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LOCALLY CONSERVATIVE SERENDIPITY FINITE ELEMENT

SOLUTIONS FOR ELLIPTIC EQUATIONS

YANHUI ZHOU AND QINGSONG ZOU

Abstract. In this paper, we post-process an eight-nodes-serendipity finite element solution for
elliptic equations. In the post-processing procedure, we first construct a control volume for each
node in the serendipity finite element mesh, then we enlarge the serendipity finite element space by
adding some appropriate element-wise bubbles and require the novel solution to satisfy the local

conservation law on each control volume. Our post-processing procedure can be implemented in
a parallel computing environment and its computational cost is proportional to the cardinality of
the serendipity elements. Moreover, both our theoretical analysis and numerical examples show

that the postprocessed solution converges to the exact solution with optimal convergence rates
both under H1 and L2 norms. A numerical experiment for a single-phase porous media problem
validates the necessity of the post-processing procedure.
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1. Introduction

The serendipity family of finite elements is one of the most popular finite ele-
ment methods (FEMs) applying parallelepiped meshes. Over each such a mesh,
the serendipity finite element space with C0 continuity has significantly smaller
dimension than the alternative tensor product Lagrange element space, yet they
have the same convergence orders. With this advantage and others, the serendipity
finite elements have been studied by many researchers such as Ahmad [1] in 1969,
Zienkiewicz [41] in 1977, Macneal and Harder [26] in 1992, Lee and Bathe [17]
in 1993, Kikuchi [15] in 1994, Kikuchi, Okabe and Fujio [16] in 1999, Zhang and
Kikuchi [35] in 2000, Arnold, Boffi and Falk [3] in 2002, Rajendran and Liew [28] in
2003, Li et al. [19] in 2004, Cen and coauthors [12] in 2010, Arnold and Awanou [2]
in 2011, and Rand, Gillette and Bajaj [29] in 2014, and so on.

Compared with the FEM, the finite volume method (FVM) ensures the local
conservation law, which makes it widely used in scientific and engineering compu-
tations, see [4, 18, 27, 31] for an incomplete references. The finite volume element
method (FVEM) is a member of FVM. The mathematical development of linear
FVEM on triangular mesh is almost as satisfactory as linear FEM, see [20, 22, 36]
and the references cited therein. For the bilinear FVE scheme on quadrilateral
mesh, most existing works need the quasi-parallel quadrilateral assumption (e.g.,
[21, 23, 24, 37]), and recently [14] present a sufficient condition which covers the
traditional h1+γ-parallelogram mesh condition to guarantee the coercivity result.

However, it is still a challenging task to construct and analyze high order FVE
schemes with optimal convergence orders, e.g., [8, 9, 20, 23, 25, 32–34, 37]. In par-
ticular, for the second order scheme, under the h1+γ-parallelogram mesh assump-
tion, [23,37] bring the uniform stability and optimal convergence rates under both
H1 and L2 norms. On the triangular meshes, the unconditionally stable quadratic
scheme in [42] does not guarantee the optimal convergence rate in L2 norm. Un-
der the minimum angle condition 1.42◦ [39, 40], the second order scheme in [32]

Received by the editors October 28, 2019 and, in revised form, November 19, 2020.

2000 Mathematics Subject Classification. 35R35, 49J40, 60G40.

19



20 Y. ZHOU AND Q. ZOU

owns the optimal L2 norm error estimate. Recently, [38] presents a class of bubble
enriched quadratic schemes such that the convergence order of L2 error is 3, re-
grettably the unconditionally stable of these schemes are not proved. In summary,
the construction and analysis of second order FVE schemes are not easy, and the
research of serendipity FVE scheme is little.

In this paper, we study the serendipity finite element method in a way differ-
ent from the aforementioned works. Precisely, we post-process the eight-nodes-
serendipity finite element solution so that it satisfies a desired property–the conser-
vation law in element level. For this purpose, we first enlarge the classic serendipity
finite element space by adding eight bubbles on each element. Then we construct
the associated control volumes, each of which is a polygon surrounding a node of the
mesh constructed by dividing each parallelepiped element with two special points
on each edge and five special points (whose locations depend on the same single
parameter) in the interior of the element. At the end, by solving an 8-by-8 linear
system on each element, we devise our post-processed solution such that the con-
servation law holds on each control volume. Since the bubbles are the polynomials
in the interior of each element and vanish at the edge of the element, the post-
processed solution is globally continuous in the whole domain. More importantly,
not only the post-processed solution guarantees the element-level conservation law,
but also makes sure of the optimal convergence rates under both H1 and L2 norms.

In comparison with the FVEM, we demonstrate the importance of our results
in what follows. Through comparing with the second order scheme in [37], we
can see clearly that : 1) the linear system derived from the eight nodes serendipity
element is symmetric, while that derived from the second order scheme in [37] is
unsymmetric; 2) under the same mesh, the degree of the freedoms of the eight
nodes serendipity element is much less than that of the scheme in [37]; 3) our post-
processing procedure is performed on each element independently, and thus can be
implemented in a parallel computing environment. In summary, directing at the
high computing cost and the difficulties resided in devising and analyzing the high
order FVEMs, the techniques presented here supply a better option for producing
the local conservative solution and owning the optimal convergence rates. Note
that the relevant works on the postprocessing technique for Lagrange finite element
solution can be found in [7, 13,43] and the references cited therein.

The rest of this paper is organized as follows. In the next section we introduce
the serendipity finite elements and associated control volumes. In Section 3 we
postprocess the serendipity finite element solution such that it satisfies the local
conservation law on each control volume. The property that the post-processed so-
lution owns the optimal convergence rate will be rigourously proved in this section.
Numerical examples are presented in Section 4 to validate our theoretical findings.
Some concluding remarks are given in Section 5.

To avoid repetition, we write “A . B” meaning that A can be bounded by B
with a constant multiple irrelative to the parameters which A and B may depend
on, while “A & B” meaning that B can be bounded by A. “A ∼ B” indicates that
“A . B” as well as “B . A”.

2. The serendipity finite elements and associated control volumes

We consider the finite element method for the elliptic model problem :

−∇ · (β∇u) = f in Ω,(1)

u = 0 on ∂Ω,(2)
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Figure 1. Partition (dotted lines) of the rectangular element P1P2P3P4.

where Ω = [a, b]× [c, d] is a rectangle, f ∈ L2(Ω), and there exist positive constants
βmin, βmax such that for all (x1, x2) ∈ Ω

0 < βmin ≤ β(x1, x2) ≤ βmax < +∞.

Let Th be a conform and shape regular rectangular mesh of Ω, with mesh size h,
we define the finite element space

Uh = {v ∈ C(Ω) : v|τ ∈ Q∗
2, ∀ τ ∈ Th; v|∂Ω = 0},

where

Q∗
2 := Span{1, x1, x2, x1x2, x21, x22, x21x2, x1x22}

is the 2nd order serendipity set of polynomials. The serendipity finite element
solution for (1) and (2) is the function uh ∈ Uh satisfying

(3) a(uh, vh) = (f, vh), ∀ vh ∈ Uh,

with the bilinear form

a(v, w) =

∫
Ω

β∇v · ∇w dx1dx2, ∀ v, w ∈ H1(Ω),

and the right-hand side (f, vh) =
∫
Ω
fvh dx1dx2. If u ∈ H3(Ω), it is known that

there hold the following error estimates (c.f. [5, 6, 10])

∥u− uh∥m . h3−m∥u∥3, m = 0, 1.

Next we introduce the control volumes associated with Th. For each rectangle
τ = 2P1P2P3P4 ∈ Th, letMi, i ∈ Z4 be the midpoint of the line segment PiPi+1 (see
Figure 1), and let R be the intersection of P1P3 and P2P4, where Zn = {1, 2, · · · , n},
P5 := P1. Given α ∈ (0, 1) and i ∈ Z4, let G

α
i,i and G

α
i,i+1 be the points on PiPi+1

satisfying
|MiG

α
i,i|

|MiPi|
=

|MiG
α
i,i+1|

|MiPi+1|
= α,

where Gα
4,5 := Gα

4,1, and let the points Qα
i ∈ RPi satisfying

|RQα
i |

|RPi|
= α.

Moreover, we denote by N τ
h = {P1, P2, P3, P4,M1,M2,M3,M4} the set of 8 nodes

on τ . Let Nh =
∪

τ∈Th
N τ

h be the set of all nodes of Th and N ◦
h = Nh\∂Ω the set
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Figure 2. Control volumes with respect to a vertex (left) and a
midpoint (right).

of all interior nodes of Th. For all P ∈ Nh, we denote the patch wP = ∪{τ ∈ Th :
τ ∋ P}, where τ := τ ∪ ∂τ . For each τ ∈ Th, let wτ = ∪{τ1 ∈ Th : τ ∩ τ1 ̸= ∅}.

We are now ready to define the control volume for each node P ∈ Nh. If P is a
vertex of τ , P = Pi in the element τ , then we let the contribution from τ to control
volume VPi is the rectangle Vτ,Pi := PiG

α
i,iQ

α
i G

α
i−1,i with G

α
01 = Gα

41, i ∈ Z4. If P
is a midpoint of the edge of τ , P =Mi, then the contribution from τ to the control
volume VMi is the polygon Vτ,Mi := Gα

i,iG
α
i,i+1Q

α
i+1RQ

α
i with Qα

5 = Qα
1 , i ∈ Z4.

For all P ∈ Nh, the whole control volume surrounding point P is defined as

VP =
∪
τ∋P

Vτ,P ,

see Figure 2 for the control volume associated with a vertex P and/or with a
midpoint M .

All control volumes VP constitute a so-called dual mesh T ′
h = {VP : P ∈ Nh}.

The test function space Vh with respect to T ′
h is defined as

Vh = Span{ψVP
: P ∈ N ◦

h},

where ψVP
is the characteristic function on VP . From the finite element space Uh

to the test function space Vh, we define a mapping Π as

v∗h := Πvh =
∑

P∈N◦
h

vh(P )ψVP ∈ Vh, ∀ vh ∈ Uh.

3. Postprocessing

Generally speaking, the serendipity finite element solution uh does not satisfy
the following local conservation law∫

VP

f dx1dx2 +

∫
∂VP

β
∂uh
∂nnn

ds = 0,

on each control volume VP , P ∈ N ◦
h , where nnn is the unit outward normal on

the boundary ∂VP . In this section, we postprocess the serendipity finite element
solution uh of (3) to generate a continuous function ûh which satisfies the local
conservation law on each control volume VP , P ∈ N ◦

h .
To this end, we first introduce the bubbles on each rectangular element τ =

2P1P2P3P4. Let φj , j ∈ Z4 be the four bilinear basis functions associated with the
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four vertices Pi, i ∈ Z4 of τ satisfying

φj(Pi) = δij , i, j ∈ Z4,

and ϕj , j ∈ Z8 be the eight serendipity basis functions associated with the four
vertices Pi, i ∈ Z4 and four midpoints Mi, i ∈ Z4 of τ satisfying

ϕj(Pi) = δij , i, j ∈ Z8,

where δij = 1 if i = j, δij = 0 if i ̸= j, and Pi+4 := Mi, i ∈ Z4. We denote by
r = |P1P2|/|P1P4| the ratio between the length and height of τ , and introduce two
polynomials

p(r) = −4500r6 + 79427r4 + 100219r2 + 16292,

q(r) = 17025140r8 + 49059091r6 − 186752204r4 + 98377715r2 − 4702500.

It is easy to obtain that the three positive roots of q are

r1 =

√√
7336997329− 83927

32584
, r2 =

√
1186−

√
314571

1045
, r3 =

√
1186 +

√
314571

1045
,

and the positive root of p is

r4 =

√√
7336997329 + 83927

9000
.

Obviously, we have r1r4 = r2r3 = 1. If |r− ri| > ε0 = 10−3, ∀ i ∈ Z4, we define the
bubbles on τ by

(4)
ψj = ψτ

j = φ1φ3φj , j ∈ Z4,
ψj = ψτ

j = φ1φ3ϕj , j ∈ Z8\Z4.

If |r − ri| ≤ ε0 for some i ∈ Z4, we define the bubbles as

(5)
ψj = ψτ

j = φ1φ3φj , j ∈ {2, 4},
ψj = ψτ

j = φ1φ3ϕj , j ∈ Z8\{2, 4}.
We define the enlarged function space

Ûh = Uh ⊕Span{ψτ
j : τ ∈ Th, j ∈ Z8}.

Since ψτ
j , j ∈ Z8 vanish on the boundary of τ , each function ûh ∈ Ûh is still

continuous in the whole Ω.
Next we introduce a functional R(·, ·, ·) defined for all wh ∈ Uh and all τ ∈ Th

by

R(f, wh, τ)

=

∫
τ

f(w∗
h − wh) dx1dx2 +

∫
τ

β∇uh · ∇wh dx1dx2 +

∫
∂τ

{β∇uh} ·nnn(w∗
h − wh) ds,

where {·} is an averaging operator which defined on ∂τ , i.e., if τ1 and τ2 are two
neighbour elements, the edge E = τ1 ∩ τ2, then for all vectorial function vvv which
has been well defined in the interior of τ1 and τ2,

{vvv}E =
1

2
(vvv|E,τ1 + vvv|E,τ2) .

Now on each τ ∈ Th, let

(6) ûh = uh +

8∑
j=1

cjψj ∈ Ûh,
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satisfies the constraints

(7) −
∫
(∂VPi

)∩τ

β
∂ûh
∂nnn

ds = R(f, ϕPi , τ), i ∈ Z8

and the constraint

(8) ûh(O) = uh(O),

where O := Oτ is the barycenter of the element τ .
Assume the parameter α = 1/2, the bubbles are defined in (4) and (5), and

ûh is constructed by (6), then there exists one unique ûh such that (7) and (8)
hold, see Theorem 3.1. Moreover, for any α ∈ (0, 1), the postprocessed solution
ûh satisfies the local conservation law, and converges to the exact solution with
optimal convergence orders under both H1 and L2 error norms, see Theorem 3.2.

Theorem 3.1. Suppose the coefficient β is piecewise constant with respect to Th,
or piecewise W 1,∞ and the mesh size h is sufficiently small, the parameter α =
1/2. Then for each τ ∈ Th, there exists one unique ûh which satisfies (7) and (8)
simultaneously.

Proof. We first prove the theorem for the case that β is a constant in τ . For each
τ ∈ Th, by (6) and (7), there holds

−
∫
(∂VPi

)∩τ

β∇

 8∑
j=1

cjψj

 ·nnnds = −
∫
(∂VPi

)∩τ

β∇(ûh−uh) ·nnnds = RHSi, i ∈ Z8,

where

RHSi = R(f, ϕPi , τ) +

∫
(∂VPi

)∩τ

β∇uh ·nnnds.

This leads to the linear algebraic system

(9) Ãc = b̃,

where c = (ci)8×1 is the unknown vector, Ã = (ãij)8×8 with the entries

ãij = −
∫
(∂VPi

)∩τ

β∇ψj ·nnnds, i, j ∈ Z8

and b̃ = (̃bi)8×1 with the entries

b̃i = RHSi, i ∈ Z8.

Observing that ψj and uh are continuous in τ , we have that

8∑
i=1

∫
(∂VPi

)∩τ

β∇ψj ·nnnds =
8∑

i=1

∫
(∂VPi

)∩τ

β∇uh ·nnnds = 0, j ∈ Z8.

Therefore, we obtain
8∑

i=1

ãij = 0, ∀ j ∈ Z8

and
8∑

i=1

RHSi =
8∑

i=1

(
R(f, ϕPi , τ) +

∫
(∂VPi

)∩τ

β∇uh ·nnnds

)

= R

(
f,

8∑
i=1

ϕPi , τ

)
= R(f, 1, τ) = 0,
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which implies the system of equations (9) are linear dependent.
We now replace the last equation of (9) by (8) and then multiply both sides of

the novel eight equations by 64 to obtain a novel system

(10) Ac = b.

To show the existence and uniqueness of ûh, we only need to show that A is a
nonsingular matrix. In the following, we verify the nonsingular property of A for
the case that |r− ri| > ε0 = 10−3, ∀ i ∈ Z4. In this case, by direct calculations, we
obtain

a8j = 1, a8,j+4 = 2, j ∈ Z4,

and

a11 = − 67

256
β

(
r +

1

r

)
, a21 = −β

(
13r

256
+

335

768r

)
, a31 = − 65

768
β

(
r +

1

r

)
,

a41 = −β
(
335r

768
+

13

256r

)
, a51 = β

(
4r

15
+

613

480r

)
, a61 = β

(
69r

160
− 137

120r

)
,

a71 = β

(
69

160r
− 137r

120

)
, a62 = β

(
613r

480
+

4

15r

)
, a15 = −β

(
53r

320
+

67

64r

)
,

a35 = −β
(
53r

192
+

13

64r

)
, a55 = β

(
1873r

3360
+

13843

3360r

)
, a65 = β

(
97r

80
− 37

24r

)
,

a75 = β

(
1639

1120r
− 2351r

1120

)
, a16 = −β

(
13r

64
+

53

192r

)
, a26 = −β

(
67r

64
+

53

320r

)
,

a56 = β

(
97

80r
− 37r

24

)
, a66 = β

(
13843r

3360
+

1873

3360r

)
, a68 = β

(
1639r

1120
− 2351

1120r

)
and

a12 = a21, a22 = a11, a32 = a41, a42 = a31, a52 = a51, a72 = a71,

a13 = a31, a23 = a41, a33 = a11, a43 = a21, a53 = a71, a63 = a62,

a73 = a51, a14 = a32, a24 = a42, a34 = a12, a44 = a22, a54 = a72,

a64 = a61, a74 = a52, a25 = a15, a45 = a35, a36 = a26, a46 = a16,

a76 = a56, a17 = a35, a27 = a45, a37 = a15, a47 = a25, a57 = a75,

a67 = a65, a77 = a55, a18 = a36, a28 = a46, a38 = a16, a48 = a26,

a58 = a76, a78 = a56.

Using the software Matlab, we get

det(A) = − β7p(r)q(r)

38535168000000r7
.

Since the ratio r satisfies the conditions |r − ri| > ε0 = 10−3, ∀ i ∈ Z4, we have
det(A) ̸= 0 and thus the system (10) has a unique solution. Namely, there exists a
unique ûh which satisfies (7) and (8) simultaneously. The proof for the case that
|r − ri| ≤ ε0 for some i ∈ Z4 is similar and thus we omit it here.

Next we consider the general case that β is piecewise W 1,∞ with respect to Th.
We denote

β
∣∣
τ
=

1

|τ |

∫
τ

β dx1dx2, ∀ τ ∈ Th,

where |τ | is the area of τ . Consequently, β is piecewise constant, βmin ≤ β ≤ βmax

and ∥β− β∥0,∞,τ . h. Then we can define a matrix A = (aij)8×8 corresponding to
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β as above. From the above reasoning, we have

det(A) ∼ 1.

On the other hand, the fact that |aij − aij | . h, i, j ∈ Z8 yields that

| det(A)− det(A)| . h.

Therefore, when h is sufficiently small, we get det(A) ̸= 0, and there exists a unique
ûh satisfying (7) and (8) simultaneously. The proof is complete. �

Remark 3.1. If α ̸= 1/2, one may choose other appropriate bubble functions to
ensure the existence and uniqueness of ûh which satisfies (7) and (8) simultane-
ously.

Theorem 3.2. The postprocessed solution ûh satisfies the local conservation prop-
erty

(11) −
∫
∂VP

β
∂ûh
∂nnn

ds =

∫
VP

f dx1dx2

on each control volume VP , ∀P ∈ N ◦
h . Moreover, we have the optimal-order L2 and

H1 error estimates

(12) ∥u− ûh∥m . h3−m∥u∥3, m = 0, 1.

Proof. We observe that for all P ∈ N ◦
h ,

ϕ∗P |∂wP
= ϕP |∂wP

= 0,

and for all τ ∈ wP , the jump

[{β∇uh} ·nnn](∂τ)\(∂wP ) = 0.

Therefore ∑
τ∈wP

∫
∂τ

{β∇uh} ·nnnϕ∗P ds =
∑
τ∈wP

∫
∂τ

{β∇uh} ·nnnϕP ds = 0.

Then by (7), we have

−
∫
∂VP

β
∂ûh
∂nnn

ds = −
∑
τ∈wP

∫
(∂VP )∩τ

β
∂ûh
∂nnn

ds

=
∑
τ∈wP

R(f, ϕP , τ)

=
∑
τ∈wP

(∫
τ

f(ϕ∗P − ϕP ) dx1dx2 +

∫
τ

β∇uh · ∇ϕP dx1dx2

)
=

∫
Ω

f(ϕ∗P − ϕP ) dx1dx2 +

∫
Ω

β∇uh · ∇ϕP dx1dx2

=

∫
VP

f dx1dx2,

where we have used the facts that ϕ∗P = 1 in VP and ϕ∗P = 0 in Ω\VP . The local
conservation property (11) is verified.

To prove (12), we only need to estimate ûh − uh =
∑8

j=1 cjψj in each τ . Note

that cj , j ∈ Z8 satisfies Ac = b. Moreover, by Theorem 3.1, there hold |aij | . 1,
i, j ∈ Z8 and det(A) ∼ 1. Then ∥A−1∥∞ . 1 and we obtain

|cj | . max
1≤i≤8

|RHSi|, ∀ j ∈ Z8.
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Next we estimate RHSi. It follows from the Green’s formula that∫
τ

fϕ∗Pi
dx1dx2 =

∫
VPi

∩τ

f dx1dx2 = −
∫
VPi

∩τ

∇ · (β∇u) dx1dx2

= −
∫
∂(VPi

∩τ)

β∇u ·nnnds

and ∫
τ

fϕPi dx1dx2 = −
∫
τ

∇ · (β∇u)ϕPi dx1dx2

=

∫
τ

β∇u · ∇ϕPi dx1dx2 −
∫
∂τ

β∇u ·nnnϕPi ds.

Then

RHSi = R(f, ϕPi , τ) +

∫
(∂VPi

)∩τ

β∇uh ·nnnds

=

∫
τ

f(ϕ∗Pi
− ϕPi) dx1dx2 +

∫
τ

β∇uh · ∇ϕPi dx1dx2

+

∫
∂τ

{β∇uh} ·nnn(ϕ∗Pi
− ϕPi) ds+

∫
(∂VPi

)∩τ

β∇uh ·nnnds

=

∫
τ

β∇(uh − u) · ∇ϕPi
dx1dx2 +

∫
(∂VPi

)∩τ

β∇(uh − u) ·nnnds

+

∫
VPi

∩∂τ

({β∇uh} − β∇u) ·nnnds+
∫
∂τ

(β∇u− {β∇uh}) ·nnnϕPi ds

, I1 + I2 + I3 + I4.

It is easy to verify that
|I1| . |u− uh|1,τ

and

|I2| . h
1
2
τ

∣∣∣∣∣
∫
(∂VPi

)∩τ

|∇(uh − u)|2 ds

∣∣∣∣∣
1
2

. |u− uh|1,τ + hτ |u− uh|2,τ ,
where hτ is the diameter of τ . On the other hand

|I3|+ |I4| .
∫
∂τ

|{β∇uh} − β∇u| ds

. h
1
2
τ

∣∣∣∣∫
∂τ

|{β∇uh} − β∇u|2 ds
∣∣∣∣ 12

. |u− uh|1,wτ + hτ |u− uh|2,wτ .

Combining the above inequalities

|RHSi| . |u− uh|1,wτ + hτ |u− uh|2,wτ , ∀ i ∈ Z8.

Note that

|u− uh|2,τ ≤ |u− uI |2,τ + |uI − uh|2,τ
. hτ∥u∥3,τ + h−1

τ ∥uI − uh∥1,τ
. hτ∥u∥3,τ + h−1

τ (∥u− uI∥1,τ + ∥u− uh∥1,τ )
. hτ∥u∥3,τ + h−1

τ ∥u− uh∥1,τ ,
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where uI ∈ Uh is the piecewise interpolation such that for each rectangular element
τ = 2P1P2P3P4

uI(Pi) = u(Pi), uI(Mi) = u(Mi), i ∈ Z4.

Thus, for m = 0, 1

∥ûh − uh∥m,τ =

∥∥∥∥∥∥
8∑

j=1

cjψj

∥∥∥∥∥∥
m,τ

≤
8∑

j=1

|cj |∥ψj∥m,τ

. h1−m
τ max

1≤j≤8
|cj |

. h1−m
τ max

1≤i≤8
|RHSi|

. h1−m
τ |u− uh|1,wτ + h3−m

τ ∥u∥3,wτ .

Summing up the above inequality over all elements, we obtain

∥ûh − uh∥m . h3−m∥u∥3.
Finally, by the triangle inequality

∥u− ûh∥m ≤ ∥u− uh∥m + ∥uh − ûh∥m,
we get the desired estimates (12). �

Remark 3.2. For the L2 error estimate of second order FVE schemes, the regu-
larity assumptions in [23, 38] are (u, f) ∈ H3 ×H2, and the regularity assumption
in [32] is u ∈ H4. In this paper, the assumption is u ∈ H3, lower than [23,32,38].
Moreover, the stiffness matrix generated from finite element scheme is symmetric
and positive definite which more easier to solve.

4. Numerical examples

In this section, we present three numerical examples to validate our postprocess-
ing technique. Examples 4.1 and 4.2 are designed for elliptic and parabolic equation
respectively, while Example 4.3 is for a single phase flow model. In these examples,
we choose Ω = [0, 1]2 and the rectangular meshes Tk = Thk

, k ∈ Z7, are obtained
by uniformly refining the rectangle [0, 1]2, where hk = 2−k is the mesh size of Tk.

Example 4.1. We consider the problem (1), (2) with the discontinuous coefficient

β(x1, x2) =

{
1, x1 ≤ 0.5,
2, x1 > 0.5,

and the discontinuous right-hand-side function

f(x1, x2) =

{
−8x1e

2x2 − 2, x1 ≤ 0.5,
−8x1e

2x2 − 4e2x2 − 4, x1 > 0.5.

The problem has the exact solution

u(x1, x2) =

{
2x1e

2x2 + x22, x1 ≤ 0.5,
x1e

2x2 + 0.5e2x2 + x22, x1 > 0.5.

In our numerical experiment, we first use (3) to compute the serendipity finite
element solution uh. Then we postprocess uh on three kinds of control volumes :
α = 1/3, 2/5, 1/2, and use ûh to denote the post-processed solution which satisfies
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Table 1. Postprocess errors and convergence orders for Example
4.1, α = 1/3.

h |LCE(uh)|S Order |LCE(ûh)|M |u− ûh|1 Order ∥u− ûh∥0 Order

1/2 2.09e-01 / 2.48e-14 4.04e-01 / 1.80e-02 /
1/4 9.31e-02 1.166 3.57e-14 9.55e-02 2.081 1.79e-03 3.330
1/8 2.96e-02 1.652 4.97e-14 2.28e-02 2.069 1.79e-04 3.315
1/16 8.29e-03 1.837 5.53e-14 5.58e-03 2.028 2.01e-05 3.157
1/32 2.19e-03 1.921 5.18e-14 1.39e-03 2.009 2.42e-06 3.054
1/64 5.62e-04 1.961 5.73e-14 3.46e-04 2.002 2.99e-07 3.016
1/128 1.43e-04 1.981 6.18e-14 8.65e-05 2.001 3.73e-08 3.004

(7) and (8). Noticing that the ratio r = 1 for each rectangular element τ ∈ Tk, thus
we choose the bubbles defined in (4).

In order to compare the local-conservation-errors (LCEs) of finite element solu-
tion and its postprocessed finite-volume-element-like solution, we define the LCE
associated with a control volume VP as

LCEP (vh) =

∫
VP

f dx1dx2 +

∫
∂VP

β
∂vh
∂nnn

ds, ∀ vh ∈ H1(Ω).

Moreover, we denote

|LCE(vh)|S =
∑

P∈N◦
h

|LCEP (vh)| and |LCE(vh)|M = max
P∈N◦

h

|LCEP (vh)|

as the summation and maximum of these errors respectively.
The numerical results are reported in Tables 1-3 and “Order” indicates the nu-

merical convergence order computed by log2(E2h/Eh), where E2h and Eh are the
errors of the corresponding two successive mesh size T2h and Th. We observe that
|LCE(uh)|S are nonzero for α = 1/3, 2/5, 1/2, and its convergence order is almost
of 2. However, |LCE(ûh)|M are all of scale of 10−14. Considering the errors from
the linear solver, numerical quadratures and the machine precision, we can regard
that ûh satisfies the local conservation law on each control volume VP , P ∈ N ◦

h .
Moreover, we see that for all the three cases, ûh converges to the exact solution u
with optimal rates 2 and 3, respectively under H1 and L2 norms. These numerical
results are consistent with our theoretical results in Theorem 3.2.

In comparison, we also compute the finite volume element solution uv over eight-
nodes serendipity mesh. In other words, uv satisfies the local conservation property

−
∫
∂VP

β
∂uv
∂nnn

ds =

∫
VP

f dx1dx2

on each control volume VP , P ∈ N ◦
h . The numerical results are presented in Table

4 and Table 5. One can observe that for all three cases : α = 1/3, 2/5, 1/2, the
convergence rates of H1 errors are almost 2, which are optimal. However, the
convergence rates of L2-norm errors are also 2, which are one order lower than the
optimal order.

Example 4.2. We consider the parabolic problem

∂u

∂t
−∇ · (β∇u) = f (x1, x2) ∈ Ω, t ∈ (0, T ],

u(x1, x2, 0) = u0 (x1, x2) ∈ Ω,

u(x1, x2, t) = uD (x1, x2) ∈ ∂Ω, t ∈ (0, T ]

(13)
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Table 2. Postprocess errors and convergence orders for Example
4.1, α = 2/5.

h |LCE(uh)|S Order |LCE(ûh)|M |u− ûh|1 Order ∥u− ûh∥0 Order

1/2 2.00e-01 / 2.44e-14 4.46e-01 / 2.19e-02 /
1/4 8.48e-02 1.235 2.86e-14 9.99e-02 2.159 2.08e-03 3.398
1/8 2.64e-02 1.682 4.67e-14 2.30e-02 2.120 1.98e-04 3.392
1/16 7.32e-03 1.852 5.48e-14 5.55e-03 2.048 2.14e-05 3.211
1/32 1.92e-03 1.928 5.19e-14 1.37e-03 2.015 2.54e-06 3.076
1/64 4.93e-04 1.964 5.72e-14 3.43e-04 2.004 3.12e-07 3.022
1/128 1.25e-04 1.982 6.19e-14 8.56e-05 2.001 3.89e-08 3.006

Table 3. Postprocess errors and convergence orders for Example
4.1, α = 1/2.

h |LCE(uh)|S Order |LCE(ûh)|M |u− ûh|1 Order ∥u− ûh∥0 Order

1/2 1.78e-01 / 2.46e-14 2.35e+00 / 1.48e-01 /
1/4 7.01e-02 1.343 3.91e-14 3.90e-01 2.591 1.21e-02 3.611
1/8 2.11e-02 1.733 5.01e-14 5.91e-02 2.723 8.78e-04 3.789
1/16 5.75e-03 1.876 5.50e-14 9.56e-03 2.627 6.31e-05 3.797
1/32 1.50e-03 1.940 5.18e-14 1.85e-03 2.371 5.08e-06 3.637
1/64 3.82e-04 1.971 5.72e-14 4.18e-04 2.144 4.99e-07 3.347
1/128 9.65e-05 1.985 6.19e-14 1.02e-04 2.043 5.71e-08 3.126

Table 4. FVEM H1 errors and convergence orders for Example 4.1.

h
α = 1/3 α = 2/5 α = 1/2

|u− uv|1 Order |u− uv|1 Order |u− uv|1 Order

1/2 2.61e-01 / 2.60e-01 / 2.58e-01 /
1/4 6.81e-02 1.936 6.77e-02 1.939 6.71e-02 1.944
1/8 1.72e-02 1.984 1.71e-02 1.985 1.69e-02 1.987
1/16 4.32e-03 1.996 4.28e-03 1.996 4.24e-03 1.997
1/32 1.08e-03 1.999 1.07e-03 1.999 1.06e-03 1.999
1/64 2.70e-04 2.000 2.68e-04 2.000 2.65e-04 2.000
1/128 6.75e-05 2.000 6.70e-05 2.000 6.63e-05 2.000

Table 5. FVEM L2 errors and convergence orders for Example 4.1.

h
α = 1/3 α = 2/5 α = 1/2

∥u− uv∥0 Order ∥u− uv∥0 Order ∥u− uv∥0 Order

1/2 2.21e-02 / 2.15e-02 / 2.07e-02 /
1/4 4.29e-03 2.363 3.96e-03 2.441 3.47e-03 2.577
1/8 9.76e-04 2.136 8.69e-04 2.189 7.02e-04 2.306
1/16 2.38e-04 2.038 2.09e-04 2.057 1.63e-04 2.105
1/32 5.90e-05 2.010 5.16e-05 2.015 4.00e-05 2.029
1/64 1.47e-05 2.003 1.29e-05 2.004 9.95e-06 2.007
1/128 3.68e-06 2.001 3.22e-06 2.001 2.48e-06 2.002

with T = 1 and β(x1, x2) = ex1+x2 . We choose the right hand side function, initial
condition and boundary condition

f(x1, x2, t) = πex1+x2−t(sin(πx1) cos(πx2) + cos(πx1) sin(πx2)

+ 2π cos(πx1) cos(πx2))− e−t cos(πx1) cos(πx2),
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Table 6. FVEM H1 errors and convergence orders for Example 4.2.

h
α = 1/3 α = 2/5 α = 1/2

|uN − uN
v |1 Order |uN − uN

v |1 Order |uN − uN
v |1 Order

1/2 1.03e-01 / 1.03e-01 / 1.03e-01 /
1/4 2.07e-02 2.320 2.06e-02 2.331 2.04e-02 2.344
1/8 4.99e-03 2.054 4.93e-03 2.059 4.86e-03 2.069
1/16 1.24e-03 2.006 1.23e-03 2.007 1.21e-03 2.009
1/32 3.10e-04 2.001 3.06e-04 2.001 3.01e-04 2.001
1/64 7.75e-05 2.000 7.66e-05 2.000 7.53e-05 2.000

Table 7. FVEM L2 errors and convergence orders for Example 4.2.

h
α = 1/3 α = 2/5 α = 1/2

∥uN − uN
v ∥0 Order ∥uN − uN

v ∥0 Order ∥uN − uN
v ∥0 Order

1/2 9.80e-03 / 9.80e-03 / 9.80e-03 /
1/4 8.43e-04 3.538 8.06e-04 3.603 7.66e-04 3.677
1/8 1.82e-04 2.209 1.64e-04 2.301 1.36e-04 2.497
1/16 4.41e-05 2.048 3.88e-05 2.075 3.06e-05 2.149
1/32 1.09e-05 2.013 9.57e-06 2.021 7.43e-06 2.043
1/64 2.72e-06 2.003 2.38e-06 2.005 1.84e-06 2.011

u0 = cos(πx1) cos(πx2) and uD = e−t cos(πx1) cos(πx2)

which allows the exact solution

u(x1, x2, t) = e−t cos(πx1) cos(πx2).

In the following, we consider a uniform time step ∆t = 1/⌈ 10
h1.5
k

⌉ corresponding

to the mesh Tk, where ⌈s⌉ is the ceil function which rounds to the nearest integer
greater than or equal to s. Set the time tn = n∆t, n ∈ Z0

N = {0, 1, · · · , N}, where
N = ⌈ 10

h1.5
k

⌉.
We first use the Crank-Nicolson fully discrete finite volume element method over

eight-nodes serendipity mesh to solve (13), i.e., find unv , n ∈ ZN which satisfies∫
VP

unv − un−1
v

∆t
dx1dx2 −

∫
∂VP

β∇unv + un−1
v

2
·nnnds

=

∫
VP

f(x1, x2, tn− 1
2
) dx1dx2, ∀P ∈ N ◦

h ,

(14)

with the initial approximation u0v = Ihu
0 :=

∑
P∈Nh

u0(P )ϕP and unv is the finite

volume element solution at time tn, tn−1/2 = (tn+tn−1)/2. The numerical results at

the final time T = 1 are showed in Table 6 and Table 7, where uN = u(x1, x2, tN ).
One can see that the convergence orders of H1 errors are 2 for all three cases
α = 1/3, 2/5, 1/2, which are optimal. However, the convergence rates of L2 errors
are also 2, which are one order lower than the optimal convergence rate.

In order to obtain the optimal convergence order of L2 error and satisfy the
conservation, instead, we first use the Crank-Nicolson fully discrete eight-nodes
serendipity finite element method to solve (13), i.e., find unh := uh(x1, x2, tn), n ∈
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ZN which satisfies∫
Ω

unh − un−1
h

∆t
ϕP dx1dx2 +

∫
Ω

β∇
unh + un−1

h

2
· ∇ϕP dx1dx2

=

∫
Ω

f(x1, x2, tn− 1
2
)ϕP dx1dx2, ∀P ∈ N ◦

h ,

with the initial approximation u0h = Ihu
0.

Then, we postprocess unh on three kinds of control volumes : α = 1/3, 2/5, 1/2
to obtain a finite-volume-element-like solution ûnh which satisfies∫

VP

ûnh − ûn−1
h

∆t
dx1dx2 −

∫
∂VP

β∇
ûnh + ûn−1

h

2
·nnnds

=

∫
VP

f(x1, x2, tn− 1
2
) dx1dx2, ∀P ∈ N ◦

h , n ∈ ZN .

For the details of implementation, for ∀n ∈ ZN , suppose

ûnh = unh +

8∑
j=1

cnj ψj in each τ ∈ Th,

where the coefficients cnj , j ∈ Z8 are to be determined and ψj are the bubble
functions defined by (4). Let the postprocessed solution ûnh satisfy∫

VPi
∩τ

ûnh
∆t

dx1dx2 −
∫
(∂VPi

)∩τ

β

2

∂ûnh
∂nnn

ds = R̃(f, ϕPi , τ), i ∈ Z8

for each τ ∈ Th and with the initial condition û0h = u0h, where

R̃(f, ϕPi , τ)

=

∫
VPi

∩τ

ûn−1
h

∆t
dx1dx2 +

∫
(∂VPi

)∩τ

β

2

∂ûn−1
h

∂nnn
ds

+

∫
τ

f(x1, x2, tn− 1
2
)(ϕ∗Pi

− ϕPi) dx1dx2 +

∫
τ

unh − un−1
h

∆t
ϕPi dx1dx2

+

∫
τ

β∇
unh + un−1

h

2
· ∇ϕPi dx1dx2 +

∫
∂τ

{
β∇

unh + un−1
h

2

}
·nnn(ϕ∗Pi

− ϕPi) ds.

Thus, the coefficients cnj , j ∈ Z8, n ∈ ZN can be solved in each τ ∈ Th.
On the other hand, in order to compare the LCEs of finite element solution unh

and its postprocessed finite-volume-element-like solution ûnh at time tn, for ∀ vnh ∈
H1(Ω), we define the LCE associated with a control volume VP as

LCEP (v
n
h) =

∫
VP

f(x1, x2, tn− 1
2
) dx1dx2 +

∫
∂VP

β∇
vnh + vn−1

h

2
·nnnds

−
∫
VP

vnh − vn−1
h

∆t
dx1dx2.

Our numerical results are presented in Tables 8-10. We observe that the conver-
gence orders of |LCE(uNh )|S are almost of 2 for α = 1/3, 2/5, 1/2. However, the
|LCE(ûNh )|M are almost all of scale of 10−15 and can be regarded as zero, i.e., ûNh
satisfies the local conservation law on each control volume VP , P ∈ N ◦

h . Moreover,
ûNh converges to the exact solution uN with optimal convergence rates 2 and 3
under H1 and L2 norms, namely, the convergence order of L2 error is one order
higher than the eight-nodes serendipity finite volume element method (14).
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Table 8. Postprocess errors and convergence orders for Example
4.2, α = 1/3.

h |LCE(uN
h )|S Order |LCE(ûN

h )|M |uN − ûN
h |1 Order ∥uN − ûN

h ∥0 Order

1/2 1.31e-01 / 2.89e-16 2.44e-01 / 1.63e-02 /
1/4 6.64e-02 0.982 1.45e-15 2.56e-02 3.257 4.95e-04 5.042
1/8 2.88e-02 1.205 2.04e-15 6.21e-03 2.041 4.49e-05 3.462
1/16 8.88e-03 1.700 4.22e-15 1.56e-03 1.996 5.43e-06 3.048
1/32 2.43e-03 1.866 9.01e-15 3.89e-04 2.000 6.73e-07 3.011
1/64 6.36e-04 1.937 8.39e-15 9.74e-05 2.000 8.40e-08 3.003

Table 9. Postprocess errors and convergence orders for Example
4.2, α = 2/5.

h |LCE(uN
h )|S Order |LCE(ûN

h )|M |uN − ûN
h |1 Order ∥uN − ûN

h ∥0 Order

1/2 1.55e-01 / 1.63e-16 2.59e-01 / 1.71e-02 /
1/4 6.29e-02 1.297 1.63e-15 2.58e-02 3.325 5.24e-04 5.030
1/8 2.55e-02 1.300 2.08e-15 6.14e-03 2.071 4.64e-05 3.496
1/16 7.86e-03 1.700 4.23e-15 1.54e-03 1.996 5.63e-06 3.043
1/32 2.16e-03 1.866 9.01e-15 3.85e-04 1.999 7.00e-07 3.008
1/64 5.64e-04 1.936 8.39e-15 9.63e-05 2.000 8.74e-08 3.002

Table 10. Postprocess errors and convergence orders for Example
4.2, α = 1/2.

h |LCE(uN
h )|S Order |LCE(ûN

h )|M |uN − ûN
h |1 Order ∥uN − ûN

h ∥0 Order

1/2 1.85e-01 / 1.51e-16 3.75e-01 / 2.32e-02 /
1/4 6.02e-02 1.616 1.45e-15 3.26e-02 3.525 7.51e-04 4.948
1/8 2.06e-02 1.548 2.12e-15 7.20e-03 2.179 6.49e-05 3.533
1/16 6.26e-03 1.718 4.21e-15 1.80e-03 1.997 7.95e-06 3.030
1/32 1.71e-03 1.870 9.01e-15 4.52e-04 1.997 9.94e-07 3.000
1/64 4.48e-04 1.936 8.39e-15 1.13e-04 1.999 1.24e-07 2.999

Example 4.3. We apply the postprocess technique to a single phase flow model
in porous media. The governing equations consist of Darcy’s law and a statement
of conservation of mass. Neglecting the capillary pressure and gravity, the problem
is

∇ · vvv = 0 (x1, x2) ∈ Ω,(15)

∂S

∂t
+∇ · (vvvf(S)) = 0 (x1, x2) ∈ Ω, t ∈ (0, T ],(16)

where vvv = −β∇p is the Darcy’s velocity, β is the permeability coefficient, p is the
pressure, S is the water saturation, f(S) is the fractional flow function. In this
example, we choose

β(x1, x2) =
e1−x1(x2 − x22)

1 + x1
, f(S) = S.

The Dirichlet boundary condition for the pressure is p(0, x2) = 1, p(1, x2) = 0, and
the Neumann boundary condition is vvv ·nnn(x1, 0) = 0, vvv ·nnn(x1, 1) = 0. The boundary
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condition for the saturation is S(0, x2, t) = 1 and the initial condition is

S(x1, x2, 0) =
1

1 + x21
.

Let Y = x2 − x22, then the true solution of saturation is [11]

S(x1, x2, t) =

{
1, x1 < Y t,

1
1+(x1−Y t)2 , x1 ≥ Y t.

Firstly, we use the eight-nodes serendipity finite element scheme (3) to compute
the numerical solution ph of (15), then postprocess ph on three kinds of control
volumes : α = 1/3, 2/5, 1/2 to obtain a finite-volume-element-like solution p̂h and
compute v̂ĥvĥvh = −β∇p̂h.

Secondly, we solve (16) by finite volume method. A semi-discrete of (16) is to
find the piecewise constant Sh(x1, x2, t) with respect to each control volume VP ,
P ∈ Nh such that

(17)

∫
VP

∂Sh

∂t
dx1dx2 +

∫
∂VP

v̂ĥvĥvh ·nnnf(Sh) ds = 0, ∀P ∈ Nh,

and Sh(0, x2, t) = 1, where we have used the Green’s formula on each control
volume. Next, we consider a uniform time step ∆t = T/N and set the time tn =
n∆t, n ∈ Z0

N . Integrate (17) on the time interval [tn−1, tn], n ∈ ZN , and use the
left end point quadrature rule to the second term, we arrive at the fully discrete of
(16) is to find Sh(x1, x2, tn), n ∈ ZN such that
(18)

meas(VP )(Sh(P, tn)− Sh(P, tn−1)) + ∆t

∫
∂VP

v̂ĥvĥvh ·nnnf(Sh(tn−1)) ds = 0, ∀P ∈ Nh,

and Sh(0, x2, tn) = 1, wheremeas(VP ) is the measure of VP and Sh(P, t0) = S(P, 0).
In other words, the saturation Sh(tn) in (18) can be explicitly solved by Sh(tn−1)
and do not need to solve the system of linear equations. Since Sh(tn−1) is discon-
tinuous on ∂VP \∂Ω in the second term of (18), we apply the widely used upwind
scheme to decide the appropriate value of f(Sh(tn−1)), see [7, 11,30] for details.

The numerical results of the postprocessing are presented in Tables 11-13, where
N = 500 and T = 0.01, SN = S(x1, x2, tN ) and SN

h = Sh(x1, x2, tN ) are the
exact saturation and numerical saturation at the final time T respectively. One can
see that the convergence orders of |LCE(ph)|S are almost of 2 for α = 1/3, 2/5,
1/2. However, the |LCE(p̂h)|M are almost all of scale of 10−15, namely, the local
conservation property holds for p̂h. On the other hand, the postprocessed solution
p̂h converges to the finite element solution ph with optimal convergence rate 3 under
L2 norm. These numerical results are validate the theoretical findings in Theorem
3.2. Moreover, the numerical saturation SN

h converges to the true saturation SN

with optimal convergence order 1 under L2 norm.
In comparison, we also compute the finite volume element solution pvh of (15)

over eight-nodes serendipity mesh. The numerical results are reported in Table 14.
One can observe that for all three cases : α = 1/3, 2/5, 1/2, the convergence rates
of L2-norm errors are 2, which are one order lower than the optimal convergence
order.

5. Conclusion

Comparing to the theory of finite element method, that of the finite volume
element method has not been developed maturely on dealing with the high order
schemes over serendipity meshes. In this work, we derive a locally conservative
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Table 11. Postprocess errors and convergence orders for Example
4.3, α = 1/3.

h |LCE(ph)|S Order |LCE(p̂h)|M ∥ph − p̂h∥0 Order ∥SN − SN
h ∥0 Order

1/2 2.35e-03 / 1.54e-13 2.08e-03 / 4.92e-02 /
1/4 7.12e-04 1.726 8.40e-16 2.71e-04 2.938 2.48e-02 0.988
1/8 1.92e-04 1.891 1.52e-15 3.41e-05 2.988 1.24e-02 0.997
1/16 4.95e-05 1.956 2.29e-15 4.27e-06 2.999 6.23e-03 0.997
1/32 1.25e-05 1.981 4.88e-15 5.33e-07 3.001 3.13e-03 0.991
1/64 3.15e-06 1.991 8.68e-15 6.66e-08 3.001 1.59e-03 0.976

Table 12. Postprocess errors and convergence orders for Example
4.3, α = 2/5.

h |LCE(ph)|S Order |LCE(p̂h)|M ∥ph − p̂h∥0 Order ∥SN − SN
h ∥0 Order

1/2 2.59e-03 / 1.48e-13 2.21e-03 / 4.72e-02 /
1/4 7.82e-04 1.729 9.78e-16 2.90e-04 2.931 2.38e-02 0.989
1/8 2.11e-04 1.888 1.37e-15 3.65e-05 2.991 1.19e-02 0.997
1/16 5.45e-05 1.954 3.19e-15 4.55e-06 3.003 5.97e-03 0.997
1/32 1.38e-05 1.980 4.39e-15 5.68e-07 3.003 3.00e-03 0.993
1/64 3.48e-06 1.991 8.10e-15 7.08e-08 3.002 1.52e-03 0.982

Table 13. Postprocess errors and convergence orders for Example
4.3, α = 1/2.

h |LCE(ph)|S Order |LCE(p̂h)|M ∥ph − p̂h∥0 Order ∥SN − SN
h ∥0 Order

1/2 2.71e-03 / 1.27e-13 2.73e-03 / 4.63e-02 /
1/4 8.26e-04 1.712 9.71e-16 3.66e-04 2.898 2.33e-02 0.991
1/8 2.24e-04 1.885 1.33e-15 4.52e-05 3.019 1.17e-02 0.998
1/16 5.78e-05 1.952 3.20e-15 5.55e-06 3.025 5.84e-03 0.998
1/32 1.47e-05 1.979 3.98e-15 6.86e-07 3.016 2.93e-03 0.996
1/64 3.69e-06 1.990 7.57e-15 8.53e-08 3.009 1.48e-03 0.988

Table 14. FVEM L2 errors and convergence orders of pressure p
for Example 4.3.

h
α = 1/3 α = 2/5 α = 1/2

∥pvh − pvh
2
∥0 Order ∥pvh − pvh

2
∥0 Order ∥pvh − pvh

2
∥0 Order

1/2 1.80e-03 / 1.77e-03 / 1.73e-03 /
1/4 2.45e-04 2.876 2.38e-04 2.893 2.28e-04 2.920
1/8 3.77e-05 2.699 3.54e-05 2.746 3.22e-05 2.823
1/16 7.22e-06 2.385 6.52e-06 2.443 5.46e-06 2.560
1/32 1.64e-06 2.141 1.45e-06 2.172 1.15e-06 2.252
1/64 3.98e-07 2.040 3.49e-07 2.050 2.71e-07 2.080
1/128 9.88e-08 2.010 8.65e-08 2.013 6.69e-08 2.021

solution with global continuity by postprocessing an eight-nodes-serendipity finite
element solution of the prescribed elliptic equation, and theoretically show that our
postprocessed solution converges to the exact solution with optimal convergence
orders under both H1 and L2 norms. Moreover, several numerical examples are
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presented to verify our theoretical results. In future, we expect to apply our post-
processing technique to study other serendipity finite element solutions.
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