) is equivalent to

dA=Aω, (2.4)

which is called the motion equations of the Heisenberg group. Taking the exterior deriva-
tive of the motion equations, we get the structure equations

dω+ω∧ω=0. (2.5)
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2.5 The Darboux frames for pseudohermitian submanifolds

Let U⊂M be an open subset. For each point p∈U, we always choose the frame {Zβ,T}
such that Zj ∈ ξ̂C and Za ∈ ξ̂⊥C , here ξ̂C = ξ̂⊗C and ξ̂⊥C = ξ̂⊥⊗C. Such a moving frame
p→ (p;Zβ,T) is called the Darboux frame (of complex version) over U.

Let {θβ,θ} be the dual of {Zβ,T}. Writing Zβ=
1
2 (eβ−ien+β) and θβ=ωβ+iωn+β. Then

{eA,T} and {ωA,θ} are dual to each other. This frame field p→(p;eA,T) is the real version
of the Darboux frame. It is easy to see that ek,en+k∈ ξ̂, ea,en+a∈ ξ⊥, and en+β = Jeβ.

Denoting Ẑj =Zj and writing Ẑj =
1
2 (êj−iêm+j). Then we have êj = ej, êm+j = en+j. Let

{ω̂ j,ω̂m+j, θ̂} be the dual of {êj, êm+j,T̂}. We also denote θ̂ j = ω̂ j+iω̂m+j.

2.6 The Darboux derivative

Let f :U→PSH(n) be a Darboux frame f (p)=(p;eA,T). The Darboux derivative ω f of f
is defined by

ω f =ω◦ f∗= f ∗ω. (2.6)

Therefore, it is just the usual differential f∗, provided that we have identified each vector
with a vector tangent to the identity element by left translations. From (2.3),

ω f = f ∗ω= f ∗(A−1dA)=(A◦ f )−1d(A◦ f )= f−1d f , (2.7)

or, equivalently
d f = f ω f . (2.8)

This is the motion equations for the Darboux frame f . Again, taking the exterior deriva-
tive, we obtain the structure equations (the integrability condition)

dω f +ω f ∧ω f =0. (2.9)

Writing
f (p)=(p;eβ(p),en+β(p),T)

and

ω f =


0 0 0 0

ωβ ωα
β ωn+α

β 0
ωn+β ωα

n+β ωn+α
n+β 0

ω2n+1 ωn+α −ωα 0

.

Since ω f is a psh(n)-valued one form, the entry forms satisfy

ωa
b =−ωb

a, for 1≤ a,b≤2n,

ωn+α
n+β =ωα

β, ωα
n+β =−ωn+α

β, for 1≤α,β≤n.
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Then the motion equations and structure equations, respectively, read

dp= eβ⊗ωβ+en+β⊗ωn+β+T⊗ω2n+1,

deγ = eβ⊗ωγ
β+en+β⊗ωγ

n+β+T⊗ωn+γ,

den+γ = eβ⊗ωn+γ
β+en+β⊗ωn+γ

n+β−T⊗ωγ, dT=0; (2.10)

and

dωβ =−ωα
β∧ωα−ωn+α

β∧ωn+α, dωn+β =−ωα
n+β∧ωα−ωn+α

n+β∧ωn+α,

dω2n+1=2
n

∑
α=1

ωα∧ωn+α, dωα
β =−ωγ

β∧ωα
γ−ωn+γ

β∧ωα
n+γ,

dωn+α
β =−ωγ

β∧ωn+α
γ−ωn+γ

β∧ωn+α
n+γ. (2.11)

2.7 The complex version

Writing

F(p)=(p;Zβ(p),T), where Zβ =
1
2
(eβ−ien+β),

and

ωF =

 0 0 0
ϑt θγ

β 0
θ iϑ̄ 0

, (2.12)

where ϑ=(θ1,··· ,θn), θβ=ωβ+iωn+β, θγ
β=ωγ

β+iωγ
n+β. And hence we have θγ

β+θβ̄
γ̄=0.

We have the complex version of motion equations

dp=Zβ⊗θβ+Zβ̄⊗θ β̄+T⊗θ, dZγ =Zβ⊗θγ
β+

1
2

T⊗iθγ̄, dT=0. (2.13)

And the structure equations are equivalent to

dωF+ωF∧ωF =0, (2.14)

or

dθβ = θγ∧θγ
β, dθ= iθγ∧θγ̄, dθσ

β = θσ
γ∧θγ

β. (2.15)

2.8 Calculus on Lie groups

Let M be a simply connected smooth manifold, f : M→ PSH(n) be a smooth map. Recall
that The (left) Darboux derivative ω f of f is the psh(n)-valued 1-form defined by ω f =
ω◦ f∗= f ∗ω. The Darboux derivative plays an important role in the theory of calculus on
Lie groups. The fundamental theorems are Theorem 2.1 and Theorem 2.2.
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Theorem 2.1 (The uniqueness theorem). Let f1, f2 : M→ PSH(n) be smooth maps. Then
ω f1 =ω f2 if and only if there exists g∈PSH(n) such that f2(x)= g· f1(x) for all x∈M.

Theorem 2.1 says that two maps from M into PSH(n) are congruent to each other if
and only if they have the same infinitesimal motions. Recall that ω f satisfies the integra-
bility conditions

dω f +ω f ∧ω f =0.

Conversely, one has

Theorem 2.2 (The existence theorem). Let η be a psh(n)-valued one form on M satisfying
dη+η∧η=0. Then there is a smooth map f :U→PSH(n) such that η|U =ω f .

Theorem 2.2 totally depends on Frobenius Theorem. We will apply theorem 2.1 to the
Darboux frames of pseudohermitian submanifolds. Then, to prove Theorem A, we are
reduced to compute the Darboux derivatives of the Darboux frames. And using Theorem
2.2, we obtain Theorem B. For the details about calculus on Lie groups, we refer the reader
to [1, 7, 8, 13, 14].

3 Local invariants of Pseudohermitian submanifolds

In this section, we define some geometric invariants for pseudohermitian submanifolds.

3.1 The fundamental vector field ν

Proposition 3.1. Let (M, Ĵ, θ̂) be a pseudohermitian submanifold of Hn. Then there exists a
unique horizontal vector field ν∈ ξ̂⊥ such that T+ν∈TM. Actually, denoting T̂=T+ν, it is not
hard to see that T̂ is the Reeb vector field associated to θ̂.

Proof. Let T̂ = aT+∑A=1 aAeA, for some coefficients a,aA. Since 1= θ̂(T̂)= θ(T̂)= a and
T̂⊥ ξ̂, we have T̂=T+aaea+an+aen+a, and hence we can choose ν=aaea+an+aen+a. Next,
suppose ν̃∈ ξ̂⊥ is another vector such that T+ν̃∈TM. Then we have ν−ν̃∈TM∩ξ, hence
ν= ν̃.

We call ν in Proposition 3.1 the fundamental vector field.

• If ν≡0, then T̂=T, and hence we call M2m+1 a vertical submanifold.

• If ν 6=0 at each point of M, then M is completely non-vertical.

Proposition 3.2. We have

ω j|M = ω̂ j, ωn+j|M = ω̂m+j, ωa|M =
1
2
〈
ν,ea

〉
θ̂, ωn+a|M =

1
2
〈
ν,en+a

〉
θ̂, (3.1)
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where
〈

,
〉

is the Levi-metric, hence

θ j|M = θ̂ j θa|M =
〈
ν,Za

〉
θ̂. (3.2)

In particular, if ν=0, then we have θa|M =0.

Proof. We compute

ω j(T̂)=ω j(T+ν)=0, ω j(êk)=ω j(ek)=δjk, ω j(êm+k)=ω j(en+k)=0, (3.3)

and

ωn+j(T̂)=ωn+j(T+ν)=0, ωn+j(êk)=ωn+j(ek)=0,

ωn+j(êm+k)=ωn+j(en+k)=δjk. (3.4)

Therefore {ω j|M,ωn+j|M,θ|M} is the dual frame of {êj, êm+j,T̂}. Similar computation
shows that

ωa|M =
1
2
〈
ν,ea

〉
θ̂, ωn+a|M =

1
2
〈
ν,en+a

〉
θ̂. (3.5)

This completes the proof.

3.2 The normal connection

The normal connection ∇⊥ which is defined, on the normal complex bundle ξ̂⊥⊗C
spanned by Za, by

∇⊥Za = θa
b⊗Zb, (3.6)

which is the orthogonal projection of the pseudohermitian connection∇Za onto the nor-
mal bundle.

3.3 The tangential connection

The tangential connection∇t which is defined, on the complex bundle ξ̂C spanned by Zj,
by

∇⊥Zj = θj
k⊗Zk, (3.7)

which is the orthogonal projection of the pseudohermitian connection ∇Zj onto the con-
tact bundle.

• Let θ̂j
k be the pseudohermitian connection forms with respect to the frame field Zj.

Then, from (5.11), we have

θj
k|M = θ̂j

k+iδjk|ν|2θ̂. (3.8)

Therefore, in general, ∇t 6=∇p.h., the associated pseudohermitian connection of M.

• If M is vertical, then ∇t =∇p.h..
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3.4 The second fundamental form

Define the bilinear form I Ia on ξ̂1,0 by

I Ia(X,Y)=−
〈

X,∇YZa
〉
. (3.9)

• We have I Ia=θ j⊗θj
a. If Z̃a=Ca

bZb is another normal frame field, then Ĩ I
a
=Cā

b̄ I Ib.

• I Ia⊗Za is independent of the choice of the normal frame field Za.

The second fundamental form II for M is defined, to be a map

I I : ξ̂1,0× ξ̂1,0→ ξ̂⊥1,0, (3.10)

by
I I= I Ia⊗Za = θ j⊗θj

a⊗Za. (3.11)

4 General properties

4.1 Pseudohermitian submanifolds with ν≡0

The canonical example is the Heisenberg subgroup Hm which is defined by Hm={(z,t)∈
Hn | za =0}. Now we discuss the general properties of such kind of submanifolds. From
Proposition 3.2, we have

θ j|M = θ̂ j, and θa|M =0. (4.1)

Therefore, we have the structure equations

dθ j = θk∧θk
j, 0= θk∧θk

a (∵θa =0), dθ= iθk∧θ k̄,

dθj
l = θj

k∧θk
l+θj

c∧θc
l , dθj

a = θj
k∧θk

a+θj
c∧θc

a,

dθa
j = θa

k∧θk
j+θa

c∧θc
j, dθa

b = θa
k∧θk

b+θa
c∧θc

b. (4.2)

• From the first equation dθ j = θk∧θk
j of (4.2), together with θk

j+θ j̄
k̄, we have

τ̂ j≡0, θ̂k
j = θk

j, (4.3)

where τ̂ j, θ̂k
j are the pseudohermitian torsion forms and connection forms with

respect to the admissible coframe {θ̂ j}.

• From the second equation 0=θk∧θk
a of (4.2), together with Cartan lemma, we have

θj
a =ha

jkθk, (4.4)

for some functions ha
jk satisfying ha

jk =ha
kj. Therefore

I I= θ j⊗θj
a⊗Za =ha

jkθ j⊗θk⊗Za, (4.5)



12 H.-L. Chiu / J. Math. Study, 54 (2021), pp. 1-27

• The fourth equation of (4.2)

dθj
l = θj

k∧θk
l+θj

c∧θc
l (4.6)

is called the Gauss-like equation. Since θj
k = θ̂j

k and θj
c = hc

jkθk, it is easy to see that
the Gauss-like equation is equivalent to

Rjl̄ζη̄ =−∑
c

hc
jζ hc̄

l̄η̄ , (4.7)

which implies Rζη̄ =−∑n
c=m+1 hc

kζ hc̄
k̄η̄

, and hence the Webster-Ricci tensor is non-
positive.

• The fifth equation of (4.2)

dθj
a = θj

k∧θk
a+θj

c∧θc
a (4.8)

is equivalent to the sixth equation of (4.2)

dθa
j = θa

k∧θk
j+θa

c∧θc
j. (4.9)

Either one is called the Codazzi-like equation.

• The last equation of (4.2)
dθa

b = θa
k∧θk

b+θa
c∧θc

b (4.10)

is called the Ricci-like equation.

4.2 Pseudohermitian submanifolds with ν nowhere zero

The canonical example is the standard sphere S2n−1⊂Cn⊂Hn=Cn×R, n≥2. It is defined
by

S2n−1(r)=

{
(z1,··· ,zn,0)∈Hn |

n

∑
β=1

zβzβ̄ = r2

}
.

Let Lp be a left translation, we compute the image of (z,0)∈S2n−1(r),

Lp(z,0)= p+xβ e̊β(p)+yβ e̊n+β(p),

where zβ = xβ+iyβ, and hence the image of S2n−1(r) under Lp is

Lp

(
S2n−1(r)

)
={q∈Hn | q−p∈ ξ(p), and |q−p|= r}, (4.11)

where the norm |·| is measured by the levi metric. Next, there are two pseudohermitian
structures induced on S2n−1, one is from the Heisenberg group Hn, denoted by ( Ĵ, θ̂), and
the other is from Cn. It is easy to see that these two induced pseudohermitian structures
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coincide on S2n−1(r) as the following specifies. Let u=
(

∑n
β=1 zβzβ̄

)
−r2 be the defining

function. We have

θ̂=Θ|S2n−1 = xβdyβ−yβdxβ =
i(∂̄u−∂u)

2
, (4.12)

hence
ξ̂=ker θ̂=TS2n−1∩ JCn(TS2n−1)⊂TCn, (4.13)

where JCn is the standard complex structure on Cn.

Lemma 4.1. Let p=(z,t)∈S2n−1. If a vector X=aβ e̊β+an+β e̊n+β∈ξ̂(p), then aβyβ−an+βxβ=0,
where zβ = xβ+iyβ. In addition, we have

X= aβ e̊β+an+β e̊n+β = aβ
∂

∂xβ
+an+β

∂

∂yβ
, (4.14)

for all X∈ ξ̂.

Proof. We compute

X= aβ e̊β+an+β e̊n+β = aβ
∂

∂xβ
+an+β

∂

∂yβ
+(aβyβ−an+βxβ)

∂

∂t
. (4.15)

Since ξ̂⊂TCn, we get aβyβ−an+βxβ =0.

For all X∈ ξ̂,

Ĵ(X)= J(aβ e̊β+an+β e̊n+β)= aβ e̊n+β−an+β e̊β

= aβ
∂

∂yβ
−an+β

∂

∂xβ
= JCn

(
aβ

∂

∂xβ
+an+β

∂

∂yβ

)
= JCn(X),

(4.16)

which shows that Ĵ is also induced from JCn . On the other hand, from (4.12), we have

T̂=
i
(

zβ
∂

∂zβ
−zβ̄

∂
∂zβ̄

)
r2 =

∂

∂t
+ν, (4.17)

which implies that

ν=
i
(

zβ
∂

∂zβ
−zβ̄

∂
∂zβ̄

)
r2 − ∂

∂t
=

i
(

xβ
∂

∂yβ
−yβ̄

∂
∂xβ̄

)
r2 − ∂

∂t
=

xβ e̊n+β−yβ e̊β

r2 . (4.18)

This shows that the standard sphere S2n−1(r) is completely non-vertical.
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5 The uniqueness theorem

In this section, we are going to prove Theorem A. Let M and N be two pseudohermitian
submanifolds with the same CR dimension m. Suppose Φ is a Heisenberg rigid motion
such that Φ(M)=N and denote ϕ=Φ|M.

Let {Zβ} be a frame field over M, and suppose Z̃β=Φ∗Zβ, the set {Z̃β} is a frame field
over N. Suppose {θβ,Θ} and {θ̃β,Θ} are the dual frame fields of {Zβ,T} and {Z̃β,T},
respectively. Then we have

θβ =Φ∗ θ̃β, Θ=Φ∗Θ. (5.1)

In particular, we have
θ j = ϕ∗ θ̃ j, θ̂= ϕ∗ θ̃, (5.2)

where θ̂ and θ̃ are the induced contact form on M and N, respectively. (5.2) implies that
ϕ preserves the induced pseudohermitian structures.

From the structure equation on Hn, we compute

dθβ = θγ∧θγ
β =
(

Φ∗ θ̃γ
)
⊗θγ

β

‖
d(Φ∗ θ̃β)=Φ∗(dθ̃β),

(5.3)

which is equivalent to
dθ̃β = θ̃γ⊗(Φ−1)∗θγ

β. (5.4)

Together with
(Φ−1)∗θγ

β+(Φ−1)∗θβ̄
γ̄ =(Φ−1)∗(θγ

β+θβ̄
γ̄)=0, (5.5)

and by the uniqueness, we get
θγ

β =Φ∗ θ̃γ
β. (5.6)

In particular, we have
θγ

β = ϕ∗ θ̃γ
β, (5.7)

and hence 〈
I I,V

〉
= ϕ∗

〈
Ĩ I,Φ∗V

〉
, (5.8)

for all V∈ ξ̂⊥C .
The defferential Φ∗ defines a vector bundle isomorphism

ξ̂⊥1,0 −→ ξ̃⊥1,0
↓ ↓
M −→ N,

(5.9)

which preserving the hermitian structures induced from the levi-metric and cover ϕ, such
that Φ∗ preserves the normal connections, i.e.,

Φ∗(∇⊥X Za)= ∇̃⊥ϕ∗X(Φ∗Za), (5.10)
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for all X ∈ TM, where ∇⊥ and ∇̃⊥ are the induced normal connections on M and N,
respectively. Finally, it is easy to see that Φ∗ν= ν̃.

Definition 5.1. Suppose that M and N are two pseudohermitian submanifolds of Hn with the
same CR dimension m. We say that M and N have the same (induced) pseudohermitian
structures, the second fundamental forms, the normal connections and the fundamental
vector fields if there exists a vector bundle isomorphism F:ξ̂⊥1,0→ξ̃⊥1,0, which preserves the induced
hermitian structures and covers a map ϕ : M→N, such that

• F preserves the induced pseudohermitian structures: ϕ∗◦ Ĵ= J̃◦ϕ∗; and ϕ∗ θ̃= θ̂;

• F preserves the second fundamental forms:
〈

I I,V
〉

ξ̂⊥1,0
= ϕ∗

〈
Ĩ I,FV

〉
ξ̃⊥1,0

, for all V∈ ξ̂⊥1,0.

• F preserves the normal connections: F(∇⊥X V)= ∇̃⊥ϕ∗X(FV), for all X∈TM, V∈ ξ̂⊥1,0.

• F preserves the fundamental vector field: Fν= ν̃.

Therefore we conclude that if M is congruent to N, then they have the same such four
invariants. Conversely, we have

Theorem 5.1. Let (M, Ĵ, θ̂) and (N, J̃, θ̃) be two simply connected pseudohermitian submanifolds
of Hn with CR dimension m. Suppose that they have the same (induced) pseudohermitian struc-
tures, the second fundamental forms, the normal connections and the fundamental vector fields.
Then they differ by a Heisenberg rigid motion.

Corollary 5.1. If M and N are vertical, then the (induced) pseudohermitian structures, the
second fundamental forms and the normal connections constitute a complete set of invariants.

5.1 The proof of Theorem 5.1

Let (M, Ĵ, θ̂) be a pseudohermitian submanifold of Hn. Recall that we always choose the
frame field {Zβ,T} over M such that Zj∈ ξ̂1,0 and Za∈ ξ̂⊥1,0. This is a Darboux frame. Let
{θβ,θ} be the dual of {Zβ,T}. We would like to show that the restrictions of θβ and θβ

γ to
M are expressed as follows:

θ j|M = θ̂ j, θa|M =
〈
ν,Za

〉
θ̂, θ|M = θ̂,

θj
k|M = θ̂j

k+iδjk|ν|2θ̂, θj
a|M =ha

jk θ̂k+iδjk
〈
ν,Za

〉
θ̂ k̄+

〈
∇⊥Ẑj

ν,Za
〉
θ̂;

(5.11)

and here ha
jk = I Ia(Ẑj,Ẑk), and θa

b|M is the normal connection forms w.r.t. {Za}. This
shows that the Darboux derivative of the Draboux frame is completely determined by
the induced pseudohermitian structure, the second fundamental form, the normal con-
nection and the fundamental vector field.

Now we prove (5.11).

dθa = θ j∧θj
a+θb∧θb

a = θ̂ j∧θj
a+
〈
ν,Zb

〉
θ̂∧θb

a. (5.12)
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On the other hand,

dθa =d
(〈

ν,Za
〉
θ̂
)
=d
〈
ν,Za

〉
∧ θ̂+

〈
ν,Za

〉
dθ̂

=
(〈
∇ν,Za

〉
+
〈
ν,∇·̄Za

〉)
∧ θ̂+

〈
ν,Za

〉
dθ̂

=
(〈
∇⊥ν,Za

〉
+
〈
ν,∇⊥·̄ Za

〉)
∧ θ̂+

〈
ν,Za

〉
dθ̂, (5.13)

and 〈
ν,∇⊥·̄ Za

〉
=
〈
ν,θa

b(·̄)⊗Zb
〉
=
〈
ν,Zb

〉
θā

b̄. (5.14)

From (5.12)–(5.14), we obtain

θ̂ j∧θj
a =
〈
∇⊥ν,Za

〉
∧ θ̂+

〈
ν,Za

〉
dθ̂. (5.15)

That is,

θj
a(Ẑk)θ̂

j∧ θ̂k+θj
a(Ẑk̄)θ̂

j∧ θ̂ k̄+θj
a(T̂)θ̂ j∧ θ̂

=
〈
∇⊥Ẑk

ν,Za
〉
θ̂k∧ θ̂+

〈
∇⊥Ẑk̄

ν,Za
〉
θ̂ k̄∧ θ̂+i

〈
ν,Za

〉
θ̂ j∧ θ̂ j̄, (5.16)

which implies

θj
a(T̂)=

〈
∇⊥Ẑj

ν,Za
〉
, 0=

〈
∇⊥Ẑj̄

ν,Za
〉
, (5.17a)

θj
a(Ẑk̄)= iδjk

〈
ν,Za

〉
, θj

a(Ẑk)= θk
a(Ẑj)=ha

jk, (5.17b)

and thus
θj

a =ha
jk θ̂k+iδjk

〈
ν,Za

〉
θ̂ k̄+

〈
∇⊥Ẑj

ν,Za
〉
θ̂. (5.18)

Now we compute

dθk = θ j∧θj
k+θa∧θa

k = θ̂ j∧θj
k+ θ̂∧

(〈
ν,Za

〉
θa

k
)

. (5.19)

On the other hand,
dθk =dθ̂k = θ̂ j∧ θ̂j

k+ θ̂∧τk. (5.20)

By Cartan lemma, there exists functions Bk
jl ,B

k
j(m+1),B

k
(m+1)l and Bk

(m+1)(m+1) such that

θ̂j
k = θj

k+Bk
jl θ̂

l+Bk
j(m+1)θ̂, τ̂k =

(〈
ν,Za

〉
θa

k
)
+Bk

(m+1)l θ̂
l+Bk

(m+1)(m+1)θ̂, (5.21)

where Bk
jl = Bk

lj and Bk
j(m+1)= Bk

(m+1)j, for 1≤ j,k,l≤m. Since τ̂k = Ak
l̂ θ̂

l̄ , comparing with
(5.21), we get

Ak
l̄ =

n

∑
a=m+1

〈
ν,Za

〉
θa

k(Ẑl̄)=−
n

∑
a=m+1

〈
ν,Za

〉
hā

k̄l̄ , (5.22a)

Bk
(m+1)l =−

n

∑
a=m+1

〈
ν,Za

〉
θa

k(Ẑl)=−iδkl |ν|2, (5.22b)

Bk
(m+1)(m+1)=−

n

∑
a=m+1

〈
ν,Za

〉
θa

k(T̂)=
n

∑
a=m+1

〈
ν,Za

〉〈
∇⊥Ẑk̄

ν,Zā
〉
. (5.22c)
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Finally, since θj
k+θk̄

j̄ =0 and θ̂j
k+ θ̂k̄

j̄ =0, we have, from (5.21), Bk
jl =0, and hence

θ̂j
k = θj

k−iδjk|ν|2θ̂. (5.23)

This completes the proof of (5.11).

5.2 The integrability condition

Let (M, Ĵ, θ̂) be a pseudohermitian submanifold of Hn. We choose a Darboux frame
{Zβ,T} over M. Let {θβ,θ} be the dual of {Zβ,T}.

Definition 5.2. The restriction to M of the structure equations of Hn,

dθβ = θγ∧θγ
β, dθ= iθγ∧θγ̄, dθσ

β = θσ
γ∧θγ

β, (5.24)

is defined to be the integrability condition of M. Note that the restrictions of θβ and θβ
γ to M

have the expressions of the forms as (5.11) specifies..

6 The existence theorem

In this section, we would like to show Theorem B. Let (M, JM,θM) be a pseudohermitian
manifold with CR dimension m. Since the existence theory is local, we assume that M is
simply connected. Putting ξM =kerθM and η= θM.

• Let ξ⊥M be a complex vector bundle over M, of complex dimension n−m, with a
Hermitian metric h⊥M and a connection ∇M compatible with h⊥M.

• Suppose {W1,··· ,Wm∈T1,0M} is an orthonormal CR holomorphic frame field of M.
Its dual is denoted by {η1,··· ,ηm}. Let η̂j

k be the pseudohermitian conection forms
w.r.t. Wj. We have η̂j

k+ η̂k̄
j̄ =0.

• Suppose {Wm+1,··· ,Wn} is an orthonormal frame field of ξ⊥M w.r.t. h⊥M and ηa
b are

the connection forms w.r.t. {Wa}, i.e.,

∇MWa =ηa
b⊗Wb. (6.1)

We have ηa
b+ηb̄

ā =0.

• Let I IM : T1,0M×T1,0M→ ξ⊥M be a ξ⊥M-valued complex bilinear form.

• Let µ be a real section of the bundle ξ⊥M over M. And define

ηa =
〈
µ,Wa

〉
η, ηj

k = η̂j
k+iδjk|µ|2η, ηj

a = ga
jkηk+iδjk

〈
µ,Wa

〉
η k̄+

〈
∇M

Wj
µ,Wa

〉
η,
(6.2)

where
〈

,
〉
=h⊥M and ga

jk =
〈

I IM(Wj,Wk),Wa
〉
.
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• Finally, define ηa
j by ηj

a+ηā
j̄ =0.

Theorem 6.1. Suppose that the pseudohermitian manifold (M2m+1, JM,θM), together with I IM,
the compatible connection ∇M and the section µ satisfies the integrability condition, in the
sense that ηβ,η and ηγ

β satisfy (5.24).Then

• There exists an embedding φ such that (M, JM,θM) can be embedded into Hn with CR
dimensionn m.

• In addition, there exists a vector bundle isomorphism Ψ : ξ⊥M→ ξ̂⊥1,0, covering φ, such that
Ψ∗ I I = I IM, Ψ∗∇⊥ =∇M, and Ψ∗ν = µ, where ξ̂⊥1,0, I I,∇⊥ and ν are, respectively, the
induced normal bundle, second fundamental form, normal connection and fundamental
vector field ν over φ(M).

Proof. Let [=(η1,··· ,ηn), [̄=(η1̄,··· ,ηn̄). Define the matrix Π by

Π=

 0 0 0
[t ηγ

β 0
η i[̄ 0

. (6.3)

The integrability condition means that

dΠ+Π∧Π=0. (6.4)

Taking the real version ζ of Π,

ζ=


0 0 0 0

λβ λα
β λn+α

β 0
λn+β λα

n+β λn+α
n+β 0

λ λn+α −λα 0

,

where λ=η,ηβ=λβ+iλn+β and ηγ
β=λγ

β+iλγ
n+β. Then ηγ

β+ηβ̄
γ̄=0 implies that ζ is a

psh(n)-valued one form. And (6.4) is equivalent to dζ+ζ∧ζ = 0. Therefore, by calculus
on Lie groups, we have that ζ is the Darboux derivative of some map f : M→ PSH(n),
that is,

ζ= f ∗ω. (6.5)

Define a map φ : M→Hn by φ=π◦ f , where π is the bundle projection π : PSH(n)→Hn,
and define a bundle map Ψ :ξ⊥M→ ξ̂⊥1,0 by Ψ(p,Wa)=(φ(p),Za). Then, using (6.5), it is easy
to check that Ψ and φ satisfy all what we want. This completes the proof.

7 Rigidity theorems for submanifolds with CR co-dimension one

In this section, we prove some rigidity theorems for pseudohermitian submanifolds, in-
cluding both the nondegenerate and degenerate cases.
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Theorem 7.1. Let (M, Ĵ, θ̂) be a vertical, simply connected pseudohermitian submanifold of Hn
with CR dimension m= n−1. Suppose that the second fundamental form II = 0.Then M is an
open subset U of Hn−1={zn =0} after a Heisenberg rigid motion.

Proof. In the case m=n−1, we write θj
n=hjkθk, here hjk are the coefficients of the second

fundamental form I I. If I I=0, then θj
n=0. On the other hand, ν=0 implies θn=0. Hence

the structure equations of Hn, restricting to M, are reduced to

dθ j = θk∧θk
j, dθ= iθk∧θ k̄, dθj

l = θj
k∧θk

l , dθn
n =0. (7.1)

The last equation of (7.1) says that θn
n is closed, and hence locally is exact. By the trans-

formation law of the normal connection, we can choose a normal frame Zn such that the
corresponding connection form θn

n vanishes. On the other hand, the first three equa-
tions of (7.1) is just the structure equations of Hn−1. This means that M is an open
part U of Hn−1 ⊂ Hn, up to a pseudohermitian transformatio ϕ from M to U. Define
F by F(x,Zn(x))= (ϕ(x),Z̊n). Then F defines the normal bundle isomorphism covering
ϕ which preserving the induced pseudohermitian structures, the second fundamental
forms and the normal connections of M and U, respectively. Hence ϕ is just the restric-
tion of a Heisenberg rigid motion.

For a vertical pseudohermitian submanifold of Hn, we define a flat point of M to be a
point such that I I =0 at that point. Theorem 7.4 says that the induced pseudohermitian
structure is the only invariant for vertical pseudohermitian submanifolds without flat
points.

Theorem 7.2. Let (M, Ĵ, θ̂) and (N, J̃, θ̃) be two vertical, simply connected pseudohermitian
submanifolds of Hn without flat points. Suppose both of them are of CR dimension m=n−1. If
there exists a pseudohermitian transformation φ : M→N, then φ = Φ|M for some Heisenberg
rigid motion Φ.

Proof. By Theorem 5.1, it suffices to show that both the second fundamental form and the
normal connection are completely determined by the induced pseudohermitian struc-
ture. We write θj

n =hjkθk. Then, from the Gauss-like equation, we have

dθj
l−θj

k∧θk
l =−hjphl̄q̄θp∧θ q̄. (7.2)

On the other hand
dθj

l−θj
k∧θk

l =dθ̂j
l− θ̂j

k∧ θ̂k
l =Rj

l
pq̄θp∧θ q̄. (7.3)

From (7.2) and (7.3), we see that the Gauss-like equation is equivalent to

Rjl̄ pq̄ =−hjphl̄q̄, (7.4)

which implies that
Rjl̄ pq̄ =0⇔ I I=0. (7.5)
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If I I 6=0, then there exists hjk 6=0 for some j,k. Since I I is a symmetric bilinear form, after
a frame transformation, we can assume, w.l.o.g., that h11 6=0. Then we have

Rj1̄p1̄=−hjph1̄1̄. (7.6)

In particular,
h11=

√
−R11̄11̄eiϕ, for some ϕ. (7.7)

On the other hand, if we take another orthonormal frame field {Z̃β} such that

Z̃j =Zj, Z̃n = eiψZn, (7.8)

for some ψ. Then we have the transformation law for connection forms

θ̃j
k = θj

k, θ̃j
n = e−iψθj

n, θ̃n
j = eiψθn

j, θ̃n
n = θn

n+idψ. (7.9)

Notice that θj
n =hjkθk, θ̃j

n = h̃jk θ̃k and θ̃k = θk, hence we immediately have

h̃jk = e−iψhjk, for all j,k. (7.10)

In particular, h̃11= e−iψh11= ei(ϕ−ψ)√−R11̄11̄. Taking ψ= ϕ, we have

h̃11=
√
−R11̄11̄=

√
−R̃11̄11̄. (7.11)

Formula (7.11) means that we can always choose a frame field {Zβ} such that h11 =√
−R11̄11̄, and hence

hjk =−
Rj1̄k1̄√
−R11̄11̄

, for all j,k. (7.12)

This means that the second fundamental form I I is completely determined by the in-
duced pseudohermitian structure.

We proceed to show that the normal connection is also completely determined by the
induced pseudohermitian structure. For each j,

dθj
n =d(hjkθk)=(dhjk−hjlθk

l)∧θk. (7.13)

On the other hand,

dθj
n = θj

k∧θk
n+θj

n∧θn
n =(hlkθj

l−hjkθn
n)∧θk. (7.14)

From (7.13) and (7.14), we have, for each j,k,

dhjk−hjlθk
l−hlkθj

l+hjkθn
n =

n−1

∑
l=1

Bjklθ
l , (7.15)



H.-L. Chiu / J. Math. Study, 54 (2021), pp. 1-27 21

for some Bjkl , which satisfying Bjkl =Bjlk. In particular

h11θn
n =−(dh11−h1lθ1

l−hl1θ1
l)+

n−1

∑
l=1

B11lθ
l . (7.16)

The conjugate of (7.16) is,

−h11θn
n =h1̄1̄θn̄

n̄ =−(dh1̄1̄−h1̄l̄θ1̄
l̄−hl̄1̄θ1̄

l̄)+
n−1

∑
l=1

B1̄1̄l̄θ
l̄ . (7.17)

Taking the sum of (7.16) and (7.17)

n−1

∑
l=1

B11lθ
l+

n−1

∑
l=1

B1̄1̄l̄θ
l̄ =(h11,lθ

l+h11,l̄θ
l̄+h11,0θ)+ conjugate, (7.18)

which implies that B11l =h11,l+h1̄1̄,l . Substituting this into (7.16), we get

θn
n =

h1̄1̄,lθ
l−h11,l̄θ

l̄−h11,0θ

h11
, (7.19)

which means that θn
n is completely determined by the induced pseudohermitian struc-

ture.

Remark 7.1. (i) From (7.18), we also get h11,0+h1̄1̄,0 = 0. Therefore, in the case n= 2, we
have Th11=0 or TR=R0=0.
(ii) Also, for n=2, we have that θ2

2=2θ1
1−d(lnh11)+2Z1(lnh11)θ

1.

Theorem 7.3. Let (M, Ĵ, θ̂) and (N, J̃, θ̃) be two simply connected pseudohermitian submanifolds
of Hn with CR dimension m= n−1. Suppose, in addition, that their fundamental vector fields
are nowhere zero. If they have the same (induced) pseudohermitian structures. Then they
locally differ by a Heisenberg rigid motion. More explicitly, if there exists a pseudohermitian
transformation φ : M→N, then φ=Φ|M for some Heisenberg rigid motion Φ.

Proof. The key point is that if ν(p) 6=0 for each point p∈M , then we can always choose a
Darboux frame p→ (p;eβ, Jeβ,T) such that

en =−
ν

|ν| , e2n = Jen. (7.20)

Then we would like to compute the Darboux derivative of the Barboux frame. It is equiv-
alent to computing the restrictions of θβ,θγ

β to M. To finish the proof, we need to show
the Darboux derivative is completely determined by the induced pseudohermitian struc-
ture.

dθβ = θγ∧θγ
β = θ̂k∧θk

β+θn∧θn
β = θ̂k∧θk

β+ θ̂∧(−|ν|θn
β). (7.21)
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On the other hand,
dθ j =dθ̂ j = θ̂k∧ θ̂k

j+ θ̂∧ τ̂ j, (7.22)

and
dθn =−d(|ν|θ̂)= θ̂k∧(−i|ν|θ̂ k̄)+ θ̂∧(d|ν|). (7.23)

From (7.21), (7.22) and (7.23), there exists complex-valued functions aj
βγ such that aj

βγ =

aj
γβ and

θk
j = θ̂k

j+aj
kl θ̂

l+aj
kn θ̂, −|ν|θn

j = τ̂ j+aj
nl θ̂

l+aj
nn θ̂, (7.24)

Also, there exists complex-valued functions bβγ such that bβγ =bγβ and

θk
n =−i|ν|θ̂ k̄+bkl θ̂

l+bkn θ̂, −|ν|θn
n =d|ν|+bnl θ̂

l+bnn θ̂. (7.25)

From (7.24),

0= θk
j+θ j̄

k̄ =(θ̂k
j+ θ̂ j̄

k̄)+aj
kl θ̂

l+ak̄
j̄l̄ θ̂

l̄+(aj
kn+ak̄

j̄n̄)θ̂, (7.26)

hence
aj

kl =0, aj
kn+ak̄

j̄n̄ =0, for all 1≤ j,k,l≤m. (7.27)

Similarly, and notice that we write τ̂ j =Aj
k̄ θ̂ k̄, we have

bnl =−2(Ẑl |ν|), bnn+bn̄n̄ =−2(T̂|ν|), aj
nl = iδjl |ν|2,

bjl =
A j̄

l

|ν| , aj
nn = |ν|b j̄n̄ =−2|ν|(Ẑj̄|ν|),

(7.28)

for all 1≤ j,l≤m. From (7.24), (7.27), (7.28), we have, for all 1≤ j,k≤m,

θk
j = θ̂k

j+(iδjk|ν|2)θ̂, −|ν|θn
j = τ̂ j+(iδjl |ν|2)θ̂l−2|ν|(Ẑj̄|ν|)θ̂. (7.29)

From (7.25), (7.28),

θk
n =−i|ν|θ̂ k̄+

Ak̄
l

|ν| θ̂l−2(Ẑk|ν|)θ̂, −|ν|θn
n =(d|ν|)−2(Ẑl |ν|)θ̂l+bnn θ̂. (7.30)

From the look of (7.29) and (7.30), there is only one term bnn not determined yet. In order
to complete the proof, we need to show that both bnn and |ν| are completely determined
by the induced pseudohermitian structure. For this, using (7.29) and (7.30), we compute

dθk
j = θk

l∧θl
j+θk

n∧θn
j

=
(

θ̂k
l+(iδlk|ν|2)θ̂

)
∧
(

θ̂l
j+(iδjl |ν|2)θ̂

)
+

1
|ν|2

(
i|ν|2θ̂ k̄−Ak̄

l θ̂
l+2|ν|(Ẑk|ν|)θ̂

)
∧
(

Aj
l̄ θ̂

l̄+i|ν|2θ̂ j−2|ν|(Ẑj̄|ν|)θ̂
)

,
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that is,

dθk
j− θ̂k

l∧ θ̂l
j

=
1
|ν|2

(
−iAk̄

l |ν|2θ̂l∧ θ̂ j−iAj
l̄ |ν|2θ̂ l̄∧ θ̂ k̄+(−Ak̄

l Aj
q̄+δl

jδ
q
k |ν|

4)θ̂l∧ θ̂ q̄ +(2Ak̄
l |ν|(Ẑj̄|ν|)

2iδl
j |ν|3(Ẑk|ν|))θ̂l∧ θ̂ +(−2Aj

q̄|ν|(Ẑk|ν|)−2iδq
k |ν|

3(Ẑj̄|ν|))θ̂ q̄∧ θ̂
)

. (7.31)

On the other hand, from (7.29) and using the structure equations of the pseudohermitian
structure, we have

dθk
j− θ̂k

l∧ θ̂l
j =dθ̂k

j− θ̂k
l∧ θ̂l

j+d(iδjk|ν|2θ̂)

=Rk
j
pq̄ θ̂p∧ θ̂ q̄+Wk

j
p θ̂p∧ θ̂−W j

kp̄ θ̂ p̄∧ θ̂+iθ̂k∧ τ̂ j− τ̂k∧ θ̂ j

+iδjk

(
(Ẑl |ν|2)θ̂l∧ θ̂+(Ẑl̄ |ν|2)θ̂ l̄∧ θ̂

)
−δjk|ν|2θ̂l∧ θ̂ l̄ .

(7.32)

Comparing the coefficients of the same terms in (7.31) and (7.32), and notice that τ̂ j =

Aj
k̄ θ̂ k̄, we get

Rk
j
lq̄−δjkδlq|ν|2=−

Ak̄
l Aj

q̄

|ν|2 +δl
jδ

q
k |ν|

2, (7.33a)

Wk
j
l+iδjk(Ẑl |ν|2)=2

Ak̄
l

|ν| (Ẑj̄|ν|)−2iδl
j |ν|(Ẑk|ν|), (7.33b)

−W j
kl̄+iδjk(Ẑl̄ |ν|2)x=−2

Aj
l̄
|ν| (Ẑk|ν|)−2iδl

k|ν|(Ẑj̄|ν|), (7.33c)

for all 1≤ j,k,l,q≤m. From the first equation of (7.33),

Rkj̄ =Rkj̄ll̄ =−
m

∑
l=1

Ak̄
l Aj

l̄
|ν|2 +

m

∑
l=1

(δjkδll+δl
jδ

l
k)|ν|2

=


−∑m

l=1
Ak̄

l Aj
l̄

|ν|2 , for k 6= j

−
(

∑m
l=1

Ak̄
l Aj

l̄
|ν|2

)
+(m+1)|ν|2, for k= j.

(7.34)

In particlar

R=Rkk̄ =−
|A|2
|ν|2 +m(m+1)|ν|2. (7.35)

Formula (7.35) is equivalent to

|ν|2= R+
√

R2+4m(m+1)|A|2
2m(m+1)

. (7.36)
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Finally, we would like to compute bnn. From (7.28), we see that bnn+bn̄n̄ =−2(T̂|ν|), i.e.,
bnn =(−T̂|ν|)+i(Imbnn). So we only compute Imbnn. For this, using (7.29) and (7.30)

dθj
n = θj

k∧θk
n+θj

n∧θn
n =(θj

k−δk
j θn

n)∧θk
n

=
1
|ν|2

(
|ν|θj

k+δk
j (−|ν|θn

n)
)
∧(|ν|θk

n)

=
1
|ν|2

(
|ν|θ̂j

k+δk
j
[
−(Ẑl |ν|)θ̂l+(Ẑl̄ |ν|)θ̂ l̄+i(|ν|3+Imbnn)θ̂

])
∧
(
−i|ν|2θ̂ k̄+Ak̄

l θ̂
l−2|ν|(Ẑk|ν|)θ̂

)
=−i|ν|θ̂j

k∧ θ̂l+ θ̂j
k∧
(

Ak̄
l

|ν| θ̂−2(Ẑk)θ̂

)
+

1
|ν|2

(
−(Ẑl |ν|)θ̂l+(Ẑl̄ |ν|)θ̂ l̄

+i(|ν|3+Imbnn)θ̂
)
∧
(
−i|ν|2θ̂ j̄+A j̄

l θ̂
l−2|ν|(Ẑj|ν|)θ̂

)
. (7.37)

On the other hand, using (7.30) and the structure equations of the pseudohermitian struc-
ture,

dθj
n =d

(
i|ν|θ̂ j̄+

A j̄
l

|ν| θ̂
l−2(Ẑj|ν|)θ̂

)
=−i|ν|θ̂j

k∧ θ̂ k̄+i|ν|τ̂ j̄∧ θ̂−i(d|ν|)∧ θ̂ j̄

−2d(Ẑj|ν|)∧ θ̂−2(Ẑj|ν|)dθ̂+d

(
A j̄

l

|ν|

)
∧ θ̂l+

(
A j̄

l

|ν|

)
dθ̂l . (7.38)

For each j, 1≤ j≤m, comparing the coefficients of the terms in (7.37) and (7.38), we get

2
(

Ẑj̄(Ẑj|ν|)− θ̂j
k(Ẑj̄)(Ẑk|ν|)

)
−i(T̂|ν|)=2

∣∣Ẑj|ν|
∣∣2

|ν| +|ν|3+Imbnn−
∑m

l=1 |Ajl |2

|ν| .

Writing
|ν|jj̄ = Ẑj̄(Ẑj|ν|)− θ̂j

k(Ẑj̄)(Ẑk|ν|),
and taking the sum for j over 1 to m, we have

−∆̂b|ν|=−�b|ν|−im(T̂|ν|)=2

∣∣∂̂b|ν|
∣∣2

|ν| +m(|ν|3+Imbnn)−
|A|2
|ν| , (7.39)

where �b and ∂̂b are the Kohn Laplacian and ∂b-operator on M2m+1. Hence bnn is deter-
mined. Substituting (7.39) into (7.30), we get

|ν|θn
n = ∂̂b|ν|− ¯̂∂b|ν|+i

(
∆̂b|ν|

m
+|ν|3+

(
2
∣∣∂̂b|ν|

∣∣2−|A|2)
m|ν|

)
θ̂. (7.40)

This completes the proof.
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Theorem 7.3 says that for pseudohermitian submanifolds of CR dimension m = n−
1, in which there is no zero for ν, the induced pseudohermitian structure constitute a
complete set of invariant. Moreover, we have that if the pseudohermitian torsion of M
vanishes, then M locally is part of the standard sphere as Theorem 7.3 describes.

Theorem 7.4. Let (M, Ĵ, θ̂) be a simply connected pseudohermitian submanifold with CR dimen-
sion m=n−1. Suppose that the fundamental vector fields is nowhere zero. If Aβγ≡0, then the
Webster curvature R is constant, hence it is part of the standard sphere after a Heisenberg rigid
motion.

Proof. Suppose that Aβγ = 0. From (7.33) and (7.35), we get R=m(m+1)|ν|2 = constant.
Next we claim

ωa
2n =−|ν|ωa, for a=1,··· ,2n−1. (7.41)

From (7.30), we have for 1≤ k≤n−1,

θk
n =−i|ν|θ̂ k̄ =−iν|θ k̄ =−i|ν|(ωk−iωn+k). (7.42)

And from (7.40),
θn

n = i|ν|2θ̂=−iν|θn =−i|ν|(ωn+iω2n). (7.43)

On the other hand, we see that for 1≤ k≤n, we have

θk
n =ωk

n+iωk
2n =ωn+k

2n+iωk
2n. (7.44)

Comparing (7.42)–(7.44), we get the claim (7.41). In addition, we also have

ω2n =0, ωn =−|ν|θ. (7.45)

Substituting (7.41) and (7.45) into the motion equation

de2n = eβ⊗ω2n
β+en+β⊗ω2n

n+β−T⊗ωn

=
n−1

∑
β=1

eβ⊗(|ν|ωβ)+en⊗(|ν|ωn)+
n−1

∑
β=1

en+β⊗(|ν|ωn+β)+T⊗(|ν|θ).
(7.46)

That is

d
(

e2n

|ν|

)
= eA⊗ωA+T⊗θ=dX, on M. (7.47)

We conclude that on M

X−X0=
e2n

|ν| , for some X0∈Hn. (7.48)

Writing

e2n

|ν| = aA(X)e̊A(X), for some coefficient functions aA,

X=(X1,··· ,X2n,X2n+1), X0=(X0
1 ,··· ,X0

2n,X0
2n+1).

(7.49)
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From (7.48), we have
aA(X)=XA−X0

A, A=1,··· ,2n, (7.50)

and hence

X−X0=
e2n

|ν| = aA(X)e̊A(X)

=(Xβ−X0
β)

(
∂

∂xβ
+Xn+β

∂

∂t

)
+(Xn+β−X0

n+β)

(
∂

∂yβ
−Xβ

∂

∂t

)
=(Xβ−X0

β)

(
∂

∂xβ
+X0

n+β

∂

∂t

)
+(Xn+β−X0

n+β)

(
∂

∂yβ
−X0

β

∂

∂t

)
= aA(X)e̊A(X0), (7.51)

with ∑2n
A=1 a2

A = 1
|ν|2 . This completes the proof.

Theorem 7.4 is the same as Theorem 7.5.

Theorem 7.5. Let (M, Ĵ, θ̂) be a simply connected pseudohermitian submanifold with CR dimen-
sion m=n−1. Suppose that the fundamental vector fields is nowhere zero. If I I =0, then the
Webster curvature R is constant, hence it is part of the standard sphere after a Heisenberg rigid
motion.

Proof. Note that in the proof of Theorem 7.1, we choose a Darboux frame such that

en =−
ν

|ν| .

This implies that
〈
ν,Zn

〉
=−|ν|. Hence, from (5.11), we have

θj
n =hjk θ̂k−i|ν|θ j̄, mod θ̂.

Comparing with (7.30), we get

hjk =
Ajk

|ν| , 1≤ j,k≤m.

Therefore
Ajk =0 ⇔ I I=0.

This complete the proof.
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