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LOCALLY CONSERVATIVE SERENDIPITY FINITE ELEMENT
SOLUTIONS FOR ELLIPTIC EQUATIONS

YANHUI ZHOU AND QINGSONG ZOU

Abstract. In this paper, we post-process an eight-nodes-serendipity finite element solution for
elliptic equations. In the post-processing procedure, we first construct a control volume for each
node in the serendipity finite element mesh, then we enlarge the serendipity finite element space by
adding some appropriate element-wise bubbles and require the novel solution to satisfy the local
conservation law on each control volume. Our post-processing procedure can be implemented in
a parallel computing environment and its computational cost is proportional to the cardinality of
the serendipity elements. Moreover, both our theoretical analysis and numerical examples show
that the postprocessed solution converges to the exact solution with optimal convergence rates
both under H' and L2 norms. A numerical experiment for a single-phase porous media problem
validates the necessity of the post-processing procedure.
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1. Introduction

The serendipity family of finite elements is one of the most popular finite ele-
ment methods (FEMs) applying parallelepiped meshes. Over each such a mesh,
the serendipity finite element space with C° continuity has significantly smaller
dimension than the alternative tensor product Lagrange element space, yet they
have the same convergence orders. With this advantage and others, the serendipity
finite elements have been studied by many researchers such as Ahmad [1] in 1969,
Zienkiewicz [41] in 1977, Macneal and Harder [26] in 1992, Lee and Bathe [17]
in 1993, Kikuchi [15] in 1994, Kikuchi, Okabe and Fujio [16] in 1999, Zhang and
Kikuchi [35] in 2000, Arnold, Boffi and Falk [3] in 2002, Rajendran and Liew [28] in
2003, Li et al. [19] in 2004, Cen and coauthors [12] in 2010, Arnold and Awanou [2]
in 2011, and Rand, Gillette and Bajaj [29] in 2014, and so on.

Compared with the FEM, the finite volume method (FVM) ensures the local
conservation law, which makes it widely used in scientific and engineering compu-
tations, see [4,18,27,31] for an incomplete references. The finite volume element
method (FVEM) is a member of FVM. The mathematical development of linear
FVEM on triangular mesh is almost as satisfactory as linear FEM, see [20,22, 36]
and the references cited therein. For the bilinear FVE scheme on quadrilateral
mesh, most existing works need the quasi-parallel quadrilateral assumption (e.g.,
[21, 23,24, 37]), and recently [14] present a sufficient condition which covers the
traditional h'*T7-parallelogram mesh condition to guarantee the coercivity result.

However, it is still a challenging task to construct and analyze high order FVE
schemes with optimal convergence orders, e.g., [8,9,20,23,25,32-34,37]. In par-
ticular, for the second order scheme, under the h't7-parallelogram mesh assump-
tion, [23,37] bring the uniform stability and optimal convergence rates under both
H' and L? norms. On the triangular meshes, the unconditionally stable quadratic
scheme in [42] does not guarantee the optimal convergence rate in L? norm. Un-
der the minimum angle condition 1.42° [39,40], the second order scheme in [32]
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owns the optimal L? norm error estimate. Recently, [38] presents a class of bubble
enriched quadratic schemes such that the convergence order of L? error is 3, re-
grettably the unconditionally stable of these schemes are not proved. In summary,
the construction and analysis of second order FVE schemes are not easy, and the
research of serendipity FVE scheme is little.

In this paper, we study the serendipity finite element method in a way differ-
ent from the aforementioned works. Precisely, we post-process the eight-nodes-
serendipity finite element solution so that it satisfies a desired property—the conser-
vation law in element level. For this purpose, we first enlarge the classic serendipity
finite element space by adding eight bubbles on each element. Then we construct
the associated control volumes, each of which is a polygon surrounding a node of the
mesh constructed by dividing each parallelepiped element with two special points
on each edge and five special points (whose locations depend on the same single
parameter) in the interior of the element. At the end, by solving an 8-by-8 linear
system on each element, we devise our post-processed solution such that the con-
servation law holds on each control volume. Since the bubbles are the polynomials
in the interior of each element and vanish at the edge of the element, the post-
processed solution is globally continuous in the whole domain. More importantly,
not only the post-processed solution guarantees the element-level conservation law,
but also makes sure of the optimal convergence rates under both H'! and L? norms.

In comparison with the FVEM, we demonstrate the importance of our results
in what follows. Through comparing with the second order scheme in [37], we
can see clearly that: 1) the linear system derived from the eight nodes serendipity
element is symmetric, while that derived from the second order scheme in [37] is
unsymmetric; 2) under the same mesh, the degree of the freedoms of the eight
nodes serendipity element is much less than that of the scheme in [37]; 3) our post-
processing procedure is performed on each element independently, and thus can be
implemented in a parallel computing environment. In summary, directing at the
high computing cost and the difficulties resided in devising and analyzing the high
order FVEMs, the techniques presented here supply a better option for producing
the local conservative solution and owning the optimal convergence rates. Note
that the relevant works on the postprocessing technique for Lagrange finite element
solution can be found in [7,13,43] and the references cited therein.

The rest of this paper is organized as follows. In the next section we introduce
the serendipity finite elements and associated control volumes. In Section 3 we
postprocess the serendipity finite element solution such that it satisfies the local
conservation law on each control volume. The property that the post-processed so-
lution owns the optimal convergence rate will be rigourously proved in this section.
Numerical examples are presented in Section 4 to validate our theoretical findings.
Some concluding remarks are given in Section 5.

To avoid repetition, we write “A < B” meaning that A can be bounded by B
with a constant multiple irrelative to the parameters which A and B may depend
on, while “4 2 B” meaning that B can be bounded by A. “A ~ B” indicates that
“A< B” as well as “B < A”.

2. The serendipity finite elements and associated control volumes
We consider the finite element method for the elliptic model problem :

(1) —V-(BVu)=f inQ,
(2) u=0 onJQ,
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FIGURE 1. Partition (dotted lines) of the rectangular element P PP P;.

where Q = [a,b] X [¢,d] is a rectangle, f € L*(), and there exist positive constants
Bmin, Bmax such that for all (z1,22) € Q

0< ﬁmin S ,8(%‘1,1‘2) S Bmax < +o0.

Let T;, be a conform and shape regular rectangular mesh of €, with mesh size h,
we define the finite element space

Up={velC®): v, €Qs, V7 € Th; v|sa =0},
where
Q5 = Span{1, x1, 9, 2129, 23, T3, 7 w2, 1175}
is the 2nd order serendipity set of polynomials. The serendipity finite element
solution for (1) and (2) is the function u, € Uy, satisfying

(3) a(uh,vh) = (f, Uh), Yy € Uy,

with the bilinear form

a(v,w) :/BVU~dex1da:2, Yo,we HY(Q),
Q

and the right-hand side (f,vp) = [, fop dzidey. If w € H?(Q), it is known that
there hold the following error estimates (c.f. [5,6,10])

lu = unllm < B* " ulls, m=0,1.

~

Next we introduce the control volumes associated with 7T,. For each rectangle
T =0P,P,P3Py € Tp,let M;, i € Z4 be the midpoint of the line segment P; P; 11 (see
Figure 1), and let R be the intersection of P, P; and P, Py, where Z,, = {1,2,--- ,n},
Ps := P;. Given a € (0,1) and i € Zy, let Gf; and G¢';41 be the points on PPy
satisfying
MG MG

= = q,
[MiPi| [MiPiy
where Gf 5 := G, and let the points Qf € RP; satisfying
RQ
|RP;|

Moreover, we denote by N7 = { Py, Pa, Ps, Py, My, M2, M3, My} the set of 8 nodes
on 7. Let N}, = Urer, N be the set of all nodes of 75, and N = N}, \09Q the set
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FIGURE 2. Control volumes with respect to a vertex (left) and a
midpoint (right).

of all interior nodes of Ty,. For all P € N}, we denote the patch wp = U{r € Ty, :
7 2 P}, where 7 := 1 UO7. For each 7 € Ty, let w, =U{m € T, : TNT1 # 0}.

We are now ready to define the control volume for each node P € N,. If P is a
vertex of 7, P = P; in the element 7, then we let the contribution from 7 to control
volume Vp, is the rectangle V; p, := PG, Q7G7 ; with G§; = Gy, 1 € Zg. 1t P
is a midpoint of the edge of 7, P = M, then the contribution from 7 to the control
volume V), is the polygon Vi, = G¢,GF, Q7 RQY with QF = QF, @ € Zy.
For all P € N}, the whole control volume surrounding point P is defined as

Ve = Vop,
T3P

see Figure 2 for the control volume associated with a vertex P and/or with a
midpoint M.

All control volumes Vp constitute a so-called dual mesh 7;{ ={Vp: P e Ny}
The test function space Vj, with respect to 7/ is defined as

Vi = Span{tpy,, : P € Ny},

where 1y, is the characteristic function on Vp. From the finite element space Uy,
to the test function space V},, we define a mapping II as

v =T, = Y up(P)ey, € Vi, Vo, € Up.
PeNY

3. Postprocessing

Generally speaking, the serendipity finite element solution w; does not satisfy
the following local conservation law

fdxidas + ﬂ% ds =0,
Vp ovp On

on each control volume Vp, P € N}, where n is the unit outward normal on
the boundary 0Vp. In this section, we postprocess the serendipity finite element
solution up, of (3) to generate a continuous function 4y, which satisfies the local
conservation law on each control volume Vp, P € Np.

To this end, we first introduce the bubbles on each rectangular element 7 =
OP, Py P3Py. Let ¢, j € Z4 be the four bilinear basis functions associated with the
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four vertices P;, i € Z4 of 7 satisfying

QU]( )_6Z]a i)j€Z47

and ¢;, j € Zg be the eight serendipity basis functions associated with the four
vertices P;, i € Z4 and four midpoints M;, i € Z4 of T satisfying

¢;(P;) = 0ij, i,j € Zs,
where ;5 = 1if ¢ = j, §;5 = 0if ¢ # j, and P14 := M;, © € Z4. We denote by

r = | Py Py|/| Py Py| the ratio between the length and height of 7, and introduce two
polynomials

p(r) = —4500r° + 79427r* + 10021972 + 16292,
q(r) = 170251407 + 4905909175 — 1867522047 + 983777151 — 4702500.

It is easy to obtain that the three positive roots of ¢ are

\/\/ 7336997329 — 83927 , \/1186 — V314571 , \/1186 + V314571
1= sy e =\ ——— > =\ T

32584 1045 1045 ’

and the positive root of p is

. \/\/ 7336997329 4 83927
4= .

9000

Obviously, we have 717y = rorz = 1. If [r — ;| > g9 = 1073, Vi € Z4, we define the
bubbles on 7 by

(4) VYj = Y7 = p1p3p;,  J € La,
Y =7 = 19305, J € Ls\Za.

If |r — ry] < eg for some i € Zy, we define the bubbles as

(5) by = YT = prpsp;, € {2,4},
Vi =V] = o1p3d;, J € Ls\{2,4}.

We define the enlarged function space
Up = Up @ Span{y)] : 7 € Th,, j € Zs}.

Since ¢7, j € Zs vanish on the boundary of 7, each function up € ﬁh is still
continuous in the whole €.

Next we introduce a functional R(:,-,-) defined for all wy, € Up, and all 7 € Ty,
by

R(f,wh,T)
/f — wy, dmlde—i-/BVuh thdxldxz—F/ {BVur} - n(wy —wp)ds,

where {-} is an averaging operator which defined on 97, i.e., if 7, and 7, are two
neighbour elements, the edge ' = 71 N 79, then for all vectorial function v which
has been well defined in the interior of 7 and 7o,

{v}e = ('U|E7'1 +vlp7)-

Now on each 7 € Tp, let

8
(6) up, Zuh+ZCj¢j e Uy,

j=1
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satisfies the constraints
on
(7) 7/ BE ds = R(f, ép,,T), i€ Ls
@Vp)nr On

and the constraint
(8) un(0) = up(0),

where O := O, is the barycenter of the element 7.

Assume the parameter o« = 1/2, the bubbles are defined in (4) and (5), and
Uy, is constructed by (6), then there exists one unique u; such that (7) and (8)
hold, see Theorem 3.1. Moreover, for any « € (0,1), the postprocessed solution
uy, satisfies the local conservation law, and converges to the exact solution with
optimal convergence orders under both H' and L? error norms, see Theorem 3.2.

Theorem 3.1. Suppose the coefficient B is piecewise constant with respect to Tp,
or piecewise W1 and the mesh size h is sufficiently small, the parameter a =
1/2. Then for each T € Ty, there exists one unique Up which satisfies (7) and (8)
simultaneously.

Proof. We first prove the theorem for the case that £ is a constant in 7. For each
T € Th, by (6) and (7), there holds

8
f/ BY D ey | mds = 7/ BV (T, —up) -nds = RHS;, i € Zs,
(ani)ﬂT j=1 (8Vpi)ﬁ7'

where

RHSiZR(f,qﬁpi,T)—‘r/ BVuy -nds.

(ani )ﬁT
This leads to the linear algebraic system

(9) Ac =D,
where ¢ = (¢;)sx1 is the unknown vector, A = (@i;)sxs with the entries

aij:_/ BV -nds, i,j€Zg
(dVp,)Nr
and b = (gi)8x1 with the entries

b; = RHS;, i€ Zs.
Observing that 1; and uj, are continuous in 7, we have that

8 8
Z/ wwj.nds:z:/ BVup -nds =0, jeZs.
i=1 (QVpi)ﬂT i=1 (OVPZ)

Nt

Therefore, we obtain
8
> ai; =0, Vjels
i=1

and
8

> RHS;

i=1

i) (R(f, o)+ [

(0Vp,)NT

8
R<f7Z¢Pi7T> :R(fa]-,T):Oa
i=1

BVup ~nds>
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which implies the system of equations (9) are linear dependent.
We now replace the last equation of (9) by (8) and then multiply both sides of
the novel eight equations by 64 to obtain a novel system

(10) Ac=b.

To show the existence and uniqueness of %y, we only need to show that A is a
nonsingular matrix. In the following, we verify the nonsingular property of A for
the case that |r —r;| > o = 1073, Vi € Z4. In this case, by direct calculations, we
obtain

agj = 1, as j+4 = 2, J € Ly,

and

67 1 130 335 65 1
a11——2565<7”+r), a21__6<256+7687“)7 031——7685(7“-1-r>7
I 335r 13 asy = f dr 613 tor = f 69r 137
e 768 ' 256r ) Pt P \15 Tasor ) YT P \160 1200 )

69  137r 613r 4 53r 67
a71:5(160r_ 120)’ “62:5(480 +15r>’ al"’:_ﬁ(sz(ﬁw)’
a356<53r+13> a556<1873r+13843) a656<97r37>

192 " 64r ) 3360 ' 3360r )’ 80 24r )

1639 2351r 13r 53 67r 53
07525( - >7016=—ﬂ( + )7026=—ﬂ< + ),

1120r 1120 64 ' 192r 64 ' 320r
tas = B 97 3Ty _3 13843r+ 1873\ _g 1639r 2351
P80 24 ) T 3360 ' 3360r /) "\ 1120 1120

and

12 = A21, 22 = 411, a3z = 41, 42 = 431, a52 = as1, Q72 = Aar1,
a1z = asy, Q23 = a41, a33 = a1, G43 = a21, Ga53 = ary, 43 = 62,
arz = as1, Q14 = a32, (24 = Q42, GA34 = @12, (44 = A22, G54 = A72,
a4 = Ap1, Q74 = A52, 0A25 = A15, Q45 = 435, (36 = G26, (46 = A16,
are = As6, Q17 = 35, A27 = Q45, A37 = G15, Q47 = G25, G57 = a75,
ae7 = Ae5, Q77 = As5, A18 = 436, (28 = G46, (38 = G16, (48 = (26,
asg = are,  A78 = A56-

Using the software Matlab, we get

~ B7p(r)q(r)

3853516800000077

Since the ratio r satisfies the conditions |r — r;| > g9 = 1073, Vi € Z4, we have
det(A) # 0 and thus the system (10) has a unique solution. Namely, there exists a
unique @y, which satisfies (7) and (8) simultaneously. The proof for the case that
|r — r;| <ep for some i € Zy is similar and thus we omit it here.

Next we consider the general case that 3 is piecewise W1 with respect to Ty,.
We denote

det(A) =

= 1
Bl = H/deldxg, V1€ Th,

where || is the area of 7. Consequently, 3 is piecewise constant, Bmin < 8 < Bumax
and || — /0,00, S h. Then we can define a matrix A = (@;;)sxs corresponding to

~



26 Y. ZHOU AND Q. ZOU

[ as above. From the above reasoning, we have

det(A) ~ 1.
On the other hand, the fact that |a;; — @;;| S h, 4,j € Zg yields that
|det(A) — det(A)| < h.
Therefore, when h is sufficiently small, we get det(A) # 0, and there exists a unique
uy, satisfying (7) and (8) simultaneously. The proof is complete. O

Remark 3.1. If o # 1/2, one may choose other appropriate bubble functions to
ensure the existence and uniqueness of Up which satisfies (7) and (8) simultane-
ously.

Theorem 3.2. The postprocessed solution Uy, satisfies the local conservation prop-
erty
o
(11) — 5ﬂ ds = fdzidas
ove On Vp

on each control volume Vp, VP € NY. Moreover, we have the optimal-order L* and
H' error estimates

(12) lu = Gnllm S B2 uflz,  m=0,1.
Proof. We observe that for all P € N},
¢*P|8wp = ¢P|awp = 07
and for all 7 € wp, the jump
{BVur} - 0o\ (owp) = 0
Therefore

> /8 {BVur} népds= > /a {BVun} -népds =0.

TEWP TEWP

Then by (7), we have

Bah 8ﬂh
— f——ds=— / B——ds
/BVP on Z (OVp)nr  On

TEWP

> R(f,6p,7)

TEWP

3 ( [ 16— or)anaes + [ 59w -vor dxldxz)

TEWP

/ f(¢p — ¢p) dwiday + / BVuy, - Vop dzidas
Q Q

= fdzidas,
Ve
where we have used the facts that ¢ = 1 in Vp and ¢ = 0 in Q\Vp. The local
conservation property (11) is verified.
To prove (12), we only need to estimate uj, — up, = Z?Zl ¢;¥; in each 7. Note
that ¢;, j € Zs satisfies Ac = b. Moreover, by Theorem 3.1, there hold |a;;| < 1,
i,j € Zg and det(A) ~ 1. Then ||A7} s < 1 and we obtain

~

le;| S max, |RHS;|, Vj€Zs.
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Next we estimate RHS;. It follows from the Green’s formula that

/fqb}‘gi dzidzy = / fdxidaes = —/ V- (BVu) dzidzs
T VpiﬁT

VPi, (Rks

= —/ BVu-nds
a(Ve,NT)

and
/T fop, dvidag = — /T V- (BVu)¢pp, dridrs
= /BVU -Vop, drides — / BVu -nep, ds.
Then ' "
RHS; = R(f,¢p,,T) + / BVuy, -nds
(8vp, )Nt

= /f(fff-q — ¢p,)dzidry + / BVup - Vop, dzidzs
+/ {BVun} -n(¢p, — op,)ds +/ BVuy, -nds
or (oVp,)NT

= /ﬁV(uh —u) - Vop, deides + /(6 BV (up, —u) -nds

VPi nr

+ / ({BVup} — pVu) -nds —|—/ (BVu — {BVup}) -nop, ds
Vpir‘la'r

or
AL+ L+1I5+ 14
It is easy to verify that
| < lu—upl,-
and

1
2

1
|I2] < h?

/ IV (up, —u)|*ds
(8Vpi)ﬁ7'

S lu—uplir + helu —uplo -,

where h, is the diameter of 7. On the other hand

BI+10 S [ {(8Vun} - 59ulds
or

1
2

1
<

/a {8V un} — BVu|? ds

S lu—unliw, + et — upl2.0, -
Combining the above inequalities
|[RHS;| < |u—unliw, +helu—up|2w,, Vi€ Zs.
Note that

lu—upla,r <|u—urlar + |ur —upla,-
< hellullsr + by s — unlly,-
< hellullsr + by (lu = urll e + llu—unll-)

< hellulls, - + bzt flu—unl1.r,
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where u; € Uy, is the piecewise interpolation such that for each rectangular element
T = DP1P2P3P4

ur(Py) = u(P;), ur(M;) = u(M;), @€ Zy.
Thus, for m = 0,1

8
lan = wnll,r = || et
j=1

m,T

NE

< D leilllvsllm,
j=1

< pl-m .

S hy™" max [

< pl-m .

S he™™ max |[RHS;|

S he ™= unlw, + R 3,0, -
Summing up the above inequality over all elements, we obtain
[ = unllm S B2 [fulls.
Finally, by the triangle inequality
[ = Unllm < [lu = unllm + llun = Unllm,

we get the desired estimates (12). O
Remark 3.2. For the L? error estimate of second order FVE schemes, the requ-
larity assumptions in [23,38] are (u, f) € H® x H?, and the reqularity assumption
in [32] is w € H*. In this paper, the assumption is u € H?, lower than [23, 32, 38].

Moreover, the stiffness matrix generated from finite element scheme is symmetric
and positive definite which more easier to solve.

4. Numerical examples

In this section, we present three numerical examples to validate our postprocess-
ing technique. Examples 4.1 and 4.2 are designed for elliptic and parabolic equation
respectively, while Example 4.3 is for a single phase flow model. In these examples,
we choose 2 = [0,1]? and the rectangular meshes T = Ty, , k € Z7, are obtained
by uniformly refining the rectangle [0, 1]?, where hy = 27% is the mesh size of Ty.

Example 4.1. We consider the problem (1), (2) with the discontinuous coefficient

1, z; <0.5,
B(xl’“):{ 2 21505

and the discontinuous right-hand-side function
f(xy,22) = { :Siiizz : 421’62382 — 4, 2 i 8?’
The problem has the exact solution
o) ={ G TR TENY
r1e°"2 4+ 0.5e**? 4 x5, x; > 0.5.
In our numerical experiment, we first use (3) to compute the serendipity finite

element solution uy. Then we postprocess u; on three kinds of control volumes:
a=1/3,2/5,1/2, and use uj, to denote the post-processed solution which satisfies
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TABLE 1. Postprocess errors and convergence orders for Example
4.1, « =1/3.

h |LCE(un)|s Order | [LCE(up)|am | |lu—un|t  Order | ||lu—1upllo Order
1/2 2.09e-01 / 2.48e-14 4.04e-01 / 1.80e-02 /
1/4 9.31e-02 1.166 3.57e-14 9.55e-02  2.081 1.79e-03  3.330
1/8 2.96e-02 1.652 4.97e-14 2.28e-02  2.069 1.79e-04 3.315
1/16 8.29e-03 1.837 5.53e-14 5.58e-03  2.028 2.01e-05 3.157
1/32 2.19e-03 1.921 5.18e-14 1.39e-03  2.009 | 2.42¢-06  3.054
1/64 5.62e-04 1.961 5.73e-14 3.46e-04  2.002 2.99e-07  3.016

1/128 1.43e-04 1.981 6.18e-14 8.65e-05  2.001 3.73e-08 3.004

(7) and (8). Noticing that the ratio r = 1 for each rectangular element 7 € Ty, thus
we choose the bubbles defined in (4).

In order to compare the local-conservation-errors (LCESs) of finite element solu-
tion and its postprocessed finite-volume-element-like solution, we define the LCE
associated with a control volume Vp as

LOEp() = [ Fdmdzs+ [ 82%ds, Vo e HY(Q).
Vp ove On

Moreover, we denote

|LCE(vn)|s = P;/O |LCEp(vy)| and |LCE(vy)|y = max |LCEp(vy)|
h

as the summation and maximum of these errors respectively.

The numerical results are reported in Tables 1-3 and “Order” indicates the nu-
merical convergence order computed by log,(Fan/Ep), where Esp, and Ej, are the
errors of the corresponding two successive mesh size T3, and Tj,. We observe that
|LCE(uy)|s are nonzero for o = 1/3, 2/5, 1/2, and its convergence order is almost
of 2. However, |LCE(y,)|y are all of scale of 10714, Considering the errors from
the linear solver, numerical quadratures and the machine precision, we can regard
that 1y, satisfies the local conservation law on each control volume Vp, P € Np.
Moreover, we see that for all the three cases, uj, converges to the exact solution u
with optimal rates 2 and 3, respectively under H' and L? norms. These numerical
results are consistent with our theoretical results in Theorem 3.2.

In comparison, we also compute the finite volume element solution u,, over eight-
nodes serendipity mesh. In other words, u, satisfies the local conservation property

O,
— 8 e P fdxidas
ove On Vp

on each control volume Vp, P € N. The numerical results are presented in Table
4 and Table 5. One can observe that for all three cases: a = 1/3, 2/5, 1/2, the
convergence rates of H! errors are almost 2, which are optimal. However, the
convergence rates of L?-norm errors are also 2, which are one order lower than the
optimal order.

Example 4.2. We consider the parabolic problem

%1‘ —~V-(BVu)=f (z1,72) €Q, t € (0,T),
(13) 0

u(zy,2,0) =u (z1,22) € Q,

u(xy,xe,t) =up (x1,22) € 0N, t € (0,7
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TABLE 2. Postprocess errors and convergence orders for Example
4.1, a =2/5.

h |LCE(un)|s Order | [LCE(up)|am | |lu—un|t  Order | ||lu—1upllo Order
1/2 2.00e-01 / 2.44e-14 4.46e-01 / 2.19e-02 /
1/4 8.48e-02 1.235 2.86e-14 9.99e-02  2.159 | 2.08e-03  3.398
1/8 2.64e-02 1.682 4.67e-14 2.30e-02  2.120 1.98e-04 3.392
1/16 7.32e-03 1.852 5.48e-14 5.55e-03  2.048 2.14e-05 3.211
1/32 1.92e-03 1.928 5.19e-14 1.37e-03  2.015 | 2.54e-06  3.076
1/64 4.93e-04 1.964 5.72e-14 3.43e-04  2.004 3.12e-07  3.022

1/128 1.25e-04 1.982 6.19e-14 8.56e-05  2.001 3.89¢-08 3.006

TABLE 3. Postprocess errors and convergence orders for Example
4.1, a=1/2.

h |LCE(un)|s Order | [LCE(un)|am | |u—un|t Order | |lu—unllo Order
1/2 1.78e-01 / 2.46e-14 2.35e+00 / 1.48e-01 /
1/4 7.01e-02 1.343 3.91e-14 3.90e-01  2.591 1.21e-02  3.611
1/8 2.11e-02 1.733 5.01e-14 5.91e-02  2.723 | 8.78e-04  3.789

1/16 5.75e-03 1.876 5.50e-14 9.56e-03  2.627 | 6.31e-05  3.797
1/32 1.50e-03 1.940 5.18e-14 1.85e-03  2.371 5.08e-06  3.637
1/64 3.82e-04 1.971 5.72e-14 4.18e-04  2.144 | 4.99e-07  3.347
1/128 9.65e-05 1.985 6.19e-14 1.02e-04  2.043 | 5.71e-08  3.126

TABLE 4. FVEM H! errors and convergence orders for Example 4.1.

L a=1/3 a=2/5 a=1/2
|u —uy[1 Order | [u—uy|1 Order | |[u—uy|1 Order
1/2 | 26101 ]/ | 2.60e0L  / | 2.58e-01  /
1/4 6.81e-02 1.936 | 6.77e-02 1.939 | 6.71e-02 1.944
1/8 1.72e-02 1.984 | 1.71e-02 1.985 | 1.69e-02 1.987
1/16 | 4.32¢-03  1.996 | 4.28¢-03 1.996 | 4.24e-03  1.997
1/32 1.08e-03  1.999 | 1.07e-03 1.999 | 1.06e-03  1.999
1/64 2.70e-04 2.000 | 2.68e-04 2.000 | 2.65e-04 2.000
1/128 | 6.75e-05 2.000 | 6.70e-05 2.000 | 6.63e-05  2.000

TABLE 5. FVEM L? errors and convergence orders for Example 4.1.

h a=1/3 a=2/5 a=1/2
lu —uyllo Order | ||lu—uy|lo Order | [[lu —uyl]lo Order
1/2 | 221e02 ] | 21502 /| 2.07e02  J
1/4 4.29e-03  2.363 | 3.96e-03  2.441 | 3.47e-03  2.577
1/8 9.76e-04  2.136 | 8.69e-04  2.189 | 7.02e-04  2.306
1/16 2.38e-04 2.038 | 2.09e-04  2.057 1.63e-04  2.105
1/32 5.90e-05  2.010 | 5.16e-05  2.015 | 4.00e-05  2.029
1/64 1.47e-05  2.003 | 1.29e¢-05  2.004 | 9.95e-06  2.007
1/128 | 3.68e-06 2.001 3.22e-06  2.001 2.48e-06 2.002

with T =1 and B(z1,z2) = €172, We choose the right hand side function, initial
condition and boundary condition

[z, w0,t) = me™ T2 (sin(721 ) cos(mas) 4 cos(mawy) sin(mzs)

+ 27 cos(mxy) cos(mwa)) — et cos(way) cos(mrs),
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TABLE 6. FVEM H! errors and convergence orders for Example 4.2.

L a=1/3 a=2/5 a=1/2

[u¥ —ul]y Order | [u™ —ul|1 Order | [u¥ —ul]y Order
1/2 | 1.03e-01 7 1.030-01 i 1.030-01 i
1/4 2.07e-02 2.320 2.06e-02 2.331 2.04e-02 2.344
1/8 4.99e-03 2.054 4.93e-03 2.059 4.86e-03 2.069
1/16 1.24e-03 2.006 1.23e-03 2.007 1.21e-03 2.009
1/32 3.10e-04 2.001 3.06e-04 2.001 3.01e-04 2.001
1/64 7.75e-05 2.000 7.66e-05 2.000 7.53e-05 2.000

TABLE 7. FVEM L? errors and convergence orders for Example 4.2.

a=1/3 a=2/5 a=1/2

lu¥ —ulfo Order | [[u™ —uy o Order | [u¥ —ul][o Order
1/2 | 9.800-03 i 9.80-03 i 9.80e-03 7

1/4 8.43e-04 3.538 8.06e-04 3.603 7.66e-04 3.677
1/8 1.82e-04 2.209 1.64e-04 2.301 1.36e-04 2.497
1/16 4.41e-05 2.048 3.88e-05 2.075 3.06e-05 2.149
1/32 1.09e-05 2.013 9.57e-06 2.021 7.43e-06 2.043
1/64 2.72e-06 2.003 2.38e-06 2.005 1.84e-06 2.011

h

u® = cos(mxy) cos(mry) and wup = et cos(mry) cos(mry)
which allows the exact solution
u(xy, w2,t) = e " cos(mxy) cos(mws).

In the following, we consider a uniform time step At = 1/ f%} corresponding
k

to the mesh T, where [s] is the ceil function which rounds to the nearest integer
greater than or equal to s. Set the time ¢, = nAt, n € Z% = {0,1,--- , N}, where

N =[2%1.

We first use the Crank-Nicolson fully discrete finite volume element method over
eight-nodes serendipity mesh to solve (13), i.e., find u?, n € Zy which satisfies

n_ ,mn—1 n n—1
/ Yo “ U gy day — gyl T g
VP At BVP 2

(14)

= flar,22,t, 1) deidas, VPeN:,
Vp

with the initial approximation u) = Iu® := Y pcy, u’(P)¢p and ;! is the finite
volume element solution at time t,,, t,,_1 /2 = (tn+tn—1)/2. The numerical results at
the final time 7" = 1 are showed in Table 6 and Table 7, where u’¥ = u(z, xa,tx).
One can see that the convergence orders of H' errors are 2 for all three cases
a=1/3,2/5,1/2, which are optimal. However, the convergence rates of L? errors
are also 2, which are one order lower than the optimal convergence rate.

In order to obtain the optimal convergence order of L? error and satisfy the
conservation, instead, we first use the Crank-Nicolson fully discrete eight-nodes
serendipity finite element method to solve (13), i.e., find u} := up (1, 22,tn), n €
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Zy which satisfies
up + qul

9 . V¢p dxldl‘g

n n—1
Up — Uy
/Q e op daida + i Bv

:/f(xl,l‘Q,tn_%)d)Pdl‘lde, VPEN}?,
Q

with the initial approximation u% = Inul.
Then, we postprocess uj on three kinds of control volumes: a = 1/3, 2/5, 1/2
to obtain a finite-volume-element-like solution u} which satisfies

ap —ap ! ap 4+ ap!
/ ThZhdpyde, — [ VAR pds
Vp At an 2

= . f(l‘l,l‘g,tn_%)dl‘ldl‘g, VPEN;?, n e ZLy.
>
For the details of implementation, for Vn € Zy, suppose
8
up =up + Zc;%/Jj in each 7 € Tp,
j=1

where the coefficients ¢}/, j € Zg are to be determined and ¢; are the bubble
functions defined by (4). Let the postprocessed solution u} satisfy

uy / B ouj ~ .
- dzidzy — ———ds=R(f,¢p,,7), €L
\/Vpiﬂ‘r At e (0Vp, )Nt 2 On ( r ) ®

for each 7 € T;, and with the initial condition @) = u9, where

E(fa ¢Pi ) T)

~n—1 ~n—1
0
= / U dzydey + / B 44
Vpif‘l‘f' At (aVPi)ﬁT 2 8”

ul — un—l
+ / f(xlv‘r%tnf%)(gbj;i - ¢Pz’)dx1dx2 +/ %d);’:’l d$1d$2
n n—1 n n—1
+ / BVW% - Vop, dridas +/ {5Vuh+2uh} n(dp, — ép,)ds.

Thus, the coefficients ¢}/, j € Zs, n € Zy can be solved in each 7 € 7.

On the other hand, in order to compare the LCEs of finite element solution u}
and its postprocessed finite-volume-element-like solution @} at time ¢, for Vo) €
H'(Q), we define the LCE associated with a control volume Vp as

n vy +vZ*1
LCEp(vy) = f($1,$27tn,%) dxidxs + ﬁvT .nds
Vp oVp
n n—1
Up — Uy
- dz,d
/B anan,

Our numerical results are presented in Tables 8-10. We observe that the conver-
gence orders of [LCE(u})|s are almost of 2 for o = 1/3, 2/5, 1/2. However, the
|LCE(u))| s are almost all of scale of 10715 and can be regarded as zero, i.e., uf
satisfies the local conservation law on each control volume Vp, P € N. Moreover,
u converges to the exact solution uV with optimal convergence rates 2 and 3
under H! and L? norms, namely, the convergence order of L? error is one order

higher than the eight-nodes serendipity finite volume element method (14).
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TABLE 8. Postprocess errors and convergence orders for Example

4.2, « =1/3.

h [|LCE(u))|s Order | |[LCE@N)|m | [u¥ —ah |1 Order | [[u™ —aN|lo Order
1/2 | 1.3le01 / 2.89¢-16 2.440-01 / 1.63e-02 i
1/4 6.64e-02 0.982 1.45e-15 2.56e-02 3.257 4.95e-04 5.042
1/8 2.88e-02 1.205 2.04e-15 6.21e-03 2.041 4.49e-05 3.462
1/16 8.88e-03 1.700 4.22e-15 1.56e-03 1.996 5.43e-06 3.048
1/32 2.43e-03 1.866 9.01e-15 3.89¢-04 2.000 6.73e-07 3.011
1/64 6.36e-04 1.937 8.39%e-15 9.74e-05 2.000 8.40e-08 3.003

TABLE 9. Postprocess errors and convergence orders for Example

4.2, a =2/5.

h [ |LCE(uY)|s Order | [LCE(an)|ar | [u¥ —ah |1 Order | [u¥ —aR|lo Order
1/2 | 1.5be-01 / 1.63¢-16 2.59¢-01 / 1.71e-02 /
1/4 6.29e-02 1.297 1.63e-15 2.58e-02 3.325 5.24e-04 5.030
1/8 2.55e-02 1.300 2.08e-15 6.14e-03 2.071 4.64e-05 3.496
1/16 7.86e-03 1.700 4.23e-15 1.54e-03 1.996 5.63e-06 3.043
1/32 2.16e-03 1.866 9.01e-15 3.85e-04 1.999 7.00e-07 3.008
1/64 5.64e-04 1.936 8.39%e-15 9.63e-05 2.000 8.74e-08 3.002

TABLE 10. Postprocess errors and convergence orders for Example

42, a=1/2.

h [ |LCE@Y)|s Order | [LCE@N)|am | [u¥ —aY |1 Order | [u¥ =@ |0 Order
1/2 1.85e-01 / 1.51e-16 3.75e-01 / 2.32e-02 /
1/4 6.02e-02 1.616 1.45e-15 3.26e-02 3.525 7.51e-04 4.948
1/8 2.06e-02 1.548 2.12e-15 7.20e-03 2.179 6.49e-05 3.533
1/16 6.26e-03 1.718 4.21e-15 1.80e-03 1.997 7.95e-06 3.030
1/32 1.71e-03 1.870 9.0le-15 4.52e-04 1.997 9.94e-07 3.000
1/64 4.48e-04 1.936 8.39%e-15 1.13e-04 1.999 1.24e-07 2.999

Example 4.3. We apply the postprocess technique to a single phase flow model
in porous media. The governing equations consist of Darcy’s law and a statement
of conservation of mass. Neglecting the capillary pressure and gravity, the problem
is
(].5) V-v=0 (Il,ZEQ)GQ,

oS
(16) E—l—v-(vf(S’)):O (x1,22) € Q, t € (0,7,
where v = —Vp is the Darcy’s velocity, 5 is the permeability coefficient, p is the
pressure, S is the water saturation, f(S) is the fractional flow function. In this
example, we choose

el =1 (xy — 22)

B(IlaxQ): 1+ 2

F(S) =S.

The Dirichlet boundary condition for the pressure is p(0,z2) = 1, p(1,z2) = 0, and
the Neumann boundary condition is v-n(x1,0) = 0, v-n(z1,1) = 0. The boundary



34 Y. ZHOU AND Q. ZOU

condition for the saturation is S(0,z2,t) = 1 and the initial condition is
1

S($1,$2,0) = —.
1+ 22

Let Y = x5 — 23, then the true solution of saturation is [11]

1, T < Yt,

SI’that { 1
( T e m vt

Firstly, we use the eight-nodes serendipity finite element scheme (3) to compute
the numerical solution pp of (15), then postprocess pp on three kinds of control
volumes: a = 1/3, 2/5, 1/2 to obtain a finite-volume-element-like solution p; and
compute U, = —BVDp.

Secondly, we solve (16) by finite volume method. A semi-discrete of (16) is to
find the piecewise constant Sy (z1,x2,t) with respect to each control volume Vp,
P ¢ N}, such that

o,

and Sp(0,z2,t) = 1, where we have used the Green’s formula on each control

volume. Next, we consider a uniform time step At = T/N and set the time ¢, =

nAt, n € Z;. Integrate (17) on the time interval [t,_1,t,], n € Zy, and use the

left end point quadrature rule to the second term, we arrive at the fully discrete of

(16) is to find Sp(x1,x9,t,), n € Zy such that

(18)

meas(Vp)(Sh(P, tn) - Sh(P, tnfl)) + At/ ﬁh -nf(Sh(tn,l)) ds = 07 VP e Nh7
aVp

and Sy, (0, x2, t,) = 1, where meas(Vp) is the measure of Vp and S, (P, tg) = S(P,0).

In other words, the saturation Sy (t,) in (18) can be explicitly solved by Sy, (tn—1)

and do not need to solve the system of linear equations. Since Sp(t,—1) is discon-

tinuous on 9Vp\0Q in the second term of (18), we apply the widely used upwind

scheme to decide the appropriate value of f(Sh(t,—1)), see [7,11,30] for details.

The numerical results of the postprocessing are presented in Tables 11-13, where
N = 500 and T = 0.01, SN = S(x1,29,ty) and SV = Sy(21,22,tn) are the
exact saturation and numerical saturation at the final time T respectively. One can
see that the convergence orders of |[LCE(py)|s are almost of 2 for « = 1/3, 2/5,
1/2. However, the |LCE(py)|a are almost all of scale of 10715, namely, the local
conservation property holds for p,. On the other hand, the postprocessed solution
Dn, converges to the finite element solution p;, with optimal convergence rate 3 under
L? norm. These numerical results are validate the theoretical findings in Theorem
3.2. Moreover, the numerical saturation S converges to the true saturation SV
with optimal convergence order 1 under L? norm.

In comparison, we also compute the finite volume element solution p}, of (15)
over eight-nodes serendipity mesh. The numerical results are reported in Table 14.
One can observe that for all three cases: a = 1/3, 2/5, 1/2, the convergence rates
of L?-norm errors are 2, which are one order lower than the optimal convergence
order.

% dxidxs + / Dp - 'n,f(Sh) ds=0, VPEe Nh,
0 ovp

5. Conclusion

Comparing to the theory of finite element method, that of the finite volume
element method has not been developed maturely on dealing with the high order
schemes over serendipity meshes. In this work, we derive a locally conservative
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TABLE 11. Postprocess errors and convergence orders for Example
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4.3, . =1/3.

h [ |LCE(pn)ls Order | [LCE®n)|a | l[pn — Prllo  Order | [[SY — S0 Order
1/2 2.35e-03 / 1.54e-13 2.08e-03 / 4.92e-02
1/4 7.12e-04 1.726 8.40e-16 2.71e-04 2.938 2.48e-02 0.988
1/8 1.92e-04 1.891 1.52e-15 3.41e-05 2.988 1.24e-02 0.997
1/16 4.95e-05 1.956 2.29e-15 4.27e-06 2.999 6.23e-03 0.997
1/32 1.25e-05 1.981 4.88e-15 5.33e-07 3.001 3.13e-03 0.991
1/64 3.15e-06 1.991 8.68e-15 6.66e-08 3.001 1.59e-03 0.976

TABLE 12. Postprocess errors and convergence orders for Example
4.3, a =2/5.

h [LCE(pn)|s Order | [LCE®n)|ar | lpn — Drllo Order | [SY —Si|lo Order
1/2 2.59%¢-03 / 1.48e-13 2.21e-03 / 4.72e-02 /
1/4 7.82e-04 1.729 9.78e-16 2.90e-04 2.931 2.38e-02 0.989
1/8 2.11e-04 1.888 1.37e-15 3.65e-05 2.991 1.19e-02 0.997
1/16 5.45e-05 1.954 3.19e-15 4.55e-06 3.003 5.97e-03 0.997
1/32 1.38e-05 1.980 4.39e-15 5.68e-07 3.003 3.00e-03 0.993
1/64 3.48e-06 1.991 8.10e-15 7.08e-08 3.002 1.52e-03 0.982

TABLE 13. Postprocess errors and convergence orders for Example
43, a=1/2.

h [ |LCE(pn)|s Order | [LCE®n)|m | lpn — Prllo  Order [ [[SY — SF]lo  Order
1/2 2.71e-03 / 1.27e-13 2.73e-03 / 4.63e-02 /
1/4 8.26e-04 1.712 9.71e-16 3.66e-04 2.898 2.33e-02 0.991
1/8 2.24e-04 1.885 1.33e-15 4.52e-05 3.019 1.17e-02 0.998
1/16 5.78e-05 1.952 3.20e-15 5.55e-06 3.025 5.84e-03 0.998
1/32 1.47e-05 1.979 3.98e-15 6.86e-07 3.016 2.93e-03 0.996
1/64 3.69e-06 1.990 7.57e-15 8.53e-08 3.009 1.48e-03 0.988

TABLE 14. FVEM L? errors and convergence orders of pressure p
for Example 4.3.

h a=1/3 a=2/5 a=1/2

7%~ v}l Osder | % ~pjlo Order | o~ pf o Order

1/2 | 1.80e-03 7 1.776-03 7 1.736-03 i
1/4 2.45e-04 2.876 2.38e-04 2.893 2.28e-04 2.920
1/8 3.77e-05 2.699 3.54e-05 2.746 3.22e-05 2.823
1/16 7.22e-06 2.385 6.52e-06 2.443 5.46e-06 2.560
1/32 1.64e-06 2.141 1.45e-06 2.172 1.15e-06 2.252
1/64 3.98e-07 2.040 3.49e-07 2.050 2.71e-07 2.080
1/128 9.88e-08 2.010 8.65e-08 2.013 6.69e-08 2.021

solution with global continuity by postprocessing an eight-nodes-serendipity finite
element solution of the prescribed elliptic equation, and theoretically show that our
postprocessed solution converges to the exact solution with optimal convergence
orders under both H' and L? norms. Moreover, several numerical examples are
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presented to verify our theoretical results. In future, we expect to apply our post-
processing technique to study other serendipity finite element solutions.
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