Commun. Math. Res. Vol. 37, No. 1, pp. 1-85
doi: 10.4208 /cmr.2020-0041 February 2021

REVIEW ARTICLE

Concentration Inequalities for Statistical
Inference

Huiming Zhang'?* and Song Xi Chen!*>*

1 School of Mathematical Sciences, Peking University,

Beijing 100871, P.R. China.

2 Guanghua School of Management, Peking University,

Beijing 100871, P.R. China.

3 Center for Statistical Sciences, Peking University,

Beijing 100871, P.R. China.

4 Department of Mathematics, Faculty of Science and Technology,
University of Macau, P.R. China.

Received 4 November 2020; Accepted 12 December 2020

Abstract. This paper gives a review of concentration inequalities which are
widely employed in non-asymptotical analyses of mathematical statistics in
a wide range of settings, from distribution-free to distribution-dependent, from
sub-Gaussian to sub-exponential, sub-Gamma, and sub-Weibull random vari-
ables, and from the mean to the maximum concentration. This review pro-
vides results in these settings with some fresh new results. Given the increas-
ing popularity of high-dimensional data and inference, results in the context of
high-dimensional linear and Poisson regressions are also provided. We aim to
illustrate the concentration inequalities with known constants and to improve

existing bounds with sharper constants.
AMS subiject classifications: 60F10, 60G50, 62E17

Key words: Constants-specified inequalities, sub-Weibull random variables, heavy-tailed
distributions, high-dimensional estimation and testing, finite-sample theory, random ma-

trices.

*Corresponding author. Email addresses: zhanghuiming@pku.edu.cn (H. Zhang), csx@gsm. pku.

edu.cn (S. X. Chen)



2 H. Zhang and S.X. Chen / Commun. Math. Res., 37 (2021), pp. 1-85

1 Introduction

In probability theory and statistical inference, researchers often need to bound the
probability of a difference between a random quantity from its target, usually the
error bound of estimation. Concentration inequalities (Cls) are tools for attaining
such bounds, and play important roles in deriving theoretical results for various
inferential situations in statistics and probability. The recent developments in
high-dimensional (HD) statistical inference, and statistical and machine learning
have generated renewed interests in the Cls, as reflected in [29,47,84,86]. As the
CIs are diverse in their forms and the underlying distributional requirements, and
are scattered around in references, there is an increasing need for a review which
collects existing results together with some new results (sharper and constants-
specified CIs) from the authors for researchers and graduate students working in
statistics and probability. This motivates the writing of this review.

CIs enable us to obtain non-asymptotic results for estimating, constructing
confidence intervals, and doing hypothesis testing with a high-probability guar-
antee. For example, the first-order optimized condition for HD linear regressions
should be held with a high probability to guarantee the well-behavior of the es-
timator. The concentration inequality for error distributions is to ensure the con-
centration from first-order optimized conditions to the estimator. Our review
focuses on four types of Cls:

P(Z,>EZ,+t), P(Z,<EZ,—t), P(|Z,—EZ,|>t), E(,rr11ax 1 Xi]),
i=1,...,n

where Z,:= f(X3,---,X») and X3,---,X, are random variables. We present two
types of Cls: distribution-free and distribution-dependent. Distribution free Cls
are free of distribution assumptions, while the distribution-dependent CIs are
based on exponential moment conditions reflecting the tail property for the par-
ticular class of distributions. Concentration phenomenons for a sum of sub-
Weibull random variables will lead to a mixture of two tails: sub-Gaussian for
small deviations and sub-Weibull for large deviations from the mean, and it is
closely related to Strong Law of Large Numbers, Central Limit Theorem, and
Law of the Iterative Logarithm. We provide applications of the CIs to empirical
processes and high-dimensional data settings. The latter includes the linear and
Poisson regression with a diverging number of covariates. We organize the ma-
terials in the forms of lemmas, corollaries, propositions, and theorems. Lemmas
and corollaries are on existing results usually without proof except for a few fun-
damental ones. Propositions are also for existing results but with sharper or more
precise constants and sometimes come with proofs. Theorems are for new results.
This review contains 26 lemmas, 21 corollaries, 14 propositions, and 4 theorems.
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The review is organized as follows. Section 2 outlines distribution-free Cls.
CIs for Sub-Gaussian, Sub-exponential, sub-Gamma, and sub-Weibull random
variables are given in Sections 3, 4, 5, and 6, respectively. Section 7 reports concen-
tration for the maximal of random variables and suprema of empirical processes.
Applications for high dimensional linear and Poisson regression are outlined in
Section 8. Section 9 discusses extensions to other settings.

2 Distribution-free concentration bounds

The purpose here is to introduce distribution-free CIs. We first review Markov’s,
Chebyshev’s and Chernoff’s tail probability bounds that constitute fundamental
inequalities for deriving most of the concentration bounds, see [24, Chap. 1] or
[34, Appendix B] for the proofs.

Lemma 2.1 (Markov’s inequality). Let ¢(x):R—R™ be any non-decreasing positive
function. For any real valued random variable (RV) X,
1
P(X>a)<E[¢p(X)]|——, VaeR.
(X2a)<Elp(X)]
By letting ¢(x) = x?, the following Chebyshev’s inequality is merely an appli-
cation of Markov’s inequality for | X —EX].

Lemma 2.2 (Chebyshev’s Inequality). Let X be an RV with expectation EX and vari-
ance VarX. Then, for any a € R™

Var X
a? -’

P(|X—EX|>a)<

The Chebyshev’s inequality prescribes a polynomial rate of convergence de-
pending on the variance assumption. Another application of Markov’s inequality
is the Chernoft’s bound which is sharper by optimizing the upper bounds.

Lemma 2.3 (Chernoff’s inequality). For an RV X with Ee!X < oo,
P(X>a)<inf;~g {e_t”EetX} .

Proof. Lemma 2.1 with ¢(x) =" implies P(X >a) <e "Ee'X and minimize ¢ on
t>0. 0

The Jensen’s inequality and its truncated version [18, Lemma 14.6] are another
powerful tool to derive useful inequalities by the convexity.
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Lemma 2.4 (Jensen’s inequality). For any convex function ¢:R? — R and any RV X
in RY, such that ¢(X) is integrable, we have ¢(EX) <E[p(X)].

Lemma 2.5 (Truncated Jensen’s inequality). Let g(-) be an increasing function on
[0,00), which is concave on [c,o0) for some ¢ > 0. Then

Eg(12]) <g[E|Z|+cP(|Z| <c)]
for RV Z.

The Chebyshev’s, Markov’s, Chernoff’s and Jensen'’s inequalities are also va-
lid for conditional expectations [24, Chapter 4]. The Chernoff’s bound typically
lead to a tighter bound than Markov’s inequality by optimization via an expo-
nential ¢(x) function. A sharper bound for the sum of independent random vari-
ables (RVs) was attempted in [39]. The following is a slightly sharper bound
from [13, Theorem 1.2].

Corollary 2.1 (Hoeffding’s inequality). Let X3,---, X} be independent RVs on R sat-
isfying bound condition a; < X; <b; fori=1,...,n. Then for t,u>0
(a) Hoeffding’s lemma:

2

EeuZl 1(X EX)<e (b a)

Eet| i1 (Xi—EXp)| < ze% Z?zl(bi—ﬂi)zl-

(b) Hoeffding’s inequality:

—2t2
< DpLiq(bi—ap)?

Corollary 2.1 has a sharper bound than the Markov’s inequality or Cheby-
shev’s inequality with the requirement of first or moment condition on X. Ho-
effding’s inequality has many applications in statistics as shown in the next ex-
ample.

n

Y (Xi—EX;)
i=1

The proof of Hoeffding’s lemma. Without loss of generality, we assume
EX;=0. This is from the fact that the concentration inequality is location shift-
invariance. Since f(x)=e" is convex, for u >0, then

bi— a;
e W"Lb — e, a;<x<b;
1 1
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Taking expectation, it gives by EX; =0

EeuX,- < oHai a; e”bi: [1_S+Seu(b,~—u,~)] e—su(bi—ai) éef(r), (2‘1)

i
bi—ai bi—ai

i and f(r)=—sr+log(1—s+se"). We can show that

where r=u(b; —a;), S:_W

’ 1— 1
f/(r) =—5+ %Z—SE”I f//(r) = % < Z for all 7’20

Note that f(0) = f/(0) =0. Consider the Taylor’s expansion of f, there exists

¢€(0,1] such that
2f"(CV) r*_u*(bi—a;)?
Substitute it to (2.1), we get the Hoeffding’s lemma.
The last assertion of Lemma 2.1(a) is by letting Z=u}_"" ;(X; —EX;), so that

Eel?l =Ee=%.1(Z<0)+Ee?-1(Z >0) SZe%uZZ?:l(bi_ai)Z. (2.2)

The proof of Hoeffding’s inequality. Let S, =) ; X; and ¢; =a; —b;. For any

t,u>0,
P(Sy—ES, > 1) =P (e"(5rESn) > gt
< infe "] JEe(Xi—EXi) [Chernoff’s i lit
L11r>106 11 e [Chernoff’s inequality]
n uzcz
<infe " 8 :[Hoeffding’s 1
;I>10€ He [Hoeffding’s lemmal]
) 721‘2
= infe MHECTLT =TT (2.3)
u>0

The smallest bound is attained at u = 2 = and

i=1C;

—212

P(—[Sy—ES,] >1) <eXiac

similarly. Hence, the Hoeffding’s inequality is verified via

042

P(|S4—ESu|>t) <P(Sy—ESy>t) +P(—[S;—ESy] >1t) <2eTii5
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Corollary 2.1 has a sharper bound than the Markov’s inequality or Cheby-
shev’s inequality with the requirement of first or moment condition on X. A se-
cond approach for proving Hoeftding’s lemma is given in [70, Lemma 1.8]. Ho-
effding’s inequality has many applications in statistics as shown in the next ex-
ample.

Example 2.1 (Empirical distribution function, EDF). Let {Xi}?zllfg? F(x) for a dis-

tribution F. Let .
1
an(x)::EZl{Xigx}(x)’ xER
i=1

be the empirical distribution. By Hoeffding’s inequality (a; —b; = 1),

P(|Fu(x)—F(x)| >€) <2e72, Ve>0.

McDiarmid’s inequality (also called bounded difference inequality, see [61])
is a concentration inequality for a multivariate function of random sequence
{Xi}, says f(Xj,...,Xu). As a generalization of Hoeffding’s inequality, it does
not require any distribution assumptions about RVs and the f(Xj,...,X,) may be
dependent sum of RVs. The only requirement is the bounded difference condition

by replacing X; by X; meanwhile maintaining the others fixed in f(Xj,...,Xy).

Lemma 2.6 (McDiarmid’s inequality). Suppose Xi,---,X, are independent RV all
taking values in the set A, and assume f: A" — R satisfies the bounded difference condi-
tion
sup ’f(xlr' t /xn) _f(xll' e /xk—llx;clxk-l-l/' T /xn) ’ < Ck-
x1,~~~,xn,x,/<€A

Then,

212

P(|f (Xt Xa) =E{f (X1, X))} 1) <2 Had, vi>0.

One method of proof is by the martingale argument, which needs to check
the Azuma-Hoeffding’s inequality below, see [86, Section 2.2.2]. Theorem 3.3.14
of [33] gives another proof based on the entropy method.

Lemma 2.7 (Azuma-Hoeffding’s inequality). Let {X,};>, be a sequence of mar-
tingale (or supermartingale), adapted to an increasing filtration {F,};>_,. Suppose
{Xn}5 satisfies the bounded difference condition ay < Xy —Xy_q < by, a.s. for k=
1,...,n. Then,

212

P(|Xu—Xo| >1) <2 Taalaw? >0,
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Two typical examples with bounded differences function are the concentra-
tion for U-statistics (a dependent summation) and the integral error of the kernel
density estimation.

Example 2.2 (U-statistics). Let { X;}"; be independent and identically distributed
(IID) RVs and g:R?> — R be the bounded and symmetric function. Define a U-
statistic of order 2 as

-1

n

Un: (2) Zg(Xi,Xj)::f(xl,...,xn).
i<j

Its bounded difference condition is

| f (X1 Xk, X0 X 1) — f (X0 X1, X X1 X)) |

35| 2 lstem) st ]| < 2Rl Sl

j=1,j#k
So we have

nt2

P(’un_EUn| > t) <2¢ s8lsl%

Example 2.3 (Li-error in kernel density estimation). Let {X; }?:115\15) F(x) with den-

sity function f(x). Define the kernel density estimator by
A 141 (x—X;
=-Y K i
fn/h(x) ni:1h ( h ) 4

where K(-) >1 is the kernel function and /> 0 is a smoothing parameter called
the bandwidth. Usually, the kernel function K(-) is symmetric probability density
and />0 with 1 — 0 and nh — oo. Define the L;-error of f, ;(x) by

Zo =X Xir) = [ |fun(x)= £ ()|
By [K(u)du=1, the McDiarmid’s inequality with bound difference condition

|8 (X100 Xn) — (X1, Xy X |
1 X —X; xX—X| x\ 2
SE/K( 2 )—K( 2 )d<ﬁ>§E

ni2
P(|Zy—FZ,| > ) <2e 2/ —2¢~ "7,
which is free of the bandwidth.

gives
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3 Sub-Gaussian distributions

3.1 Motivations

In probability, there is a well-known inequality for bounding the Gaussian tail. If
X~N(0,1), [35] obtained for x>0

«2

x2 X
1 1 e 2 X e 2 1 e 2
—-——— - < . <P(X>x)<-—. , 3.1
<x x3) V271 <x2—|—1) V2mr T (X= )_x 27 G.1)

which is called Mills’s inequality, relating to Mills’s ratio [63]. The upper bound
in (3.1) is mostly used to derive law of the iterated logarithm [24]. However, if x
tends to zero the upper bound goes to 4+-co which makes it meaningless. So the
Mill’s inequality is useful only for larger x. We need a better inequality. In fact, the

upper bound in (3.1) can be strengthened as in [34, Lemma B.3]: P(|X|>x)<e™ %
We refer it as the sharper Mill’s inequality.

In statistics, people want to study a general class of error distributions (be-
yond Gaussian) whose moment generating function (MGF): Ees*X have similar
Gaussian properties with s in specific subset of R. To derive sharper Mill’s in-
equality, it is natural to define the class of sub-Gaussian RV as follows.

Definition 3.1 (Sub-Gaussian distribution). An RV X € R with mean zero is sub-
Gaussian with a variance proxy o (denoted X ~subG(c?)) if its MGF satisfies

(7'252
Ee’X<e 2, VseR.

With Definition 3.1 and Chernoff’s inequality, we will get the exponential de-
cay of the tail as the alternative definition of sub-Gaussian:
022 g=t/o?

P(X>t)<infe S'Ee’X <infe 't 7 == 27,
s>0 s>0

This argument is called Cramer-Chernoff method, and it is applied in proving
Hoeffding’s lemma for sum of independent variables. In general, let Zj,...,Z, be
n independent centralized RVs, and suppose there exists a convex function g(t)
and a domain Dy containing {0} such that

Eet):?:l vA < e”g(t), Vte Dy CR.

Denote g*(s) =sup,.p {ts—g(t)} as the convex conjugate function of g, therefore
the Chernoft’s inequality implies

1 n
P( Egzi

> s) <2e7"8() s>,
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which has rich applications in high-dimensional statistics, machine learning, ran-
dom matrix theory, and other fields on non-asymptotic results.

Note that subG(c?) denotes a class of distributions rather than a single distri-
bution. Trivially, the Gaussian distribution is a special case of sub-Gaussian.

Example 3.1 (Normal distributions). Consider the normal RV X ~ N(,0?). With
the MGF of X:

o252

Ee*X:=¢ 2, VseR

it is sub-Gaussian with the variance proxy o2 = Var(X).

Example 3.2 (Bounded RVs). By Hoeffding’s lemma,
Ee’X < e =0%  for s>0

for the centralized bounded variable X € [a,b]. So X is essentially sub-Gaussian
with variance proxy o2 = %(b—a)? For Bernoulli variable X € {0,1}, we have

X ~subG (%)

There are at least seven equivalent forms for sub-Gaussian as shown in the
following.

Corollary 3.1 (Characterizations of sub-Gaussian). Let X be an RV in R with EX=0.
Then, the following are equivalent for finite positive constants {K;}7_,.

(1) The MGE of X: Ee*X < ¢Kis” for all s€ R

(2) The tail of X: P{|X| >t} <2e~/K: for all t > 0.

(3) The moments of X: (E|X|*)'/k < K3v/k for all integer k>1.

(4) The exponential moment of X? : EeX'/Ki<2,

(5) The local MGF of X: Ee!™X* < ¢K3!” for all I in a local set|| < Kis

(6) There is a constant o >0 such that Ee’X* /K¢ < (1—A)=1/2 forall A €[0,1).

(7) Union bound condition: 3¢ >0 s.t. E[max{|X1|,...,|Xx|}] <c+/logn forall n>c,
where {X;}!"_, are IID copies of X.
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Remark 3.1. The EX =0 is for convenience as the zero mean is used in the proof
of Corollary 3.1(1), see [83] for the details and the proof of the equivalences (1)-
(5). The equivalences (6) is given in [86, Theorem 2.6] and the equivalences (7) is
present in [75, p. 24]. The moment condition for integers k in (3) can be relaxed
to even integers k by the symmetrization technique. By symmetry of X, let us
consider a negative independent copy —X’ which is independent of X and has
the same distribution as X. If (3) is true and E(—X’) =0, from Jensen’s inequality
Eef(—X") > ¢PE(=X') —1 since — X’ has zero mean. So we have by the independence
of X’ and X:

2k 1\2k
EefX < BefXEef(—X')  EfX-X) _1 4 i 0 E(X—'X )
= (2k)!

n 92kE(|X|-|—|X/|)2k
<1+) 20

k=1

<1+Z

(20K2V2R)*

92k22kEX2k
H <1+ Z P [By (3.7)]

8921<
—1+ Z =K, VOER,

where the last inequality is due to (2k)! > k*-k!.

3.2 The variance proxy and sub-Gaussian norm

We show that the 02 in Definition 3.1 is indeed the upper bounds of variance
of X. The ¢ not only characterizes the speed of decay in the sub-Gaussian tail

probability, but also bounds the variance of n=2 Y, X;. The Var X <¢? is because,

by the sub-Gaussian MGF
0252 7252 2 2

T—i—o(sz):e 2 —1ZEeSX—lstX+SEEX2+-..:%.VarX—l—o(sz). (3.2)

Definition 3.2 (Sub-Gaussian norm). For a sub-Gaussian RV X, the sub-Gaussian
norm of X, denoted || X||y,, is defined by

X2
\|X||¢2:inf{t>O:Ee72 gz}.
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From Corollary 3.1(4), || X||y, is the smallest K4. An alternative definition of
the sub-Gaussian norm is ([83])

_1 1
1 Xlg, :=supp~2 (E[X|P) 7.
p=1

The definition for sub-Gaussian norm makes Corollary 3.1 easily presented. In
. X2/||1X3
fact, if Ee 2 <2,

x2 2 x2 2 _ 2
P(IX] 2 ) :p<e||xn%,,2 Zex%,,z) <Be ¥ /oI¥T, <0 1T, (33)

Example 3.3 (The sub-Gaussian norm of bounded RVs.). Consider an RV | X| <

M < co. Set
x2 oM M
Eer? <er? <2, t>

log2’

T

we have

M
HXHle: \/@

Example 3.4 (The sub-Gaussian norm of Gaussian RVs.). For a N(0,02) and ¢ >

V20,

2
x2 2 e 202 t

22 8
dx = <2 = t> \/—0’.
V2mro? (2 —202)? 3

Eez = | e2

By the definition, || X||y, = \/gcf >/20.

However, the neat notation for defining sub-Gaussian norm sometime leads
to unknown constants in the CIs as shown next.

Corollary 3.2 ([84, Theorem 2.6.3]). Let {X;}"_, be independent mean-zero sub-Gaus-
sian, Vt >0,
P {

The unknown constant C makes the above CIs cannot be used in constructing
confidence bands for . To obtain more specific bounds (data dependent bounds
as a statistics), we adopt the follow three propositions under sub-Gaussian.

1
L X

o C(nl‘)2
112
zt}SZe Hallyy - wr>0
i=1

n

for a constant C.
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Proposition 3.1 (Sub-Gaussian properties). Let X ~subG(c?), then for any t >0,
(a) the tail satisfies

2

P(|X|>t) <2¢ 27;

(b) (a) implies that moments
k 0k k
E[X|*< (20 )Zkl“<§>, (E(|X| ))

(c) if (a) holds and EX =0, then

=

<oeevk, k>2;

EesX < o407’ forany s>0;
(d) if X ~subG(c?), then
2v2
V/1og2 ’

conversely, if || X||y, =0 then X ~subG(40?2).

X Iy, <

Proof. The proofs of (a)-(c) are in [70, Lemmas 1.4 and 1.5]. The proofs of (a, b) is
similar to Proposition 3.2(a, b) below. For (d), note that

o 2kpx2k (b) 0 92k (9 2k
s“EX SH—ZZS (20%)*kT (k)

— Kk = k!

K V25207 <1 45202
1—2s202

Eexp (SZXZ) =14+
k

=1+4s%02)_ (25%0?)
k=0
Vis <37 2 2 - 802s?
< 1485707 <. (3.4)
By (3.4), set
EesoX? < (850°0 <2 forsome .

< \/10g2<i

- 2\/§a — 20

Then

|so

Put |s| = Y28

2
and the sub-Gaussian norm gives
2\/§¢7 g

2
£ (25)

2\/50
\/logZ'

<2 = [Xlp<
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Conversely, if || X||y, =0 then the (3.3) gives

2 2
P(|X|>t)<2e o2 =2¢ 2c/V?)

2

Then Proposition 3.1(c) concludes

L)ZZ 2

EesX < o7 —pio’

for any s >0, and we have X ~subG(4c?). ]
Let {Y;}" , be a sequence of exponential family (EF) RVs, its density

fyis6i) =c(yi)exp{yifi—b(6:) } (3.5)

with EY; =b(6;) and VarY; =b(6;). We next introduce the sub-Gaussian CIs for the
non-random weighted sum of EF RVs with compact parameter space, adapted
from [69, Lemma 6.1] with more specific constants.

Proposition 3.2 (Concentration for weighted E-F summation). We assume (3.5) and

o (E.1): Uniformly bounded variances condition: there exist a compact set () and

some constant Cy, such that supy b(6;) < C2 for all i.
Let w:= (w1, ,wy) T €R" be a non-random vector and define S¥ =:Y""_ w;Y;. Then

(a) Closed under addition:

2

Sy —ESy ~subG(Cyllwl[3), P{ISy—ESy| >t} <2e >,

(b) Let Cp:=SY—ESY and
F(t)::/ e *dx
0

be the Gamma function. For all integer k> 1, we have moments bound:

k [k
BICal* <k(26) (5 ) ol

(c) The MGF of centralized |C,|*:

EeslICnl*—E|Cul?] Se(sz/z)(8ﬁC§HwH§)zl Vs| < (8C§||w||%)_1.
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(d) In this case, we do not assume (3.5) and (E.1). Suppose {Y —EY;} | are independent
distributed as {subG(c?)}"_; with C2 =:maxy<;<,07 >0, then (a)— (c) also hold.

Proof. Based on the MGF and uniformly bounded variances condition, the proof
of (a) can be found in [69, Lemma 6.1]. In the proof of (c), we update the constant,
and (d) is similar for the sub-Gaussian case.

(b) The proof relies on expectation formula for positive RV (in terms of integral of
tail probability) which transforms tail bound to moment bound. For any integer
k>1,
E|sg—Esg’yk=/ P(|SY —ESY[* >5)ds
0
_l/k oo
A= / k1P (|SY —ESY| > £)dt. (3.6)
0

Applying tail bound in (a), we have by letting Dy c = k(ZCZ)g r(%)

0o __ 2
E|Sy —ESy|“ <2k / -1, 2B gy
0

x=12/(2C%||w
( bH H 2C2 || / x2 1 dx

=Dk,c||w||2-

(c) The proof will resort to (E|Z|)* <E|Z|* and Jensen’s inequality

k
<’“"’2"b|> §%|a|k+%|b|k for integer k>1. (3.7)

From Taylor’s expansion, (3.7) gives

S'E[|Cn |2 E|C|]

EeSlCnl*—E|Cul?] =14+ Z

zklEc2k ElC 2\ k
i {| P (FlC )

0 kzk_lE{’Cn|2k+E|Cn|2k}
k!

<1+ By (E|Z|)* <E(|Z[")]

k=2
© 5252k (22 |w]3) T(K)

<1+ Z T ,
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where the last inequality is by Proposition 3.2(b). Then, under [4sC|w||5| <1, we
have

00 k 2(4sC2||wl3)?
E S[|C;1|2—E|Cn|2} — 1 2 (4SC2 2) — 1+ b 2
‘ 20, (G lwlz) =1+ e

52
<1+

2
(8V2CE||wll3) ’ 22 1
4sCr ||lw ’<— Sls| <

< e(/2)8V2CH|w]3)”.

d) It follows by defining C? =:maxq<;<,0> >0 as the common variance proxy for
y & <i<n0j e proxy
ir.. Fori=1,...,n, we have: Ee°*i\'i7 ") Jp¢ i’% VYseR.
anle =1 h Eeswi(Yi—EY)) < p0°s°wi /2 /g R N

Proposition 3.2(a) yields the following results (the first result is in [70, Corol-
lary 1.7]). The second sub-Gaussian CI below specifies the unknown constant
in [84, Theorem 2.6.2].

Proposition 3.3. Let {X;}"_; be n independent subG(c?). Define 0> =max)<j<,07,

P ( i wiXi
i=1

{

for any non-random vector w:= (wy,---,wy,)T.

2
>t> <2 (@l

n

Y wiX;

2
Y lw X |12
>t> Sze B ULXLHIPZ)I vtzo
i=1

Proof. To see the second CI, just use the Proposition 3.1(d) and the Propositi-
on 3.2(d), by noticing that if || X; ||y, < oo then w;X; ~subG (4| w;X; lelJz) O

3.3 Randomly weighted sum of independent sub-Gaussian
variables

In this part, we outline the sub-Gaussian type CIs for the randomly weighted sum
of exponential family of RVs: SW =:} 1 W;Y;, where {W;}!_ are called the multi-
pliers (or random weights) which are independent from {Y;}"_ ;. The normalized
sum ﬁ (SV—ES)V) is also called multiplier empirical processes, and it serves for
the multiplier Bootstrap inference where the multipliers {W;} are RVs indepen-
dent from {Y;}_;, see [82, Chapter 2.9]. To get sub-Gaussian concentration, some
regularity conditions for the parameter space are required.
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e (E2): Let W:=(Wq,--- ,Wn)T € IR" be a random vector with some bounded
components, i.e. |W;| <w; < oo for a non-random vector w:= (w1, - )T €
R".

Theorem 3.1 (Concentration inequalities for randomly weighted sum). Let {Y;}" ,
belong to the canonical exponential family (3.5), and let {W;}! | be independent of
{Y:}"_,. Define the randomly weighted sum S} =:y_I' | W;Y;, then under (E.1) and (E.2)

2

P(|s~ES)| > t) <2e BGE.

Proof. Let Y;=0(6;)+Z;, where {Z;}""_, are centralized and independent E-F RVs.
From EY; =5(6;) and the identity (3.8) for a dominating measure 7(-)

/ dFy,(y)=1 & / c(y)e®ip(dy) =), (3.8)
Let E,yy(-):=E(-[W) and s be in (—6,6) (a neighbourhood of zero). Then
E. e Z/GSWiYian|w(y)Z/GSWI'YidFYi (y) [by {Wi L{Yi}} ]
:/C(y)eyei—b(é)i)eswiyy(dy)&eb(ﬂﬁ—swi)—b(&)'

It can be easily derived from (E.2) and Taylor’s expansion,

E, ‘W [eS(WiYi_E-\W(WiYi))] — eb(9i+swi)—b(@i)—B(Gi)Wis

JEl08i+s W] SWE 2w}

ez 00 <o (3.9)
By the conditional independence for {W;Z;|W} and (3.9), it follows that when
se(—6,0)
E“w[esz‘;?:l [WiZi_E-\W(WiZi)]]
n_s2ciw? s2C2|lw|3

n
:HE'|W65[WiZi_E-\W(WiZi)}S e <2052 , (3.10)
i=1 i=1

where the last inequality is from {|W;| < w;} for a non-random vector w :=

(wll' : '/wi’l)T'

By the conditional Markov’s inequality and symmetry of Z;, we have, as s €
(_(515)

P(’Z?:l [W,Zi— B w(WiZy)] ] > t|W>
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<inf [e—stE ‘weS(SN};V—E.‘Wg};V) +e—StE ‘we—S(SNZ\]—E.‘Wg};V)

s>0
SZC%HWH% - 2t2 2
<2infe— 7z t=2¢ 2%lvl3, (3.11)
s>0
where the last equality is minimized by setting s = —-—-. O

(Cyllwli3)

Note that [69, Lemma 6.1] is about the concentration for the non-random
weighted sum of exponential family RVs. The assumption of compact parameter
space for exponential family is vital for obtaining the sub-Gaussian type concen-
tration. If we do not impose condition (E.2) and the assumption that {W;}” ,
and {Y;}! ; are dependent, a counterexample for sub-Gaussian concentration
is W; =Y;. Thus, SV is a quadratic form, and S}Y —ES}Y is sub-exponential by
Lemma 4.2 below. If {W;}" ; and {Y;} ; are dependent but {W;}" , are still
bounded, another counterexample is W; =sign(Y;). Therefore, S} =Y ,]Y;| is
not zero-mean, and the concentration of )"/ ; |Y;| fails.

3.4 Concentration for Lipschitz functions of random vectors

In the analyses of high-dimensional statistics by empirical processes, researches
often resort to the CIs of Lipschitz functions for either bounded or strongly log-
concave random vectors [86].

Lemma 3.1 ([86, Theorem 2.26]). Let N~N(0,1,). Let f:IR" — R be L-Lipschitz with
respect to (with respect to) the Euclidean norm, i.e.,

f(a)—f(b)|<L|la—bl> forany abeR".

Then,

2

P(|f(N)=Ef(N)|>t) <2¢ @7, Vt>0.

A non-negative function f(x):R"” — R is log-concave if for any A € [0,1] and
any x,y € R",

log f (Ax+(1—A)y) >Alog f(x)+(1—A)logf(y). (3.12)

A function (x):IR" — R is y-strongly concave if there is v >0 s.t. for any A€[0,1]
and any x,y € R"

Ap(x)+ (1= )p(y) —p (Ax+(1-N)y) < SA1-A)[lx—y3.

N |=2
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A continuous probability density f(x) and the corresponding RV are log-concave
(or strongly log-concave) if f(x) is a log-concave function (or strongly log-concave
function), see [73] for a review of the log-concavity in statistics.

Lemma 3.2 ([86, Theorem 3.16]). Let IP be any y-strongly log-concave distribution on
R™ with parameter v > 0. Then for any function f:R" — R that is L-Lipschitz with
respect to the Euclidean norm, we have

2

PIf(X)~Ef(X)>t] <e 2 for X~P, t>0.

The standard Gaussian random vector is 1-strongly log-concave distributed.
However, Lemma 3.1 has the sharper constant 2L.? than the Gaussian case of
Lemma 3.2 with constant 4L2. Beyond Gaussian and strongly log-concave, it
is possible to establish concentration for distributions involving bounded RVs.
A function f(x):R" — R is said to be separately convex if, the univariate function
Y f(x1,%2, .., X1, Yk, Xk 41,- -, Xn) for each index ke {1,...,n}, is convex for each
fixed vector (x1,X2,...,Xk—1,Xkp1,---,Xn) ER"L.

Lemma 3.3 ([86, Theorem 3.4]). Let {X;};_; be independent RVs, each supported on
the interval [a,b]. Let f:R" — R be separately convex, and L-Lipschitz with respect to
the Euclidean norm. Then

2

P[f(X)—Ef(X)>t] <e #%0t-? for X~IP, t>0.

Example 3.5 (Order Statistics). From Lemmas 3.2 and 3.3, suppose that {X;}" ,
are independent RVs which are y-strongly log-concave distributed satisfying

2

PIF(X)~Ef(X)>t] < w2

for any function f:IR” — R that is L-Lipschitz with respect to the Euclidean norm.
Let X(k) be the k-th order statistic of Xj,...,X,;, it can be shown that

52

P(1X () —EX(o| >0) <2¢77
by checking |Xx) —Y(i)| <[[X—Y]l2,i.e. L=1. Indeed, we have
X(k) _Y(k) < |X1—Yl| < ||X—Y||2 forsome [€ {1,...,1’1}.

More results of the tail bounds for the order statistics of IID RVs are reported
in [15].
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4 Sub-exponential distributions

4,1 Characterizations

o252 .
The requirement in definition of sub-Gaussian RV EesX<e™2 ,VseRis too strong.
We consider the MGF of exponential distributions.

Example 4.1 (MGF of exponential distributions). Consider the exponential RV
X ~Exp(p) with EX=p>0. The MGF of X —u satisfies

Fes(X-1) 16:5; (e F s )
< S s < 20, (4.1)
where the second last inequality is by
e’ 1

< for [t <-.

1-2 4

~

In (4.1), the MGF of the exponential RV is divergent on s = % and it cannot

be bounded by a Gaussian MGF of s in IR, and the exponential MGF is bounded
by Gaussian MGF for |s| < ﬁ via inequality (4.1). Motivated by Example 4.1, the

tirst definition of sub-exponential distribution (4.2) below is exactly the locally
sub-Gaussian property.

Definition 4.1 (Sub-exponential distributions). A RV X € R with EX =0 is sub-
exponential with parameter A (denoted X ~subE(A)) if its MGF satisfies
212 1
EeX <e'2 forall |s|< T 4.2)

In [86], sub-exponential distributions are generally defined by two positive parameters
(A,&) (denoted X ~subE(A,«))

22 1
EesX <¢™2 for all |s|<&.

The A? in (4.2) is treated as a variance proxy and a is seen as locally sub-
Gaussian factor, see Remark 4.1 later. Specifically, subE(A) =subE(A,A). Sub-
Gaussian RVs are sub-exponential by definition, but not vice verse. In Corol-
lary 3.1, one equivalence of sub-Gaussian RVs is that the survival function is
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bounded by the Gaussian-like survival function up to a constant. Similarly, the
sub-exponential RV has a characterization that the survival function is bounded
by that of a exponential distribution. Similar to sub-Gaussian characterizations,
there are at least six equivalent forms for sub-exponential distributions which are
useful for checking the sub-exponential distribution.

Corollary 4.1 (Characterizations of sub-exponential). Let X be an RV in R with
EX =0. Then the following properties are equivalent, where {K;}°_, are positive con-
stants.

(1) The tails of X satisfy P{|X| >t} <2e*/K1 forall t > 0.
isfi IX < K312 1
(2) The MGF of X satisfies Ee'* <e"2" for all |I| < ¢.
(3) The moments of X satisfy (E|X|P)1/P < Ksp for integer p > 1.
o TlIX| < Kyl 1
(4) The MGF of | X| satisfies Ee'|*1 <™’ for all 0<T< .

(5) The MGF of | X| is bounded at some point: EelX|/Ks <2,
(6) Bounded MGF of X in a compact set: Be'X < o, V|t| < K%

The zero mean is only used in the proof of (2) of Corollary 4.1. The equiva-
lence among (1)-(5) is proved in [84] and that between (5) and (6) can be found
in [65, Lemma 5]. The (6) is the called Cramer’s condition which is an essential
characterization, it signifies that: All RVs. are sub-exponential if their MGF ex-
ist in a neighborhood of zero. [67] names the property (6) as the exponentially
integrable RV.

Example 4.2 (Moment of exponential distributions). The

(t+p)

P(X—u>t)=e * <e z

and the symmetry of X —u implies K; =y in Corollary 4.1. Continue to Exam-
ple 4.1, the “<” in (4.1) implies

B X1 < (B <o, 5| < (20) 1.

So Kp = % and Kg =2y in Corollary 4.1. Next, we evaluate the moment of X for
any p>1,

BIXIP = [Py Te b g L2 p [ gy — T (941 P
(X|P= | alpe x=—==p | yreVdy=T(p+1)p’.
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By I'(p+1) <pP for p>1, it gives:

1 1
(EIXIP)r = (T(p+1)) " u<pp.
Via (4.4) shows that (E| X — pt]r’)% <2pp and thus K3=2p in Corollary 4.1. Assume
EX =0, then by Stirling’s approximation p! > (£)?
APE|X|P > (AK3p)?
| | <14y ( 3]92)
p=2 (P/e)
00 2
_ p_ (eK3A)
1+p§(e1<3)\) ek

<142(eKpA)% < (2(eK3))? (Restrict eK3zA < %)

EeMX| = 1+ Z
p=

V|€K3)\| <1

1

< eEK3)\ < 62€K3/\ VA
= = = 2eKs3"

(4.3)

1X]
Thus Ky =2eK3 =4ep. That EeMXl <K for 0 < A < 261( in (4.3) implies Ee?*s <
e2 < 2. Hence K5 =Ks.

Example 4.3 (Geometric distributions). The geometric distribution X~Geo(q) for
RV X is defined by

P(X=k)=(1—-¢)¢""!, q€(0,1), k=12,....

The mean and the variance of Geo(g) are —* L 7 9 and 51 1, respectively. Apply [38,

Lemma 4.3], we get (E| X |k)% < log_(%q)' It follows from the Minkowski’s inequal-
ity and Jensen’s inequality (E|Z|)* <E|Z|* for integer k> 1 that

—4k
log(1—-4)
and4Corollary 4.1(3) implies the centralized Geo(g) is sub-exponential with K3 =

(EIX—EX[)F < (BIX[)F 4 [EX| <2(B|X|)F < (4.4

log(1—¢)
Example 4.4 (Discrete Laplace RVs). An RV X~DL(g) obeys the discrete Laplace
distribution if

fll) =P(X=k)= Zq” keZ=1{0,+1,+2,..}
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with parameter g € (0,1). The discrete Laplace RV is the difference of two IID
Geo(q). The geometric distribution is sub-exponential, thus Corollary 4.2(a) men-
tioned later implies that the discrete Laplace is also sub-exponential distributed.
In differential privacy of network models, the noises are assumed following the
discrete Laplace distribution, see [30] and references therein.

The next result shows that a sum of independent sub-exponential RVs has
two tails with difference convergence rate, which is slightly different from Ho-
effding’s inequality. Deviating from the mean, it tells us that the tail of the sum
of sub-exponential RVs behaves like a combination of a Gaussian tail and a expo-
nential tail.

Corollary 4.2 (Concentration for weighted sub-exponential sums). Let {X;}! ; be
independent {subE(A;) }I'_, distributed with zero mean. Define A=max<;j<,A;>0and
the non-random vector w:= (wy,---,w,)T € R" with w=max;<;<,|w;| >0, we have

(a) Closed under addition: } ;' ;w;X; ~subE(||w||2A).

(b) P( 3
i=1

2
1(_#~2 t — i [|w]|3A
1 A w||5A
) < 26 2 ( ”wllz/\z ZU/\) 26 ZH HZ ’ 0 < t < 2

Z win >t

w 7

< Jwl3A

t
T 2wA
2e” A, =

(c) Let {X;}! , be independent zero-mean {subE(A;,«;)}I", distributed. Define

1

n 2 n
= >0, [Allx:= AZ , A== A2
%:= max A2 (l; 1> (”z; 1>

Then Y!' 1 X;~subE(||A||2,a) and

Nl—

1& _1(n \nt A2
P12y x| > e ] <o 2(Ent) )220, 0Si<in a5
ni= 27, >N

Remark 4.1. The (’lA—tz2 A %t) in (4.5) reveals that the smaller a (locally sub-Gaussian
factor) leads to sharper sub-exponential concentration. The sub-exponential con-
centration tends to the sub-Gaussian concentration with variance proxy A2 when
« — 0, which coincides the locally sub-Gaussian definition for sub-exponential
distribution in Definition 4.1.
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Proof. (a) By definition of sub-exponential RVs,

o i |
EeViti<e 2, Wslgi)\, i=1,...,n,
|wi|A;
and it implies
x 5210,12/\,12 1
EetViti<e™ 2, |s|<— forall i.
wA

By the independence among {X;}” ,,

n
Eexp {sZwin} =
i=1

(b) The proof can be found in [70, Theorem 1.13].
(c) The proof is similar to (b), see [86, p. 29]. O

n

it
2

" w?A? 52 w]312 1
Eeswixigexp{szz <e 2z, |s|<—.
i=1 i=1

Corollary 4.2(b) is due to Petrov, and it is also called Petrov’s exponential in-
equalities, see [57]. Although Corollary 4.2(b,c) are non-asymptotically valid for
any number of summands. Nevertheless, it also has asymptotical merit, which
implies: Strong Law of Large Numbers (SLNN), Central Limit Theorem (CLT),
and Law of the Iterated Logarithm (LIL) for sub-exponential sums, as discussed
below.

(1) SLNN. Let w; = % Consider the sample mean X, = %Zlﬁ:lXi for IID
{subE(A;)} ; data {X;}!" ; with population mean y, and we can use Corol-

lary 4.2(b) to prove that X, %3 u. We verify the Borel-Cantelli lemma by ob-
serving that

Y PRl >e) < Yoot <o,
n=1

n=1

which shows the strong convergence: X, %3 . Corollary 4.2(b) also implies
the rate of convergence for sample mean for all n with a high probability. It is
easy to see that the sample mean X, has the non-asymptotic error bounds by

2)2t
B 2 ——, n>2t (slow global rate),
|Xn—]l|§\/£\/2—)\t= n (4.6)
n n 2At
7 n <2t (fast local rate),

Vt >0 with the probability at least 1—2¢~".
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CLT. To study the convergence rate of CLT, we standardize the sum by letting
w; = ﬁ and apply Corollary 4.2(b) to

o2
_ 1/2 ¢ 20752, t<AVA,
e 1, n.

The above deviation inequality is powerful as it indicates the phase transition
about the tail behavior of \/nXy:

Small Deviation Regime. In the regime t<A/n, we have a sub-Gaussian tail
bound with variance proxy A? as if the sum had the normal distribution with
a constant variance. Note that the domain t < A,/n widens as n increases and
then the central limit theorem becomes more powerful.

Large Deviation Regime. In the regime t > A\/n, the sum has a heavier tail.
The sub-exponential tail bound is affected from the extreme variable among
{subE(A;)}_, with parameter %

LIL. Let w; =1 and

w

[ R./loglogn < w34 _
= NG < =
for some positive constant R. Corollary 4.2(b) claims

2
P<|Xn|2R\/1\0/gilogn> §26_t22|w|%)‘2=2exp{— n R loglogn}
n

2)? n

< 2
:2exp{log(logn) 2 }:(7,@

logn)2»?

2

(lOgT’Z)RZ /2/\2

- R,/loglogn
| Xy | < ——F—.
Vn
Although some researchers claims that LIL is useless, we clarify that there are

still some meaningful applications of LIL, see [43,91] for the statistical and
machine learning applications of the LIL.

Therefore, with probability 1— we have
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4.2 Sub-exponential norm

Recall the Corollary 4.1(5). The absolute value of sub-exponential RV |X| has a

1X|
bound MGF at point K ! 1px) (Ky 1):=Fe® <2. Similar to the definition of sub-
Gaussian norm, we define the sub-exponential norm.

Definition 4.2 (sub-exponential norm). The sub-exponential norm of X is defined as

X
\|X||¢1:inf{t>O:Eexp <¥) SZ}. 4.7)
An alternative definition of the sub-exponential norm is
1
Xy, :=supp™ (E|X|")”
p=1

as in [83]. The sub-exponential RV X satisfies the equivalent properties in Corol-
lary 4.1 (Characterizations of sub-exponential). Next, we present a useful lemma
below which is to determine the sub-exponential parameter in the Definition 4.1
by its MGF if we adopt Definition 4.2 of the sub-exponential norm.

Proposition 4.1 (Properties of sub-exponential norm). If Eexp(|X|/[|X]|y,) <2,
then

ot
(a) Tail bounds P(|X|>t)<2e "1 forall t>0.
(b) Moment bounds E|X|F < 2\|X||k k! for all integer k> 1.

(c) If EX =0, the MGF bounds Ees* < e@IXlgy)%s for all [s| <
subE (2| X[y, ).

Proof. (a). To verify (a), using exponential Markov’s inequality, we have

, e, X~
2HXH

‘ X

P(|X| > t) =P<€‘ HX)H(zpl ‘ >ethp1> <€_ ||X|t|1p1 Ee' Xl ’ <2€_ HXﬁzpl

by Definition 4.2.
(b). Similar to the proof of Theorem 5.1 (b), we get from (a)

t
E|X[f= / P(|X| > t)kt*~ 1dt<2k/ “TRTgy k144

t
_Zk/ I1X X[ g ds {lets= }
| ||1P1 || ||1P1 ||X||¢1

=2|| X[}, kT (k—1) =2|| X[y, k!.
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(c). Applying Taylor’s expansion to MGF, we have

® skEXk (b) i P
Eexp(sX)=1+) 0 Sl—i—ZZ(sHXH%)
k=2 k=2

2(s]1 X[, )
=1+——" s|| X ||y, | <1
1_S||X||1p1 (} lPl} )
<14+4(sllX 2< (ZHXHzp )%s? if 1
STl b <,y
1
Therefore, X ~subE(2||X[|,, ). O

Lemma 4.1(c) implies the following user-friendly concentration inequality
which contains all known constant. One should note that [84, Theorem 2.8.1] in-
cludes an un-specific constant, which makes it is inefficacious when constructing
non-asymptotic confident intervals for sub-exponential sample mean.

Proposition 4.2 (Concentration for RV with sub-exponential sum). Let {X;}" ; be
zero mean independent sub-exponential distributed with || X;||y, < co. Then for every

t>0,
1 2 t
P( >t> <2exp ——( A )
-]~ 4\ X;
v 2xi, 25 1%l
1=

Proof. 1f Eexp(|X|/||X||y,) <2, then X ~ subE(2||X||y,) by using Lemma 4.1(c).
The result follows by employing Corollary 4.2(b). O

n

2 Xi

i=1

[36] mentions an explicitly calculation the sub-exponential norm with exam-
ple of Poisson distributions. Therefore, it is convenient to apply Proposition 4.2
to get the concentration of sub-exponential summation.

Lemma 4.1. If || X||y, exists, then || X||y, :1/4’\_)(1\ (2) for the MGF ¢x(t) :=Ee'X,

Proof. Note that ||- ||y, is the smallest t such that Ee'r = (])|X|(t_1) <2,s0t7 1<
cp‘_Xl‘ (2) and t > 1/(])|_X1| (2). By the definition of ||- ||y, again, we have [|X||y, =
1/4’&1\ (2). O
Example 4.5 (The sub-exponential norm of bounded RV). Consider a RV |X| <
M < co. Set Ee't <et <2andt> %. By the definition of ||X||y,, we have
Xy, = 2.
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Example 4.6 (The sub-exponential norm of Poisson RV). Poisson RV X has the
probability mass function

k

P(X=k)= %e‘k, k=1,...n, A>0.

We denote it as X ~ Poisson(A). The MGF of the Poisson(A) is ¢x(f) := M 1),
We have || X ||y, = [log(log(2)A~1+1)] 7!, and the triangle inequality shows

A

I X=EX[[y, <[|Xlly; +[EX]ly, = ||X||¢1+@

_ -1 A
< [log(log(Z)/\ 1-1-1)} —I-@OU\,

_ [EX]|
" log2

where we used inequality [[EX]|,, by Example 4.5.

Corollary 4.2 is useful in the next subsection for the concentration for quadra-
tic forms.

4.3 Concentration for quadratic forms and norm of random
vectors

All concentration results in the above sections are about the mean. The inference
for the variance and covariance in high-dimensional models is an important prob-
lem, see [86, Section 6]. It is connected with squares of RVs. The sample variance
is a quadratic form (with shift term) of the data. The data are often postulated as
sub-Gaussian. For the square of a sub-Gaussian RV, it is natural to ask what is the
behavior of the tail (or the exponential moment). The answer is sub-exponential
by using (5) in Corollary 3.1.

A simple example that the quadratic form of Gaussian is x? distributed, and
the x2-distribution of 2 degrees of freedom is exponentially distributed with mean
2. Let us look the y2-concentration below:

Example 4.7 (Chi-squared RVs). If {X;}" , 2 N(0,1), then we say Y, :=Y/ ; X?

follows x2-distribution with n-degree of freedom, denoted as Y, ~ x*(n). The
density function is

/N 1 %’l_ _y
i @Y et o
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As s< 3, the MGF of X?—11s

_|_
27T J—o0
e® (252
= <e®=¢7 forall |s| <=,
1-2s 4
: o - 212 1 2
where the second last inequality is due to \/% <e*” for |t| < 7. Then X7 ~

subE(2,4). Applying Corollary 4.2(c), we have Y,, ~subE(24/n,4), therefore

d

Similar sub-exponential results also hold for independent sum of square of
sub-Gaussian RVs. The following two lemmas in [84, p. 31] confirm this simple
example to the general situation.

Yn_n

zt) B )

Lemma 4.2 (Square and product of sub-Gaussian are sub-exponential). (27) A RV
X is sub-Gaussian if and only if X* is sub-exponential. Moreover, || X[l =[|X[13,-

(b) Let X and Y be sub-Gaussian RVs. Then XY is sub-exponential and || XY |y, <
||X||1P2 ||Y||¢2'

For Lemma 4.2(a), it follows from || X?||y, = ||X||12/)2 and Lemma 4.1 that Corol-
lary 4.2 coincides Proposition 3.3 as max;<;<, || Xi||y, =0, i.e. the sub-exponen-
tial RV degenerates to the sub-Gaussian RV the next proposition gives the accu-
rately sub-exponential parameter for the square of sub-Gaussian RV in Defini-
tion 4.1, and it improves the constant in [70, Lemma 1.12] (from subE(16¢2) to

subE(8v/202)).

Proposition 4.3. Let X ~ subG(c?), then Z := X?—EX? ~ subE(8v/20?) or ~
subE(8v/202,802).

Proof. The proof is immediately follows from Proposition 3.2(c) by letting w :=
(1,0,---,0)T. O

In below, we deal with a sharper Hanson-Wright inequality in [8]. The Han-
son-Wright (HW) inequality is a general concentration result for quadratic forms
of sub-Gaussian RVs, which was first studied in [37]. Let A= (aij) €R"*" be a real
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matrix and the & = (&y,...,&;)T be a centered random vector with independent
components. Define the Frobenius norm (Hilbert-Schmidt norm)

1A[[p:=1/tr(ATA)= [} A2,
L]

and the spectral norm (operator norm) ||A|z:= SUP | ),<1 ||Au||>. As an extension

of x* RVs, it is of interest to study the concentration behavior of T A& —E[¢T AZ].
Under the setting above, [14, Example 2.12] gives the Gaussian chaos concentra-
tion.

Corollary 4.3 (Gaussian chaos of order 2). Let ¢1,...,Cn be zero-mean Gaussian with
E¢? =0?. Define Dy =diag(oy,...,00), then for any x>0

P(&"AZ—E[5"AZ] >2||DoAD, [V +2|D AD | px) <e . (48)

The similar concentration phenomenon is also available for sub-Gaussian RVs.
which is named as the HW inequality. [72] gives a modern proof by the so-called
decoupling argument attributed to [16].

Corollary 4.4 (R-V’s HW inequality). Let n>1 and &:=(¢q, .. .,Cn)T be an independent
zero-mean sub-Gaussian RVs with max;—1, __,||Gi|ly, <K for K>0. Let A be any nxn
real matrix. Then there exists a constant ¢ > 0 such that

P (gTAz;—E [ETAE] > t) ge_c(Kﬂt\All%Aszz), £>0. (4.9)
Furthermore, for any x >0
P(gTAZ—E[g7AZ] <cK2(JAlx+[Allpv/E) ) > 1-e

Intuitively, the term K?||A||y is seen as the “variance term”. When A is dia-
gonal-free (i.e. the A matrix has zeros down its diagonal: a;; =0), the RV &TA¢ is
zero-mean. [68] shortens the proof without unknown constant.

Corollary 4.5 (Diagonal-free Hanson-Wright inequality). Let ¢y,...,C, be indepen-
dent, centered sub-Gaussian RVs with max;—1, ,||&;||y, <K <oo. Let A be an nxn
matrix of real numbers with a;; =0 for each i. Then

£2

_ t
P(g'AZ>1) <e (i "svasdrary) for >0
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Under assumptions on the moments of ¢y,...,, (do not need sub-Gaussian
assumption), the next corollary provides a concentration inequality for quadratic
forms of independent RVs satisfying Bernstein’s moment condition (discussed in
the next subsection).

Corollary 4.6 (Quadratic forms concentration with moment conditions). Assume
that the RV &= (¢1,...,&,)7 satisfies the condition on independent variables ¢2,...,¢2

1
BIGi[? <Splofi ™2, Wp>1

for some x> 0. Let A be any n x n real matrix. Then for all t >0

_ 2 t
P(&"AZ-E[¢"AZ]>t) <e ) (4.10)
where D, :=diag(c1,...,04). Furthermore, with probability greater than 1 —e™*
ETAE—E[¢TAZ] <256K%||Al,x+8V/3x||AD, || vx, Vx>0. (4.11)

The bound in (4.10) is exactly exp(— if t is small, and while the

t2 )
192x2(| AD, ||2
tZ

exp(—cw) in right hand side of the R-V’s HW inequality (4.9) has an unspe-
F

cific constant ¢ > 0.

We finish this subsection with an exponential inequality for quadratic forms of
a sub-Gaussian random vector. Consider the n-dimensional unit sphere S"~1:=
{x€R":||x||,=1}. Early in [32], a random vector X in R" is called sub-Gaussian
(sub-exponential) if the one-dimensional marginals (X, x) are sub-Gaussian (sub-
exponential) RVs for all x € R”. Naturally, the sub-Gaussian (sub-exponential)
norm of X is defined as

Xy, := sup [[{X,x)[ly,,  (IX[[y,:= sup [(X,x)]ly,)-

xesn—1 xesn-1

For the sub-Gaussian, [32] definition is equivalent to [86, Chapter 6.3], a random
vector X € R" with parameter o € R is sub-Gaussian (denote subGV (c?)) so that

EeM (0 X—EX) < e%'z, VAeRY, ves" ! & Ee®' (X—EX) < e“”‘Hw_Zz, VacR". (4.12)
In [64], the subG random vector with parameter vg > 1 is defined by
2
P(|(w,X)| > vo|ullz-£) <2¢7 7

for allu€R" and t >0, where Z=E(XX") and ||u||a= ||A%u||7_ is the norm indexed
by A. For Definition (4.12), [40] obtains a tail bound for subG random vectors.
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Corollary 4.7 (Tail inequality for quadratic forms of sub-Gaussian vectors). Let
X =ATA for pxn matrix A. Consider a sub-Gaussian random vector &= (¢1,...,&) T ~
subGV (0?) with independent components for w=E¢. Then, for any t >0

1 2 -
P{||A§||2>02 [tr(z)+ztr(>:2t)z+2\|2\|2t] +r(Zpp”) <1+2 tr'é'%t) }Se '

Conditioning on a divergence number of non-random covariates, an applica-
tion of Corollary 4.7 for the prediction error (8.4) in regressions with sub-Gaussian
noise is given in Section 8.1. The concentration bounds of sub-Gaussian ran-
dom vectors depend on the parameter ¢: the smaller o, the tighter concentra-
tion bounds. Eq. (4.12) requires the distribution of subG random vectors to be
isotropic, and the random vectors have an exponential tail, but the sub-Gaussian
parameter ¢ may be large, which leads to loose bounds for constructing confi-
dence bands. To establish tighter bounds, [44] define a different and general class
of sub-Gaussian distributions in R”, called norm-subGaussian random vectors as
follows.

Definition 4.3 (Norm-subGaussian). A random vector X €IR" is norm-subG (denoted
nsubG(c?)), if 3o so that

2
P(|X—EX|>t) <2 22, VteR".

The Definition 4.3 only requires the tail probability estimate has sub-Gaussian
tail under />-norm, avoiding the uniform condition in (4.12). If EX =0 and

2
2¢ 22 >P(||X]|>t)

from nsubG(c?), we get

2

P(|(uX)|>t) <P(|X|[>f) <227, ues™!

by Cauchy’s inequality. Thus, nsubG(c?) implies (4.12), and this verifies that the
norm-subG is more general. [44] show that if X € R" is subGV(%z), then X ~
nsubG(8c2).
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5 Sub-Gamma distributions and Bernstein’s
inequality

5.1 Sub-Gamma distributions

Comparing to the classical Chebyshev’s inequality, Bernstein-type inequalities
have more precise concentration, it originally is an extension of the Hoeffding’s
inequality with bounded assumption (see [9,10]). As mentioned by [68], the proof
of Hoeffding’s inequality with endpoints of the interval [a,b] in Lemma 2.1 (with
n=1) crudely depends on the variance bound

2 2
VarX:E(X—EX)ZgE{X—(b;”)] g{(b;”)}, if a<X<b. (5.

The following tail bound for the sum S,,:=}Y_"" ; X; needs extra variance informa-
tion.

Corollary 5.1 (Bernstein’s inequality with the bounded condition). Let Xy,..., X,
be centralized independent variables such that | X;| <M a.s. for all i. Then, Vt >0

Y v R
P(’Sn| zt) SZe Z?:1VarXi+Mt/3,

n

1=

2
Mt
P |Sn|2<2t VarXi> —I—? <2e 1.
1

The next example illustrates a sharp confidence interval for sample mean if
we known that the variance is sufficient small.

Example 5.1 (Non-asymptotic confidence intervals). Let {X;}" ; 0 X with the
support [—c,c| and the mean p. Hoeffding’s and Bernstein’s inequalities show
for X:=n"1y" | X;

2
P<|X—y|§ ZCIOiM> >1-6 Hoeffding,
p <|X—y| < %log (%) + \/2(VarX)iog(2/5)> >1-94 Bernstein.

For large n, the Bernstein’s confidence interval is substantially shorter if X; has

relatively small variance, i.e. VarX<c? (the factor w is a dominated term).
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The Hoeffding’s confidence is shorter as VarX =c? (this extreme case attains the
upper bound VarX <c? in (5.1) due to b—a=2c). But, for the case VarX < c?, if n
is sufficient small s.t.

c 2 2log(2/9)
el ) > (0= e\ T
. log (5) > (c—+v/VarX) " ,
i.e. we need restrictions

n<i(;)zlo (%)>1
— 18\ ¢c—+/VarX 8\s)=

to ensure Hoeffding’s confidence interval is more accurate when

2
c—+/VarX
0 <2exp s\

To prove Corollary 5.1, we need get the sharp bounds of the MGF of the single
variable and then do aggregation for the summation. By the Taylor expansion, we
have

©  EXk ©  MK2VarX;
Xi k k 1
EeXi=1+) s k—!1§1+zs —
k=2 k=2
0 k—2
s|\M .
§1+S2VarXiZ%, 1<i<n.

k=2

Applying the inequality % > 3k=2 for any k>2, it implies

E SX[ <
e <1+ > k_zz 3
s2VarX; /2 < ( s®VarX;/2 )

1—[s|M/3 =P\ 1-|s|Mm/3

s?VarX; & ( s ]M) k=2

=1+ (5.2)

The upper bounds of MGF essentially have the same form in comparison with
Gamma distribution below whose MGF is bounded by (5.3) in following example.

Example 5.2 (Gamma RVs). The Gamma distribution with density

xa—le—x/b

flx)= T x>0
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is denoted by I'(a,b). We have EX =ab and VarX = ab? for X ~T(a,b). The [14,
p. 28] shows that the log-MGF of a centered I'(a,b) is bounded by

s2ab?
2(1=bs)]’

Motivated by the MGF bounds in (5.3), [14] defines the sub-Gamma RV based
on the right tail and left tail with variance factor v and scale factor b.

log (Be"X~FX)) —a(~log(1-sb) —sb) < Vo<s<bl.  (53)

Definition 5.1 (Sub-Gamma RV). A centralized RV X is sub-Gamma with the variance
factor v>0 and the scale parameter ¢ >0 (denoted by X ~subI'(v,c)) if

s2v 1

sX < - - - — . .
log (Ee )_2(1—c]s])' VOo<|s|<c (5.4)
If the restriction 0 < |s| <b~! is replaced by one side conditions 0 <s < b~}
(or 0 < —s < b~ 1), we call it sub-Gamma on the right tail (or sub-Gamma on the
left tail), denoted as subI'; (v,c) (or subT'_(v,c)). In Example 5.2, the Gamma RV

X ~subl'; (ab?,b). The (5.4) is called two-sided Bernstein’s condition.

Example 5.3 (Sub-exponential RVs). The sub-exponential distribution with posi-
tive support implies the sub-Gamma condition
2)2 - 2 )\2 ’
2 T 2(1-Als])

log(Eesx)SS V]S]<%.

This shows that X ~subE(A) implies X ~subI'(A%,A).

The sub-Gamma condition (5.4) leads to the useful tail bounds and moment
bounds.

Lemma 5.1 (Sub-gamma properties, [14]). If X ~subI'(v,c), then

£2/2

P(IX|>1) <2e” &%) <00~ 4, (5.5)
where h(u) =1+u—/1+2[u]. Moreover, we have
P{ | X| > \/ﬁ—i—ct} <e !
The tail bound in Lemma 5.1 verifies that, the sub-Gamma variable has sub-

Gaussian tail behavior with parameter v for suitably small ¢, and it has exponen-
tial tail behavior for larger t. The proof is originated from [9].
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Proof. By Chernoff’s inequality,

P(X—EX>t) < inge_StEes(X_EX).
5>

It remains to bound log(e~*'Ee*(X~EX)), By definition of sub-Gamma variable for
all0< |s| <ct

inf 1 —StE s(X—EX)
C_111215>0 og (e *'Ee )

2 2
< mf (Y% ) =)< /2
c1>u>0\ 2 1—cu 2 \v v+ct

where the last inequality is from

u?/2
h(u):1+u—\/1+2]u]21+—/u.

So we conclude (5.5). O

Proposition 5.1 (Concentration for sub-Gamma sum). Let {X;}! ; be independent
{subI'(v;,c;)}_, distributed with zero mean. Define c =maxy<;<,¢;, we have

(a) Closed under addition: S,:=Y_j" 1 X;~subI' (Y1 ;v;c).

(b) For every t>0:

2
P(|Sn|>1t) §2exp<—nti>,

V;+ct
i=1

1
n 2
P{ Sy | > <2t2vi> —i—ct} <2t
i=1

(c) If X~subl'(v,c), the moments bounds satisfy for any integer k> 1:
k < k=2 k(K k—1p- (k1 k
EXF <k2"=2 2(v20)kT 5 +c(vV20)F1T 5 ) +3TR) |

(d) If X ~subl'(v,c), the even moments bounds satisfy

EX?F <k!(80)F+(2k)!(4c)%*, k>1.
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(e) If

=

P{ | X| > (2tv) —i—ct} <27t
then X ~subI'(32(v+2c?),8¢).

Proof. (a) By definition of {subI'(v;,c;)}! ;, we have

N

log (BesXi) < & __Yi
og(e )_21—ci|s|

, Vo<|s|<c},

from which and the independence among {X;}” ;, thus

n
L Ui
log(EeSS”)<fi Ui <fi:1 , forall 0<|s|<c
T 25 1—cls| T 2 1—c[s]

(b) Employing Proposition 5.1, we immediately obtain (b) due to (a).
(c) Applying the integration form of the expectation formula, it yields

G §E|X|k:k/ F1P{|X| > x)dx
0

:k/oooxk—lp{jxy > \/ﬁﬂt} (2—\/\2[_7;4—0) dt

oo k=1 { \/
SZk/ (\/20t+ct) (%) e tdt
0

:k/ooo {(\/ﬂ+ct)k+ct(\/ﬂ+ct)k_l} eT_tdt.
From (b) and inequality (3.7),
EXk< k/ooo {2’<—1 [(@)'ﬂt (ct)"} Fetk2 [(\/ﬁ)k_l + (ct)"‘l} }eT_tdt
:kzk—z/ooo [2(\/%)kt<’£>—1+c(\/%)k_lt“?”—1+3cktk—1] etdt
— k2k—2 [2(\/%)% (g) +c(V20)*7Ir ("_Tl) +3ck(k—1)!} .

(d,e) The proofs are in [14, Theorem 2.3]. O

Having obtained Proposition 5.1(b), from the upper bound in (5.2), we finish
the proof of Proposition 5.1 by treating X; ~subI'(VarX;/2,M/3) fori=1,...,n.
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5.2 Bernstein’s growth of moments condition

In some settings, one can not assume the RVs being bounded. Bernstein’s in-
equality for the sum of independent RVs allows us to estimate the tail probability
by a weaker version of an exponential condition on the growth of the k-moment
without the boundedness.

Corollary 5.2 (Bernstein’s inequality with the growth of moment condition). If the
centred independent RVs Xy,...,X,, satisfy the growth of moments condition

E]X,-|k§2_1v'21<l-<_2k!, i=1,...n forall k>2, (5.6)

where {x;}1_,,{v;}I_, are constants independent of k. Let v2=Y 1" ,v? (the fluctuation
of sums) and xk =maxj <j<,k;. Then, we have X; ~ subF(vl,Kl) and for t >0

2

p(|5n| > t) §26_2v%+2ml

P(|Sn] > \/ZV%t—l—Kt) <2¢7!

Proof. Given that x;|s| <1 for all 7, (5.6) implies that X; ~subI'(v;,x;) for 1<i<n
$2

(5.7)

22 02
EesXi <1490 Zy sk 2 =14 20 || ) 22580
l

The independence among {X;}"_; and Proposition 5.1(a,b) implies (5.7). O

The (5.6) is also called Bernstein’s moment condition. Corollary 5.2 slightly
extends [82, Lemma 2.2.11] for the case x; =« (a fixed number). It should be noted
that (5.6) can be replaced by

—ZE]X]"< Lok, k=34,., Vi

where the v? is a variance-depending constant such that 1Y ; E|X;|? <©v?. Then
(5.7) still holds with v2 =nv, see [14, Theorem 2.10].

Example 5.4 (Normal RV). Applying the relation between MGF and moment, the
k-th moment of X ~ N (u,0?) is

Ex*1=0
E|X|* =02 (2k—1)(2k—3)---3-1 <271 (202) 0¥ 2 (2k)!,

which satisfies (5.6) with v? =202, k =0?.
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5.3 Concentration of exponential family without compact space

Theory and statistical applications of natural exponential family (3.5) have at-
tracted renewed attention in the past years [52]. In Lasso penalized generalized
linear models (GLMs), the results of oracle inequalities lie on Cls of a quantity
that can be represent as Karush-Kuhn-Tucker conditions (see (8.22)) related to
the centralized exponential family empirical process: Y ;w;(Y;—EY;) for no-
random weights {w;}" ; depending on the fixed design. [46] has studied the
sub-exponential growth of the cumulants of an exponential family distribution
and studied oracle inequalities of Lasso regularized GLMs, but the constant in
their result is not specific.

In this part, we obtain cental moments bounds with a specific constant, which
gives the Bernstein’s inequality for the general exponential family, and the proof
is based on the Cauchy formula of higher-order derivatives for complex functions
[76, Corollary 4.3].

Lemma 5.2 (Cauchy’s derivative inequalities). If f is analytic in an open set that
contains the closure of a disk D centered at zg of radius 0 <r < oo, then

)| <5 sup If(2)]

z:|z—zg|=r
[99] adopts a similar approach for recovering the probability mass function

(p-m.f.) from the characteristic function.
It is well-known that exponential families on the natural parameter space,

0:= {Gelezeb(g) :=/c(y)ey9y(dy) <oo}

have finite analytic (standardized) moments and cumulants, see [46, Lemma 3.3].
The natural parameter space of an exponential family is convex, see [52]. A nice
property in Lehmann’s measure-theoretical statistical inference book is that:

Lemma 5.3 (Analytic property of MGF in the exponential family). The MGF mg,(s)
:=Eg,e"%i on s € C of exponential family RVs indexed by 6;, is analytic on © (see [52,
Theorem 2.7.1] or [67, Theorem 2]).

First, let us check the following lemma which is deduced by Cauchy’s inequal-
ities for the Taylor’s series coefficients of a complex analytic function.

Proposition 5.2. The s+ 119 (s) := Egiesm_z’ (01 is analytic on the natural parameter
space © with radius 1(®), and the k-th absolute central moment of {w;Y;}""_, is bounded

by
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k! 2 _
Eo[wi(Y;—EY)) [ <3 (w,/2Cy, ) (wCa )2, k=23,...,

where {w;}!'_, are non-random with w:=max;<;<,|w;| >0, and

Cyp.:= inf V_lEgier‘Xi_b(ei”.
" 0<r<r(@)

Proof. LetseRi:={bi:b R} be a given complex number on imaginary axis.
g (s) =Eq, (eS[Yf—b<9f>}1{m > b(e-)}) +Ey, (eSWf’f)—Yzh{y < b(ei)})
_/x>b 9+S) dx +/x<b o S)e_b(ei)y(dx)

o [/ cifoye(R)e O () + x<z;<ei>c(x>ex< f‘”u(dx)] . (68)

The natural parameter space implies [ c(x)e*%y(dx) is finite and analytic for 6; €
®, so

[ 1x= b0 }e(x)e O+ ),
[ 1x<b@)}e()e @ (ax)
are finite and analytic for s €i,6; € ®. By Lemma 5.3, 1719, (s) in (5.8) is analytic on
Dy, :={s€C:Re(f;+s) €Int(O) and Re(f; —s) € Int(O) }

by using analytic continuation (i.e. the 17 (s) has an analytic continuation from
1g,(s) on s € Dy, to 171g,(s) on s €C, see [76, Corollary 4.9]).

Since 0+6; = 0; € Dy, C Int(®), 1719 (s) is analytic at the point 0 and hence the
function is also analytic in a neighborhood of 0. By the analyticity of the functions
{rg.(5) }o,c0 on s € Int(®), and Cauchy’s derivative inequality with zg =0, we
have

Bo,|Yi—b(8;)[F =y (0) <ktr Fsup . _,[Ege i t®|, 0<r<i(@).  (59)
Let s=r(cosw+isinw), w €[0,27t]. Then, we get

E9,€S|Yi_l.7(9i)| _ Ee'er(cosw—kisinw)|Yi—15(9i)\
1 1

=Ey [ercosw|Yi—b(6i)|eirsinwm_b(9i)|]
1' .
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Hence, (5.9) gives

1 Y. —b(6:
k!r—ksup‘Egl.eS| i (1)“

|s|=r

Sk!lk sup Egierc"s“"yi‘b(gi”gk!lkEgier‘Yi‘b(ei”
r r
wel0,2m]

—k! {% [Eeierm—b(ﬂiﬂ] ; }k <Kl {% [Eeierm—b(ﬂiﬂ] }k (Due to Egier\Yi—b(Gi)\ > 1) )

From (5.9), it shows that by take infimum over 0 <r <r(©),

. k
Eel-!Yi—b(Gi)!kSk!{ inf 1~ [Eqe 0] }

0<r<r(

gkzc’gizg(\/ﬁ)zc’gjz,

where C, ::inf0<r§r(@)r_1 [Egie”Yl‘_B(ei)‘]. Then for {w;(Y; —EY;)}" ;, we have
1 2
(Y —EY\ k< Zft k=2 k
o, [wi(Y;—EY)[F < 2k ((1/2Cy, ) CE 2

:%kz(w\/ﬁf(wc@)k—z, k=23,....

The proof is complete. O

Therefore, w; X;~subI'(w,/2Cy,, wCy,) by Proposition 5.2 and we can apply the
Bernstein’s inequality with the growth of moments condition to get the following
concentration of exponential family on a natural parameter space.

Theorem 5.1 (Concentration of exponential family). Let {Y;}"_, be a sequence of in-
dependent RVs with their densities { f (y;;6;) }!_, belong to canonical exponential family
(3.5) on the natural parameter space 6; € ©. Given non-random weights {w;}!" | with
w=maxi<j<, |w;| >0, then

{

Theorem 5.1 has no compact space assumption. If we impose the compact
space assumption (E.1) in Proposition 3.2, it leads to the sub-Gaussian concentra-
tion as presented in Proposition 5.1. The constant Cy, in Theorem 5.1 is hard to
determine in general exponential family with infinite support. However, if the
exponential family is Poisson, the Cy, can be obtained as an explicit form.

t2

" 4w2Y" | Cg +2w max Cg
! 1<i<n '

n
Y wi(Y;—EY;)
i=1

(5.10)

> t) <2exp
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Theorem 5.2 (Concentration for weighted Poisson summation). Let {Y;}" , be in-
dependent {Poisson(A;)} ; distributed. For non-random weights {w;}" | with w =
maxj<j<p|w;| >0, put SY:=Y 1" w;(Y; —EY;), then for all t >0

P(|S¥|>t) <2exp| — £/2
e w2y Ai+wt/3)
.\ | (5.11)
w —
P{|SY|>w 2ti;)\i 3| pse
Proof. We evaluate the log-MGF of centered Poisson RVs {Y; —EY;}" ,
logBes®i(Yi=BY) — _syp.EY; +log Ee"i Vi
= —Aiswl--l-logeAi(eswi_l) =\ (eY —sw;—1).
Note that, for s in a small neighbourhood of zero,
, > (5wt g (Jsw])”
_ Aistw? i wk=2 A;s?w? i <|sw| )k_z
2 Ek(k-1)-3- 2 =\'3
2w,
= 5.12
2 T=wls|/3 6-12)

for |s| < 3, which implies w;(Y; —EY;) ~subl'(w?1;,%). By Proposition 5.1(a), we
have S¥~subI'(w? Y }_;A;,%). Then applying Proposition 5.1(b), we get (5.11). [

Before ending this section, we show a result for checking Bernstein’s moment
condition by the moment recurrence condition of log-concave distributions.

Definition 5.2 (Moment recurrence condition). A RV Z is called moment bounded
with parameter L >0 if it has recurrence condition B|Z|F < p L-E|Z|P~! for any integer
p>1.

By the recursion relation, Definition 5.2 implies that any moment bounded RV
Z satisfies E|Z|P < p!LP. Hence, the tails of its moment bounded RVs decay as the
Bernstein’s growth of moment condition. So the constant Cy, in Theorem 5.1 is
relatively easy to find. [74, Lemmas 7.2,7.3, 7.6, 7.7] showed that any log-concave
continuous distribution (see Section 3.4) and log-concave discrete distribution X
with density f is moment bounded with parameter LxE|X]|.
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Example 5.5 (Log-concave continuous distributions, [4]). Many continuous dis-
tributions, such as normal distribution, exponential distribution, uniform distri-
bution over any convex set, logistic distribution, extreme value distribution, chi-
square distribution, chi distribution, hyperbolic secant distribution, Laplace dis-
tribution, Weibull distribution (the shape parameter 6 > 1), Gamma distribution
(the shape parameter 4 > 1) and Beta distribution (both shape parameters are >1)
have log-concave continuous densities.

Analogous to the log-concave continuous function in (3.12), we can define
log-concave sequence for the p.m.f. of discrete RV, which also has Bernstein-type
concentrations.

Definition 5.3 (Log-concave discrete distributions). A sequence {p;}icz (or
{pi}ien) is said to be log-concave ifpl%rl > pipito forallic Z (or i €IN). An integer-
valued RV X is log-concave if its probability mass function (p.m.f.) p;:=P(X =1i) is
log-concave sequence.

Example 5.6 (Log-concave discrete distributions). Bernoulli and binomial distri-
butions, Poisson distribution, geometric distribution, and negative binomial dis-
tribution (with number of success >1) and hypergeometric distribution have log-
concave integer-valued p.m.f., see [45].

6 Sub-Weibull distributions

6.1 Sub-Weibull RVs and {s-norm

A RV is heavy-tailed if its distribution function fails to be bounded by a decreas-
ing exponential function [31]. We first give a simple example of the heavy-tailed
distributions arisen by multiplying sub-Gaussian RVs. The proof is motivated
by [84, Lemmas 2.7.7].

d

0.1 are sub-Gaussian

Lemma 6.1 (The product of sub-Gaussians). Suppose {X("™)}
(may be dependent). Then [T¢,_; | X (™) |§ is sub-exponential and

d d )
<TT I,

[T

m=1

L1

Proof. By the definition of sub-Gaussian norm,

Eel X" /IXM g2 <0 =1 d.
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Applying the elementary inequality Hm 10m < 3 Zm 1a%, we get by Jensen’s in-
equality

1 [1X0m 27/ xm 2]
em=1
3 E XOVIXO,]T 1 o pxy, T
< Ee"m=1 <= ) Ee 2l <2, 6.1)
d f—
The proof is finished by the definition of the sub-exponential norm. O

In probability, Weibull RVs are generated from the power of the exponential
RVs.

Example 6.1 (Weibull RVs). The Weibull RV X € R" is defined by its survival
function )
P(XZx)ze_bx , x>0

for the scale parameter b >0 and the shape parameter 6 > 0.

Sub-Weibull distribution is characterized by the right tail of the Weibull dis-
tribution and is a generalization of both sub-Gaussian and sub-exponential dis-
tributions.

Definition 6.1 (Sub-Weibull distributions). A RV X satisfying P(|X| > x) < ae~t*’
for given a,b,0 >0, is called a sub-Weibull RV with tail parameter 6 (denoted by X ~
subW(9)).

A subW(6)’s tail is no heavier than that of a Weibull RV with tail parame-
ter 6. It is emphasized that X ~subW(6) RVs with 6 <1 belongs to heavy-tailed
RVs. Recently, the Weibull-like tail condition is also studied in high-dimensional
statistics and random matrix theory (see [50,79,89]). [36] names subW(0) as 6-
sub-exponential RV. There are 4 equivalent conditions to reveal the sub-Weibull
tail condition which is useful in applications.

Corollary 6.1 (Characterizations of sub-Weibull condition). Let X be an RV. Then
the following properties are equivalent.

(1) The tails of X satisfy P(|X|>x) ge_(x/Kl)gfor all x> 0.
(2) The moments of X satisfy || X||x:= (E|X|¥)1/* < Kok'/? for all k>1.

(3) The MGF of |X|1/9 satisfies EeM /X[ < A1/9K3 for |A| < <
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(4) The MGF of | X|'/% is bounded at some point: EelX/Kal'? <o,

The proof can be found in [85, 89] by mimicking the proof of [84, Proposi-
tion 2.5.2]. It follows from Corollary 6.1(4) that X is sub-Weibull with tail param-
eter 6 if and only if | X|'/¢ is sub-exponential.

Let 61 and 6, (0<6; <6,) be two sub-Weibull parameters. Corollary 6.1 implies
subW (61 ) C subW (6;). The following Orlicz-type norms play crucial roles in de-
riving tail and maximal inequality for sub-Weibull RVs without the zero-mean
assumption.

Definition 6.2 (Sub-Weibull norm or yp-norm). Let ipy(x) —e*’ 1. The sub-Weibull
norm of X for any 6 >0 is defined as

||X||¢9 1=inf{C € (0,00) :Ee‘X‘e/CG §2}.

From Corollary 6.1(4), a second useful definition of sub-Weibull RVs is the RVs
with finite ¢p-norm. Sub-Weibull norm is a special case of the Orlicz norm [88].

Definition 6.3 (Orlicz norms). Let g:[0,00) — [0,00) be a non-decreasing convex func-
tion with g(0) =0. The “g-Orlicz norm” of a RV X is

IX]|g:=inf {7 >0:E[g(|X]/5)] <1}.

Let g(x) —¢*' —1and E[¢(|X|/7)] <1 implies E[exp(|X|? /1#%)] <2, which is the
definition of sub-Weibull norm. Similar to sub-exponential, [85, 89, 96] attained
the following.

Corollary 6.2 (Properties of sub-Weibull norm). If Eel X/ 1 Xlly, |’ <2, then

(a) P(|X|>t) SZe_(t/HXH‘/’G)Gfor all t>0.

(b) Moment bounds: E|X | §2||X||{291“(§+1).

6.2 Concentrations for sub-Weibull summation

The Chernoff inequality trick in the derivation of Corollary 4.2 for sub-exponen-
tial concentration is not valid for sub-Weibull distributions, since the exponen-
tial moment equivalent conditions of sub-Weibull are on the absolute value |X|.
However, Bernstein’s moment condition is the exponential moment of the ab-
solute value. An alternative method is given by [50], who defines the so-called
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Generalized Bernstein-Orlicz (GBO) norm. Fixed a >0 and L>0, define a function
Yo 1 (-) with its inverse function

Yor(t):= \/bg(Tl)JrL[log(tH)]%, Vt>0.

A promising development is that the following GBO norm helps us derive tail
behaviors for sub-Weibull RVs.

Definition 6.4 (Generalized Bernstein-Orlicz Norm). The generalized Bernstein-
Orlicz (GBO) norm of a RV X is then given by

Xl i=inf {5 > 0: E[¥e, (|X] /)] <1}.

The monotone function ¥y 1 (-) is motivated by the classical Bernstein’s in-
equality for sub-exponential RVs. Like the sub-Weibull norm properties Corol-
lary 6.2(a), the following proposition in [50] allows us to get the concentration
inequality for RVs with finite GBO norms.

Corollary 6.3 (GBO norm concentration). For any RV X with || X||y,, <oo, we have

P(|X|2||X||T9,L{\/¥—|—Lt%}>SZe_t, forall t>0.

From Corollary 6.3, it is easy to derive the concentration inequality for a sin-
gle sub-Weibull RV or even the sum of independent sub-Weibull RVs. [50, Theo-
rem 3.1] obtains an upper bound for the GBO norm of the summation.

Corollary 6.4 (Concentration for sub-Weibull summation). If {X;}} ; are indepen-
dent centralized RV's such that || X; ||1p9 < oo forall 1 <i<mn and some 6 >0, then for any

weight vector w=(ws,...,wy,) € R", we have

n
ZwiXi <2eC(8)]/b]|,
i=1

Fo,0,00)

and
n

Y wiX;

i=1

d

where b= (w1 ]| X1l y, - wn [ Xily,) T €R",

zzeC(9)||b||2{\/¥+Ln(9)té}) <2e7, (6.2)

1 .
& [Ible i o<y,
La(60): {

= — X 4ellb )
V2], | e, g,
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and
1

3 1 2 1,
C(G);:max{ﬁlzg}x V8e (27‘()46124(6 /0)7, Zf o<1,
4e+2(log2)s, if 0>1.

The upper bound of sub-Weibull norm for summation provided by Corol-
lary 6.4 dependents on || X;|y, and the w. [100] gives a sharper version of Corol-
lary 6.4. The 6 =1 is the phrase transition point, and reflect the fact that Weibull
RVs are log-convex for 6 <1 and log-concave for 6 >1. At last, we mention a gen-
eralized Hanson-Wright inequality for sub-Weibull RVs in [36, Proposition 1.5].
Let maxi—1,. . ||(a;j)ill2:=||Al|2—00, where

1Allp—q:=sup {|| Ax[ly:[|x][, <1}.

Corollary 6.5 (Concentration for the quadratic form of sub-Weibull RVs.). Let g€
IN, A= (a;j) be a symmetric n x n matrix and let {X;}", be independent and centered
RVs with || Xi||w,, <M and EX} = 07. We have

{

1

t2 t t t\7

(A,q,t):=min , , ,< )
T [AT2 TAlep” \ max Tl )\l

1

> t) <2e7MAGH/MI/C >,

n

2
Za,-inXj — Ul a;i
i,j =1

where

N
+‘N
e

and C is a constant.

7 Concentration for extremes

The CIs presented so far only concern with linear combinations of independent
RVs or Lipschitz function of random vectors. In many statistics applications, we
have to control the maximum of the n RVs when deriving the error bounds, while
these RVs may be arbitrarily dependent. This section is developed on advanced
proof skills. So we present the proofs even for existing results, which are applica-
tions of ClIs in a probability aspect.
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7.1 Maximal inequalities

This section presents the maximal inequalities for RVs {X;}" ; which may not
be independent. In the theory of empirical process, it is of interest to bound
Emaxi<j<,|X;| [82, Section 2.2]. If {X;}"  is arbitrary sequence of real-valued
RVs and has finite r-th moments (r > 1), [3] gives a crude upper bounds for
Emaxj<;<,X; by Jensen’s inequality

1 1 n T
E{ max|Xi|r}r§{Emax|Xi]r}r§ Y E|X;|"
1<i<n 1<i<n i=1
1
<nr max (E|Xi|")". (7.1)
<n

[81, p. 314] mentions a sharper version of (7.1) without the proof. Below, we
introduce the proof by the truncation technique.

Corollary 7.1 (Sharper maximal inequality). Let {X;}" , be identically distributed
but not necessarily independent and assume E(|X1|P) <oo,(p>1). Then,

E max |X;| :o(n%).

1<i<n

1
Proof. Let M, :=maxj<j<,|X;|. For any € >0, we truncate M,, by en?,

ent/p oo
EMn:/ P(Mn>t)dt—|—/ P(M, > t)dt
0 enl/l’

en
S/
0

1 1 [ (r=1)
:enP+nP/ nT P(|Xy| > Dt
€

nl/p

/p 00
1dt—|—/ nP(|X1|> t)dt
ent/pP

1

<enr [ tPIp(|Xq | >t)dt
v R
=¢€n +€p_1/en1/i7 (’ 1’>) '

Thus, dividing by n% we have

/p €+ 7 1/€n1/pt P(|X1|>t)dt=e+0(1),

where we adopt the fact

/ 1P (X | > ) dt=0(1)
enl/p
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from moment condition: E|Xj |V < co. Finally, it implies that

EM,,
limsu ——<g,
pn—)oo nl/P —

which gives EM,, =o(n %) by letting € —0. O

Corollary 7.1 reveals that max;<;<,|X;| diverges at rate slower than n7 under
the r-th moment condition. If we have arbitrary finite r-th moment conditions
(such as Gaussian distribution), it means that the divergence rate of maxima is
slower than any polynomial rate nv. This suggests that the rate may be loga-
rithmic. With the sub-Gaussian assumptions, the logarithmic divergence rate is
possible and the proof is based on controlling the expectation of the supremum
of variables, from the argument in [66].

Corollary 7.2 (Sub-Gaussian maximal inequality, [70]). Let {X;}" , be RVs (without
independence assumption) such that X; ~subG (02). Then

(a) E[max X] <o+/2logn and E[max | X; |} <o+/2log(2n).

1<i<n 1<i<

(b) P(maxX >t><ne 202 and P(max ]X|>t> <2ne 202

1<i<n 1<i<n

Proof. (a) By the property of maximum, sub-Gaussian MGF and Jensen’s inequal-
ity,
s max X s max X;

E max X; —1nfs 1Eloge 1<i<n < 1nfs 11ogEe 1<i<n
1<i<n

<infs~ 1logZ:EeSXI<mgs 1logZ:e ¥
>

s>0

=inf <logn 5 ) o+/2logn,

s>0 S

where we set
2logn
0'2

as the optimal bound.
Let Yy, _1=X;and Yy, =—X;(1<i<n). It gives

E max | X; |—E max max{Xl, X;}=E max Y;.
1<i<n 1<i<2n
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The previous result for sample size 2n finishes the proof of the second part.

(b) By Chernoff inequality and the sub-Gaussian MGF, we have

n
infe ZEeSXf
s>0 i—1
22 o_t1/02 12
—sth O s=H e ne 22,

. sty Smax X
P( max X; > t) <infe StEe 1sisn ' <
1<i<n $>0

<infne
s>0

For the second part, note that

P(max |Xi|>t> =P(max X;>t, max —XiZt) §2P(max Xl->t>.

1<i<n 1<i<n 1<i<n 1<i<n
The proof is complete. O

By a similar proof, Corollary 7.2 can be extended to other RVs, such as sub-
Gamma RVs and RVs characterized by sub-Weibull norm (or Orlicz norm) as
presented before.

Corollary 7.3 (Concentration for maximum of sub-Gamma RVs). Let {X;}" | be
independent zero-mean {subI (v;,c;) }I_;. Then, for max;—1, ,V;=:0 and maX;-1, nC
=:c, .
E(,n}ax |Xl]) < [2vlog(2n)] 2 +clog(2n).
P ,...,n
See [33, Theorem 3.1.10] for the proof of Corollary 7.3.
Bellow, based on the sub-Weibull norm condition, a fundamental result due

to [66] is given for obtaining the divergence rate of the maxima of sub-Weibull
RVs.

Corollary 7.4 (Maximal inequality for sub-Weibull RVs). For 6 > 0, consider the
sub-Weibull norm || X|| g, ::infCG(O,oo){Ee|X|9/C9 <2} for y(x) —¢*' —1. For any RVs

1
E(max |X,|) <y, 1(n) max || X;||y, = (log(1+n)) 9112%§||Xi||¢9. (7.2)

1<i<n 1<i<n

If the function g (x) is replaced by any non-decreasing convex function g(x) with g(0)=
0 in the definition of Orlicz norm: ||X||q:=inf{y>0:E[g(|X|/1)] <1}, then

E(max |X;|) <g~"(n) max [ Xi[lg for finite  max [|X;]ls
<i<n

1<i<n 1<i<n
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Proof. From Jensen'’s inequality, for C € (0,00) and 9y(x) = e’ —1 we get

o | E(max X,1/C) | <E[max pa((%i1/C)] < LER(X|/C) <0, (73)

i=1
where the last inequality is by the definition of sub-Weibull norm E¢y(|X;|/C)
<1.

Let C=maxq<j<y| X;||y,- Applying the non-decreasing property of 9 (x) (so
does its inverse ¢, ! (x)), the (7.3) implies E(max;<;<,|X;|/C) <y, *(n) by oper-
ating the map ¢, ! and so we have (7.2). The derivation of Orlicz norm case is
the same. O

By Hoeffding’s lemma, the following results on the maxima of the sum of
independent RVs, is useful for bounding empirical processes.

Corollary 7.5 (Maximal inequality for bounded RVs, [18, Lemma 14.14]). Let
{Xi}, be independent RVs on X and {f;}I'| be real-valued functions on X which

satisfy Efj(X;) =0, |f;(X;)| <ajj forall j=1,...,pand all i=1,...,n. Then
Y fi(Xi)

1
E| max 2lo 2 max a: .
<1<j<P i—1 ) [ g p 1<j<p <12 )

Proof. Let V;=}_,f;j(X;). By Jensen’s inequality and Hoeffding’'s lemma

n

1 max ‘V| ‘V‘ 1 P AV

Emax|V|——Elog I —logE i <—log) Ee"i
1<j<p =1

p

1 1A2 aj; 1/\2 max ):az
X [Zze i=1 ] —log |:2pe 1<j<pi=1 Y

—llo (2 )—1—1)\ max Za :[Corollary 2.1]

_/\ sL2P 1<]<p ' y ek

Then

1 1
L <1
Efﬁﬂxplvj'—;zfo{ﬁog<zp>+ AW }

1
=/2log(2p) 1r£1]a<xp <2a1]> .

The proof is complete. O
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If Hoeffding’s lemma for moment is replaced by Bernstein’s moment condi-
tions, then the maximal inequality for the sum of independent bounded RVs in
Corollary 7.5 can be extended to Bernstein’s moment conditions. We give a mod-
ified version of [18, Corollary 14.1] based on truncated Jensen’s inequality.

Proposition 7.1 (Maximal inequality with Bernstein’s moment conditions). If
{Xi]-}, j=1,...,p are read-valued independent variables across i =1,...,n. Assume
EX;;j=0 and Bernstein’s moment conditions

1y k1 5 k2 :
—) E|Xy[ <so kTR, k=28,..., V.
i=1

Then for any 1 <m <1+4logp and p > 2, one has

n m m
E <max EZXU ) < KlL(zp)—l—(vz—l—l) M] )
1<j<p 1’11.21 n n
Proof. Let
1 m
Mn,m _112]'aéxp Ei_zlxi]
First, we show for any RV X and all m>1,
E|X|" <log™ (EelX| —14em1). (7.4)

The function g(x) =log™ (x+1), x >0 is concave for all x > ¢! —1. By the trun-
cated Jensen’s inequality in Lemma 2.5 with Z:=elXl -1, c=¢"~1—1, we have

E|X|" =Elog™ (€|X|—1—i—1) <log™ [E(e‘x‘ _1)+1+ (em—l_l)}
=log" [E (e|X| ~1) _|_em—1} .

Then for all L,m >0,

- max | ¥ X;i/L|
(%) EMn,m Slogm {Eelﬁlﬁp iz’ _1+em—1}

P ¥ X;i/L
Slogm [ZE (eil ! —1) +€m_1] . (75)
=1

i1 Xij| /L

Therefore, it is sufficient to bound Eel™ uniformly in ;.
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Second. To bound the MGF in (7.5), then we show that for any real-valued
RV X,
EeX <eFeM-1-EIX| with EX=0. (7.6)

Indeed, for any ¢ >0, we have

eX_C_lge\X\ _1:eX—1—X—|—X—c§e|x|—1—]X]—|—X—c.
1+c 1+c 1+c

Let c = EelX! —1—E|X]|. Note that EX=0, so

_ EelX| —1—E|X|—c _

EeX-1<
1+c

0.

Hence, log(Ee*) <c.
Using Taylor’s expansion, the (7.6) and el*! <e*4-e~* give

EelZim Xijl/L _1 <Belimi Xi/L 4 Be~Xim Xi/L _1q (7.7)

oIXijl /L

< 2eLi1El —1=[X4[/L) _ 1 = 9pXm=2 Lisa BIXij"/L™m! _ 4

< 2" En—a (/L) 2212 _ppno?/(2L2(1-k/L)) _q [By moment conditions].

Combining (7.7) and (7.5), we obtain for L >« =:L—+/n/2log(p+e"~1)

L\" _ om?
EM;m < (5) logm |:p<262L2(1—K/L) _1> +em—1}

L\" A
<[z m m—1Y ,2(L2~Lx)
(&) e

_ 1 m—1 UzL "
_<nLlog(p+e )+72(L2—LK))

B Kl M1 \/11 1 v? "
= Eog(ere )+ %og(ere )+2(L—K)

IN

x m—1 2 1 m—1 "
nlog(p+e )+ (v +1)\/2nlog(p-|—e )]

IN

m
K 2 1
nlog(Zp)+(v +1) 2nlog(2p)] ,
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where the second and last inequality is by

"02 _ |: 7 :|_102
L—x 2log(p+em1)

and e~ 1 <p. O

7.2 Concentration for suprema of empirical processes

Let {X;}!" ; be arandom sample from a measure IP on a measurable space (X, A).
The empirical distribution P,:=n"1Y" ,5x., where 6, is the probability mass of 1
at x. Given a measurable function f: X — R, let P, f:= 1" | f(X;) be the expec-
tation of f under the empirical measure IP,, and Pf := [ fdP be the expectation
under IP. The P, f is called the empirical process index by n.

The study of the empirical processes begins with the uniform limit law of
EDF in Example 2.1. The Glivenko-Cantelli theorem extends the LLN for EDF
and gives uniform convergence: ||F,—F||c=sup;.g |Fx(t) —F(t)| =3 0. Moreover,
a stronger result than Example 2.1 is the Dvoretzky-Kiefer-Wolfowitz (DKW) in-
equality [25]

P(supyer|Fn(x)—F(x)|>€) <2e 2, Ve>0. (7.8)

The DKW inequality is a uniform version of Hoeffding’s inequality, which also
strengthens the Glivenko-Cantelli theorem since (7.8) implies Glivenko-Cantelli

|F),— F||o =25 0 by Borel-Cantelli lemma

X, 250 < Y P(|Xu|>€) <oo forany e>0.

n=1
[25] proves P(sup, g |[Fx(x)—F(x)|>¢) < Ce~2" with an unspecified constant C.

[59] attains the sharper constant C =2. In some statistical applications, given an
estimator 6, and f3(X;) is a function of X; and 6. We want to study its asymptotic

properties for sums of f;(X;) that changes with both n and 0,

- Z f3(Xi) —Efy(Xi)] (a dependent sum).

A possible route to attain results is via the suprema of the empirical process
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for all possible the “true” parameter 6y on a set K

_Z [f3(Xi) —Ef3(Xi)] <sup nZ[fGO( i) —Efg, (Xi)]

foekK

=.sup‘ n— )fgo‘.
0K

Fortunately, the summation in the sup enjoys independence. So, the study of con-
vergence rate suprema of empirical processes is important if we consider a func-
tional class F instead of the set K such that

sup | (P, f\—SUP\ —P) fo |-
feF

Let (F,||-||) be a normed space of real functions f: X — R. For a probability
measure Q, define the L,(Q)-space with L,(Q)-norm by

Ifls,00= ( [1174Q) g

Given two functions I(-) and u(-), the bracket [/,u] is the set of all functions f €
F with I(x) < f(x) <u(x), for all x € X. An e-bracket is a bracket [/,u] with
|[l—ul|r,(g) <& The bracketing number N (¢, F,L,(Q)) is minimum number of
e-brackets needed to cover F, i.e.

Nj|(eF,L(Q)) :inf{n 130,101, oy Lyt 8.8 Uy [1 1]
=F and ||l —un||1,(0) <s}.

The covering number N(e, F,L,(Q)) is the minimal number of L,(Q)-balls of ra-
dius e needed to cover the set /. The uniform covering numbers is

supN (ellF L) F L (Q)),

where the supremum is taken over all probability measures Q for which |[F|[; (o)
>0. Two conditions to get the convergence of sup . 7|(P,—P) fg| are the finite

bracketing number condition with L;(P)-norm in [81, Theorem 19.4] (or finite
uniform covering numbers in [81, Theorem 19.13]).

Lemma 7.1 (Glivenko-Cantell class). For every class F of measurable functions, if
N (e, F,L1(P)) <oo (or supo N (e[| F|[r, (), F,L1(Q)) < oo with P*F < oo) for every

e>0, then F is P-Glivenko-Cantelli, i.e. supfef] (P, —P)f] 3 0.
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Example 7.1 (Empirical process with indicator functions). Let F be the collection
of all indicator functions of the form fi(x) =1(_q(x) with ¢ ranging over R.
Then F is P-Glivenko-Cantelli, see [81, Example 19.4].

Example 7.2 (Weighted empirical process with dependent weights). Suppose we
observe a sequence of IID observations {(X;,Y;)}” ; drawn from a random pair
(X,Y). Given some weighted functions W(-) and a bounded estimator f € (0,7],
we want to study the stochastic convergence of dependent weighted empirical
processes

1 n . . n
=Y 1 =HW(X;)—u(EW) ‘<< sup Z )—y(t;W)D,
i3 o<t<t|Mi3
where
u(EW)=Exy{1(Y>H)W(X;) } <oo, W(X;)<Uf<oo
and T < o0.

Consider the class of functions indexed by ¢,
F={1(y>t)W(x)/Us:tc[0,7],yeR,W(x) <Uy}.

It is crucial to evaluate N[ (¢, F,L1(Q)). Given € € (0,1), let ¢; be the i-th K
quantile of Y, thus

P(Y <t)=ie, i:1,...,H—1.

Furthermore, take fo =0 and f;1; = 4co. Fori=1,..., [17, define brackets [L;,Uj]
with W) W)
x x
Li(x,y) =1(y2ti)T, Ui(x,y) =1(y>ti-1) U
f f

such that L;(x,y) <1(y>t)efe(*) /Ur<U;(x,y) ast; 1<t<t;. TheJensen’s inequality
gives
WD) (v > 1) ~1(Y> ;1))
Uf g 1
< ‘P(tl‘_l <Y§ti)‘ =¢&.

E|U;—Li|<|E

Therefore, Ny (¢, F,L1(P)) < [17] < oo for every e>0. So the class F is P-Glivenko-
Cantelli.
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If the upper bounds of Nj(e,F,L2(P)) and supoN (e, F,L2(Q)) have polyno-
mial rates with respect to C’)(%), the following tail bound estimate gives the con-
vergence rate of suprema of empirical processes in Lemma 7.1 obtained by [77]. It
extends DKW inequality to general empirical processes with the bounded func-
tion classes.

Lemma 7.2 (Sharper bounds for suprema of empirical processes). Consider a prob-
ability space (Q),%,P), and consider n IID RVs {X;}!' | valued in O, of law P. Let F be
a class of measurable functions f: X + [0,1] that satisfies bracketing number conditions
Np (&, F,La(P)) <(£)Y (or supgN (e, F,L2(Q)) < (§)Y) for every 0<e<K. Then for
every t >0

P(\/E]Sc‘:gml’n—ﬂ’)ﬂ > t) < <%) Vo

with a constant D(K) depending on K only.

The explicit constant D(K) can be found in [97], who studied the tail bounds
for the suprema of the unbounded and non-IID empirical process. [48] derived
the rate of convergence for the Lasso regularized Cox models by using sharper
concentration inequality for the suprema of empirical processes in Example 7.2
related to the negative log-partial likelihood function. In Example 7.2, we have

{E|ui_Li|2}% < {E lWL(IXi) {1(Y2ti)—1(Y>ti_1)}]2}z

m

< ’P(ti—1<Y§ti)’%:\/Ez

which implies N (v, F,L2(P)) < [17 <2 for every e>0. Hence, Ni(e,F,L2(P))
< S% By applying Lemma 7.2 with V=2, K= V2, we have

DZ(\/E) 2 242
Tt e .

1 n
W; [1(Y; > )W (X;) —pu(6W)] ‘ 2f> =

The next two results are the symmetrization theorem and the contraction theo-
rem, which are fundamental tools to get sharper bounds for suprema of empirical
processes.

p <Supo<t<r

Lemma 7.3 (Symmetrization theorem). Let {X;}" , be independent RVs with values
in some space X and F be a class of measurable real-valued functions on X. Let {€;}!"
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be a Rademacher sequence with uniform distribution on {—1,1}, independent of {X;}I" ,
and f € F. IfE|f(X;)| <oo Vi, then

E{supfefd>(i F06) - Ef(x,) } SE{squefq’ 23 s x) }

for every nondecreasing, convex ®(-) :R+— R and class of measurable functions F.

Lemma 7.4 (Contraction theorem). Let x1,...,x, be the non-random elements of X and
€1,...,€n be Rademacher sequence. Consider c-Lipschitz functions g;, i.e. |g;i(s)—gi(t)| <
c|s—t|,Vs,t € R. Then for any function f and h in F, we have

n

el £ sl >}]u

Ee [sup feF

isi{f(xi)_h(xi)}u :

<2cE, [sup feF
i=1

A gentle introduction to suprema of empirical processes and its statistical
applications are nicely presented in [75]. To further bound E{sup fe v/n|(Py—

P)f|} in Lemma 7.3 with ®(t)=|t|, [33, Theorem 3.5.4] gave a constants-specified
upper bound for the expectation of suprema of unbounded empirical processes.

Lemma 7.5 (Moment bound for suprema of unbounded empirical processes). Let
JF be a countable class of measurable functions with 0 € F, and let F be a strictly positive
envelope for F. Assume that

t
J(F,E f):= /0 sgp\/log [2N(F,L(Q), 7|[FllL, ()] dT < oo

for some (for all) t > 0. Given X-valued IID RVs {X;}""_, with law P s.t. PF? < co.
Set U =maxi<j<,F(X;) and § =sup ;. r+/Pf f2/1|Flli2(py- Then, for Ay = 8v/6 and

Ap=21533,
E{supserv/n|(Pu—P)f[}
< ALl|Fll 2 J(FEOV [ AallUll 2y P(FES) /(VidD). - (79)

The bound in (7.9) matches the non-asymptotically sub-exponential CLT in
(4.6), and it reveals that sup sc 71/n|(IP, —P) f| has the sub-exponential behaviour,
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although with a huge parameter (the constant A, =21533 is s0 large). Recently, [6,
Theorem 2] sharpened bound (7.9) when F takes values in [—1,1]. Applying [1]
tail inequalities for Z, :=sup . 7|(P,—P) f| with unbounded F, they obtained
following result.

Lemma 7.6 (Tail estimates for suprema of empirical processes under sub-Weibull
norms). Let {X;}" ;| be independent X-valued RVs and let F be a countable class
of measurable functions f: X — R. For some « € (0,1], assume ||supfef|f(Xl-)—
Ef(X;)||lg. < oo for every i. Define o = sup e rY.iq Varf(X;). For all n € (0,1)
and & >0, then there exists a constant Cy ;5> 0 s.t. both P(Z, > (1+1)EZ, +t) and
P(Z, <(1—n)EZ,—t) are bounded by

b} (Uzzx)'—ex —L +3exp | — t ’
i\t P\ T2 (14002 P\ Copslmaxisup 17 (X))l

forall t>0.

So, Lemmas 7.5 and 7.6 give
p (n—lzn > (147)n"2[Right hand side of (7.9)] +t>
<P (Zn > (1 -|—17)n%E[n_%Zn] -|—nt> <Ot 0 (05,0().
We have
P (supf€f| (P,—P)f|<(1 —|—17)n_% [Right hand side of (7.9)]+ t)
>1=0untys (‘Trzzr"‘) .

The constant-unspecific version of Lemma 7.5 ([81, Lemma 19.36-19.38] or
other versions) has wide applications in deriving the rate of convergence for ker-
nel density estimations, M-estimators in high-dimensional and increasingly-di-
mensional regressions, see [18,33, 64] and references therein.

8 Concentration for high-dimensional statistics

With the emergence of high-dimensional (HD) data such as the gene expression
data, there are renewed interests on the CIs. One aspect of the HD data is such
that the number of variables p can be comparable to or even greater than the
sample size n. This section provides results in three commonly encountered set-
tings: increasing-dimensional (p, =o0(n) < n), large-dimensional (p, =O(n)) and
high-dimensional setting (p, >n, p,= eo(”)).
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8.1 Linear models with diverging number of covariates

Suppose that we have an n-dimensional random vector Y which contains # re-
sponses {Y;}"_; to p covariates X; = (x;1,-- ,xiP)T, respectively. The n copies of X
as row vectors make a 1 x p design matrix X= (X3, - ,Xn)T. The conditional ex-
pectation E[Y;|X;] is linearly related to a coefficient vector g* = (B3, -, ﬁ;)T such
that
Y=XB"+¢, (8.1)

where {¢;}"_; in the error vector e=(eq,---,&,)" are IID with zero mean and finite
variance c2. The B* needs to be estimated.

This subsection only considers the case that p is increasing but p <n. The
ordinary least square (OLS) estimator is

BLs =argmin gery || Y—XB|[3. (8.2)

Assume rank(X) = p, which is not hard to meet since p <n, Brs= (XTX) XY is
the unique solution of the (8.2). The following result for the OLS estimator is well
known.

Lemma 8.1. Under the assumptions on the linear models and the rank of X is p, then
(i) Let A be a p xn matrix, then E||Ae||3=E(eTATAe) =c?tr(ATA).

(ii) (The curse of dimensionality.) The mean square error and the average in-sample
{5 risk of the OLS estimator are

BllBs 6= (0% ")

1 5 2 po?
EEHX(ﬁLS_ﬁ )Hz_T'

Remark 8.1. As p,n— co with p <n, part (ii) implies that the OLS estimator may
had poor performance if £ — ¢ > 0. The average in-sample ¢,-risk tends to zero if

pn=o0(n).
Put B:=Bs. Let {1;(XTX)}~_| be the eigenvalue values of X"X. Markov’s
inequality and Lemma 8.1 with A = (XTX) !XT implies

P{IIB=B" 2>t} < (tf—jtr (X)) :t—z;m

o2 P
< — 0 ___—5,
= 2 Apnin(XTX) "
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which implies that, with probability greater than 1—4,,

Hﬁ—ﬂ*HZSU\/g- [5nAmin (%XTX)}_ . (8.3)

Assume that p:=p,=o0(n") as n— oo, p, <n. We specific two groups of regularity

N—

conditions and the value of r such that the I, consistency (|| — B*||2 50) s true.

(1) B}zf Lemma 8.1, if %XTX is uniformly positive definite (3 ¢ >0 s.t. %XTX =clp)
then

—=—EHXﬁ B)|3=E|(B-B")" XTX(ﬂ B*)| >cE||B—B*|5.

If p=o0(n), then E||f— B*|2=0(1) which implies ||f—B*|2=0,(1).

(2) From (8.3), if p = 0(Amin (XX)), we have ||8— Bl =0, (1). In this case, if we
consider: ”%XTX is positive definite” in (1), it also leads to p=0(Amin (XTX) )=

o(n).

In (8.1) with fixed design, suppose that the ¢,...,&, are sub-Gaussian zero-
mean noise for which there exists a o > 0 such that

noo e 2y 42
Eezi:ﬂ"zsl < e’ Yt , vo&l,...,lxn cR.

Suppose that the Gram matrix S, := 1XTX is invertible. The excess in-sample

prediction error R(B) is the dlfference between the expected squared error for
X! B and for X! B*

R(B { (x| E[f(X?ﬁ*—Yi)zH

=1 i=1

p=p

1 5 NV 1 < *
:E}}X(ﬁ—ﬁ )Hﬁ;E [;(XIT/;—XIT/; ).ei] i

= % [x(x™x)7'xTe

(8.4)

which is a quadratic form of sub-Gaussian vector.
By Corollary 4.7 with A := XXTX)"IXT/\/n, E:=¢, y=0and Z:=ATA=
X(XTX)~IXT /n,

1 _ 1
(D)=t () XX) =L, @)=L, jzp=,
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where last identity is due to X(X?X) !XT being a projection matrix. Thus

2
P|R(B) > (p+2\/pi+2t)| <™,

i.e. with probability 1—e™!

2

Q

(p+24/pt+2t).

~ 2
For Gaussian noise, ER(B) =~ in Lemma 8.1, so

R(B) <

= |

P{R(B) —ER(B) < %2(2\/ﬁ+2t)} >1—et,

8.2 Non-asymptotic Bai-Yin theorem for random matrix
Let A be a p X p Hermitian matrix with real eigenvalues
Amax:=A1 2>+ 2> /\p =:Amin.

The empirical spectral distribution (ESD) of A is
17
Fa(x)==) 1(4;<x),
Piz

which resembles the EDF of IID samples. Let {A,},>1 be a sequence of pxp
Hermitian random matrices indexed by the sample size n, and Fa, be the ESD
of A,,.

A major interest in random matrix theory is to investigate the convergence
of Fa, as a sequence of distributions to a limit F. In multivariate statistics, it is of
interest to study the sample covariance matrix S,:=2XXT where the double array
X= {Xi]',i =1,...,p;j=1,...,n} contains zero-mean IID RVs {Xij} with variance
0. Suppose that the dimensions 7 and p grow to infinity while £ converges to
a constant in [0,1]. [58] gives the limit behavior of the ESD of S,,. [5] obtained
a strong version of the Marc¢enko-Pastur law.

Corollary 8.1 (Bai-Yin theorem). Let X be an n X p random matrix whose entries are
independent copies of a RV with zero mean, unit variance, and finite fourth moment
(E|X11|*<o0). Asn—o00,p—00,E—y€(0,1), then

HM Amin(Sn) =0* (1= /%)%, Em Amax(Su) =0 (14/%)>.

n—o00 n—oo
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Note that A;(S,) =A; (%) for all i, Bai-Yin’s law asserts that if 0> =1

o (G em (G5) o)

[84, Theorem 4.6.1] studies the non-asymptotic upper and lower bounds of
the extreme eigenvalues of S, with independent sub-exponential entries, but the
bounds contained un-specific constants. We give a constant-specified version.

Proposition 8.1 (Constants-specified non-asymptotic Bai-Yin theorem). Let X be
an n X p matrix whose rows X; are independent sub-Gaussian random vectors in R”
with Var(X;) =1,. Define Z;:=|(X;,x)|, V x € S"~1. Further assume that {Z? —1}"_,
are subE(0), then

P{|[n~X"X—L,|| <2c0max (5,6) } >1-2e7F, >0, (8.5)
where & :2c(\/g+ ﬁ) with t =cOmax(6,6%) and c > MTOgg. Moreover,
P{1=2 < Amin(S) < Amax(Sn) <1482} >1-2¢7F (8.6)

Proposition 8.1 does not require £ — 1 € (0,1) as in Corollary 8.1.

Proof. Step 1. We introduce a counting measure for measuring the complexity
of a set in some space. The covering number N (K,e¢) is the smallest number of
closed balls centered at K with radii e whose union covers K. For some ¢ € [0,1),
a subset V; CR is an & -net for "1 if for all x€ S"~!, there is an y € \;, such that
||x—vy|| <e. We use the following results in [83, Lemmas 5.2 and 5.4].

Lemma 8.2 (Covering numbers of the sphere). N'(S"1,&) < (1+2)" for every e>0.

Lemma 8.3 (Computing the spectral norm on a net). Let B be an p x p matrix. Then

|B||:= max ||Bx||,= sup |(Bx,x)| < (1—2¢) ! sup |(Bx,x)|.
[[x[[2=1 xesp—1 xeN;

Lemma 8.3 shows that

1 T

1
<2 max —||Xx||§—1’.
XEN1/4 n
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Indeed, note that

1 1 1
<—xTXx—x,x> — <—XTXx,x> —1=—|Xx|7-1.
n n n

By setting e = % in Lemma 8.3, we get
[ XX =1y < (1-26) " sup [ (X X —x,x)|
xeN;

=2 sup |n H|Xx|5—-1|. (8.7)
xeN

By (8.7), we have

P{||ln"IXTX-1,[| >2t} gp{z sup [n X |3 —1| 22t}
xeN-

< 3 P{|nIxxI3 -1

XGN%

1 .
gN(sn 1,1)13{};1 1\|Xx\|§—1yzt}
§9”P{}n—1||xx||§—1\zt}, VxeNy,  (88)

where the last inequality follows Lemma 8.2 with e=1.

Step 2. It is sufficient to bound P{|3||Xx[|3—1|>t}. Let Z;:=|(X;,x)|, Vx€S" 1.
Observe that

n n
X3 =) (X, x) =) Z¢.
i=1 i=1

Apply the sub-exponential concentration inequality in Corollary 4.2

N

P (n—l [1Xx|3—1]] > t) =P (n—l

i(z%—nth) ot (En)

i=1

Specially, let
t =cOmax(4,6%) =ch [51{531} +5ZI{5>1}]
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with §:=2¢(E+ ﬁ) From (8.8),

P{||n~"XTX=1,|| > 2t} <9"P{|n~"||Xx[3 1| > comax(¢,6?) |
< 2.9 pl=F min{0Ls 1)+ (go1) Ol <1 +0% 551y }]

—2.9% 3 — p=5(VPH)® < 2.9”3—%(P+fz)l

where the last inequality is obtained by using the inequality (a+b)? > a?+b? for
a,b>0. For ¢> nlog%, 2.9%e=c(P+1?) < 2p=F \which proves (8.5) .

Step 3. To show (8.6), the
Lot
N x <EX X—IP) x

implies that 1 —t? < Amax(Sy) < 1+#2. Similarly, for Apin(S,),

2
-1
2

2 2

1 _p

max —XTX—IP
n

[Jx]l2=1

2

= max
lx]l2=1

1 2 1 2
min |||—=Xx|| —1|= min <—XTX—Ip)x
Ixl=1]1l v~ |l Ixll2=1 | \ )

1 2
< max (—XTX—Ip)x §t2.
[xll2=1]| \ 7 2

S0 Amin(Sy) €[1—12,1+#*] and

{IX'X=1, |2 <2} € {1-P < Amin(S1) < Amax(S) <148}

Then
P{1=£ < Amin(Su) < Amax(Sn) <1+£2
1 2 2
>P H—XTX—IP <t p>1-2e7
The proof is complete. O

8.3 Oracle inequalities for penalized linear models

This section introduces the proofs of the error bounds from the perspective of
Lasso penalized linear models with the ¢;-loss function. When p > n, the OLS
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estimator is no longer available as 2y | X;X] is of invertible. A common way for
obtaining a plausible estimator for the true parameter B* is by adding penalized
function to the square loss function. For 0< q<oo, we write || B|5:=(X!_,|Bi|7)'/4
as the /;-norm for B € RP. If g = oo, ||Bllcc := max;—1, Pi|; if =0, ||Bllo:=
Zle 1(B;#0). There are two types statistical guarantees of p as mentioned in [7].

1. Persistence: j performs well on a new sample X* Lx (equal in distribu-
tion), i.e. E{[X*(B—B*)]?|X*} — 0.

2. {;-consistency (g >1): B approximates *, i.e. with high probability ||f—
B*|l4—0.

The persistence and ¢;-consistency are respectively obtained by error bounds:

|B=B"[l, <Op(sha), E{[X"(B—B")]*1X" } <Oy(sA2),

(says oracle inequalities),

where A, — 0 is a tuning parameter and s:= ||*||o. In the following, we focus
on the /; estimation and prediction consistencies for the penalized linear models.
Let A >0 be a tuning parameter, the Lasso estimator [80] for Model (8.1) is

5 , Y —XB||3
ﬁL=argmmﬁew{%Muﬁnl}. 89)

By sub-derivative techniques in convex optimizations, the Karush-Kuhn-Tucker
(KKT) condition of Lasso optimization function is

2 [XT (Y—XBL)]jz —/\sign(ﬁL]-), if ‘B]. £0,

2 x|

<), if B.,=0,
n o ' 'BL]

j

which implies || 1XT (Y — XB) ||l < % Another approach to get the Lasso-like sparse
estimator is attained by Dantzig selector (DS)

. . XT(Y=XB)|leo A
ﬁDs:argmmﬁeRv{“ﬁHliH ( - Al SE}’ (8.10)

see [21]. Lasso and DS are capable of producing sparse estimates with only a few
(hence sparse) nonzero coefficients among the p coefficients of the covariates. The
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idea of Lasso and DS was presented in a geophysics literature [55]. By (8.10), we
get ||Bpslli < |IBL|l1, which signifies that the DS may be more sparse than the
Lasso.

It is well-known that Z:= 1" X;XT is singular when p >n. To obtain or-
acle inequalities for the Lasso estimator w1th the minimax optimal rate [94], the
restricted eigenvalues proposed in [11] is usually needed. Let S(B*):={j: ,B;k #*

0, p*= (,B’l‘,,,B;;)T} and s:=|S(B*)|. For any vector b € R and any index set
HcC{1,...,p}, define the sub-vector indexed by H as by = (---,bj,---)T € R? with

l;]-(z b)]- if je Hand Ej =01if j¢ H. Define the conic set for a sparse f* with support
S(B*

C1,S(B) = {bER?: sl <nllbsipli ), 7>0. 61
Denote the restricted eigenvalue condition (RE) as
1
Typ)2
RE(n,S(B)E)=  inf L EO

0£beC(n,5(8%)  |bll,

for any p X p matrix Z. In the following, we present a modified version of [11,
Theorem 7.2] from [56, Lemma 2.5] beyond Gaussian noise.

Proposition 8.2 (The rate of convergence of the Lasso). Suppose that X is the fixed

design matrix and the error sequence {&;}!" ©ON (0,0%) or {e;/o}, =1 2—strongly

log-concave distribution satisfying Lemma 3. 2 Let {X| } .1 €R" be column vectors of

X. We assume that 1X(T)X —1. If A= Ao/ 8L satisfies the KKT condition for B*,

<A (8.12)

1
2°

XX

(1) Then the estimated error u:= By — B* satzsﬁes [usgeyclln < 3llusipellr, ie. ue
C(3,5(8)).
(2) Suppose that X satisfies the RE condition «:=RE(3,S(B*), Ly, X,X]) >0. We

have non-asymptotic oracle inequalities with probability greater than 1—2p'~s :

340 1
O e
9Aa slo (8.13)
©) [B=plz= =500
(© LIxB —ﬁ*)” 9Avslogp o2 (8.14)
n k 2= v n’ ' '
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Proof. The proof consists of 3 steps.
Step 1: By the Lasso optimization (8.9),

(@) Y =XBr |+ A Bl < @)Y =X B+AIB 1. (815)
From
IEXPUE L X e X
=iuxw—xm%%—%Jx(ﬁL—ﬁ*»
Ly —xpg= 122,
thus

2 2
L xp —xpe 2+ 182 - Lerx gy appy < L g
Then,
(2n) M [X(BL=B) 3+ A Bell, <n ' e"X (BL—B7) +AlIB - (8.16)

The (8.16) is usually called the basic inequality in the proof of Lasso oracle in-
equalities. The first term in the left side of inequality (8.16) is the empirical pre-
diction error, while on the right side, TX(ﬁ B*) is random and A||f*||; is still
tixed and unknown. For eTX(ﬁ /3*) if we can get a sharper upper bound and

it approaching 0 as n — co, then we can achieve a sharper oracle inequality in
below. By (8.12)

IX(B—B)3
BB a1 < e

' 18— B 1 +A1IB*

A
EHﬁ B [l1+Al B |1 (8.17)

Let S:=5(B*) and note that

1Bsl, =185 +(Bs =B, = || Bsl, 1| Bs —B5

1/

then

A

Bs:

p

(8.18)

Bslly = 1185l — 1 Bs = B3, +

1 1
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From (8.17), we get ||usc||1 <3||us||1 by checking

_1}}7((3—/5*)”%— FAIB =AMl
%{Hﬂs Bl s, b+ A1

_/\{HﬁsHl 1Bs ﬁst"HﬁSCH} By (8.18)]
N n 3A A
—ﬁéHl_g Bse 1='7||us||1—§||usc||1- (8.19)

Step 2: The Gaussian error vector € enables us to get the Gaussian concentra-
tion around its mean, we can shows that (8.12) occurs with a high probability. So
next we need to check the Lipschitz condition in Lemma 3.1. Use Lemma 3.1, it
implies that

?’12
P(n~t|XT (Y =Xp)| > ) <2pe a2, Y (8.20)

under the presupposition || X(;[|3=X T)X( »y=n. The Lipschitz condition depends
on the design matrix X. The dlfferent types of Cls require different assumptions
on the design matrix (the random design is allowed if we adopt empirical process
theory). In Lemma 3.1, put f(a):= 2 |X ((m—Xﬁ*)|. Then, Cauchy’s inequality
implies

f(@)=£(b) <= | X[, (b—a)| < 211X 2+ [6—all2

=ﬁllb—a|lz, vj.

Hence, f(a) is =-Lipschitz. Recall A= Ac 10%. So (8.20) implies

/i
;)

>

-2

E%A \/1o8P gp) <op- %,

By Lemma 3.2, (8.20) is also held for {¢;/c'}"_; ~ 2-strongly log-concave distribu-
tion.

P(H%XT(Y—X/%*)

gip< X[ (Y —XxB")
j=1
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Step 3: Next we can start on the proof based on cone set condition (8.11). Since
the X satisfies RE condition v:=RE(3,S,n 'Y, X;X]) >0, by (8.11) we have

1 (8.19)
7lu)3 < E||Xu||% < A(3lusll1— ||lusell1)
<BA|lus|l1 <3AVs||ug|l2 <3AVs||ul)2,

where the second last inequality is by Cauchy’s inequality. Therefore,

9A%s  9A%0? slogp

H:BL B Hz ||”||2 72 72 .
HX(ﬁL—ﬁ*)HZ . [, < 925 B 9A202 slogp
n T n Ty no
So
As 3A(7 lo
=", = llully < /5l < Sl
by Cauchy’s inequality. O

According to (8.3), the OLS with diverging number of covariates has the con-

vergence rate O( \/7 ) under the minimal eigenvalue condition A, (XTX)=0O(n).

In contrast, due to the sparse restriction and the RE condition in Proposition 8.2,
the factor y/logp is much more small that the factor ,/p in the convergence rate
(8.3). Under the RE condition, Proposition 8.2 reveals that Lasso is {»-consistent if

Slngp —0,and s/ lngp — 0 guarantees /1-consistency. [11, Theorem 7.1] also gives
oracle inequalities (8.13) and (8.14) for the DS estimator (8.10).

8.4 High-dimensional Poisson regressions with random design

The Poisson regression [60] is a model for nonnegative integers response vari-

ables, i.e. Y S Pmsson()\ ), where log();) =X B fori=1,...,n. We presume that
the {X;} ; areIID RVs on some space X, and we observe n coples of {(Y;, X))}
~(Y,X) ERxRP.
The average negative log-likelihood of Poisson regressions is

i[ Y, X! B Xi B

l:

(n(B

SIP—\
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and the Lasso penalized estimator is
B:=PB(A)=argmingegy {€x(B)+ Al Bl }
with a turning parameter A > 0. (8.21)
[18, Lemma 4.2] shows the first-order conditions for the optimization in (8.21).

Lemma 8.4 (Necessary and sufficient condition). Let j€{1,...,p} and A >0. Then,
a necessary and sufficient condition for the Lasso estimates (8.21) is

—1>:x1]( —eXIP)=—2sign(B;), if B;#0,

. A (8.22)
e g oo

Let/(Y,X,8)=—YXT ,B-l—eXTﬁ be the Poisson loss function. The true coefficient
B* is the minimizer of the expected Poisson loss, i.e.

B =argmingerrEI(Y,X,B). (8.23)

The KKT condition of the ¢;-penalized likelihood is for the estimated param-
eter. But, here we use the true parameter version of the KKT conditions

<A, j=L1..p

:I»—\

iYEY

by replacing e X/ by EY; =e¢ X8 to approximate the estimated version (8.22).
To motivate the next two propositions concerning high-probability events, let us
consider the following notations and the decomposition of empirical process.

The Poisson loss [(B,X,Y)=11(B,X,Y)+12(B,X) is decomposed into two parts
where [1(B):=11(B,X,Y):=—YXTBand L,(B):=1(B,X) :=eX' B is free of response.
Let PI(B):=EI(B,X,Y) be the expected loss. We are interested in the centralized
empirical loss (P, —IP)I(B) representing fluctuations between the expected and
empirical losses. Note that

(P —P)I(B) = (P —P) L (B)+(Pu—TP)12(B), (8.24)

which is crucial in attaining the convergence rate of || — 8*||;. Motivated by the
rate of convergence theorem ([82, Theorem 3.2.5]) for M-estimation with func-
tional parameter in some metric space, we study the upper bounds (or the rate)
for the first and second part of the difference of the centralized empirical process

between B* and B: (P, —P)(L,(B*) —Ln(B)), for m=1,2.
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Proposition 8.3 (Convergence rate of (P, —IP)(I;(8*)—11(B))). Suppose that
sup || Xillow<L<oo as., [|B*]1<B. (8.25)

1<i<oo
A
4 7

(P, —P) (1 (B")— (B —Hﬁ Bl (8.26)

In the event of

A:= ﬂ{’ ZX,]Y EY;)| <

i=1

we have

If

2
Azmax{ 164 L;Sg(zp)ﬁALe% Lgr(lzp)}

with A>1, we have P(A)>1—(2p)1=4*,
Proof. Note that, on the event .4

(P, —P)(h(B")—L(B)) = (Yi—EY)X] (B"—B)

1=

~.
I
—_

[
M“ :\H

(ﬁj—ﬁ;f)%ixﬁ(n—m

Tl
—_

—IIﬁ Bl

IA
H wa

18- ﬁ]!‘ ZXUY EY))

Next, we show that A is a high probab111ty event if A is well chosen. For j=1,...,p

andi=1,...,n,
SA
1 (

Given X, {S,;(Y,X) := %X (Y;—EY;)}" ;| are conditional independent for each
j=1,...,p. Thus Corollary 5.2 with w; = X7 gives

p(AC)ng{’%fXU(Yi—EYi)

j=1 i=1

t2/2
P (1S, (Y, X)| > £{X) <2exp{ — T nt’/
X; X2 X |t
(LB max X8+ max (X,¢/3) ) /n

—n 2
< 2(64L2 T8\ it ) (8.27)
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where the last inequality is from e bic < e Ve for any positive numbers a,b

and c.
Lett= %. Assumptions (8.25) and (8.27) give for j=1,...,p
A
>—1X
=)

{

7n/\2 _3n
which implies that P(A¢) <2pmax{ees2L? ,e% }.
Finally, if

1 n
~) X;(Yi—EY))

i=1

A 1¢
>, | =EP EZXZ']'(YI'_EYZ')
i=1
L/\Z —3nA
<2max {664L2eLB ,e 16L° },

2
Azmax{mA Lgl;g(ZP)ISALe% @}, A1

so P(A°) < (2p)1_A2. O
Next, we provide a crucial lemma to bound (PP, —P)(l(B*) —12(B))- Let

(P, —TP)(L2(B*) —12(B))
1B—B*[l1

the normalized empirical process indexed by B. Denote the ¢1-ball by Spi(B*) :=
{BER?:||B—B"|[1 <M <o}, we define the local stochastic Lipschitz constant

(B.B")]

va(B,B"):=

Zm(B")=suppes,, (p)

o)

It is easy to see |v,(B,B%)| < SUpg,, () v (B,B)| < Tl which gives

and a random event

(P~ P) (12(B) 1o (B) | < L1 B

provided that B € Sp(B*). Then we have the following result.
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Proposition 8.4 (Convergence rate of (P, —IP)(Io(B*) —12(B))). Assume that there
exists a large constant M such that B is in the £1-ball Spr(B*). Under assumption (8.25),

we have
P (ZM(ﬁ*) 25ALeLB\/log%> < (2p)~4. (8.28)

IFA>20ALeLB /29822 e got

P~ P) (B~ (8)| < § (1B=FI1) } 21-2p)

Proof. In the first step, we apply following MCDiarmld’s inequality to Zy((B*) by

showing that Z, ( ,B ) is fluctuated of no more than 2.~ Let us check it. Put IP,,;:=
_11x,y; and P, Z] 1,j£i1%,y; 1)5 Y Where (XZ,YZ ) is the independent

copy of (X;,Y;).
Let X'B; (X'] B,) be an intermediate point between X! g (X' B) and X! B*

0.4 ZT B*) from the Taylor’s expansion of function F(x):=e*. It deduces

(P.—P)(L(B)—LB)| __ |(Pa—P)(L(B")~L(B))]
pes, 18 Bl e 18 Bl
L(B*,Xi)—1(B.X:)—L(B", X i)+1L(BX)|
= o a5 Bl
1 xrp |XTB"—X]B| 1 xg |X'i B =X B|
<§§£4 S i P R T I
< oup 2P IB =l _ 200"

pesy " BBl m

Apply McDiarmid'’s inequality to Zy(B*), we have
nA2

P(Zm(B")—EZm(B") 2 A) Se” 50,

Let (2p)~4 =exp{—%}, we get A> ALelP % for A >0, therefore

P(Zu(B")—EZm(B*) > A) < (2p) . (8.29)
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The next step is to estimate the sharper upper bounds of EZy;(8") by Lemma 7.3
with CID(t) =|t| and Lemma 7.4. Note that

{12 —lz } IPn{lz —lz } E{lz —12 }

by symmetrization theorem, the expected terms is canceled. To see contraction
theorem, for

)= su B _XIB) _p ) —
Zm(B") ﬁeslj\)/[{nuﬁ* Bl Z(X ) E[l2(ﬂ) lZ(ﬂﬂ’}

it is required to check the Lipschitz property of g; in Lemma 7.4 with 7 =IR”. Let
xT Tg*
B . L

[18*—Bll’ 1B =Bl

(1) et B =Bl <!t!< LB )

S llp =Bl 5Bl

Then the function g;(t) here is %—Lipschitz. In fact

flxi)=

et elB { LB LB }
i(s)—gi(t)|=— |s—t| <—]|s—t|, tse|— , ’
|g1( ) gz( )| " | | » ’ ’ ||ﬁ*—ﬁ||1 ||,3*—ﬁ||1

where f € [—LB/||B* —B|l1,LB/||B* — Bl|1] is an intermediate point between t and
s given by applying Lagrange mean value theorem.
The symmetrization theorem and the contraction theorem imply

4et? " eiX; (B —B)
EZm(B*)<——E| sup "—'
n BESM 1; 1B=B"l1
4e"? 1B=B"llx
<——E| sup max Zel ij
no \pesylisplic IB—BI
4€LB 4€LB
<—0FE
T on 1r2]a<Xp Zel if ) 1I£l]a<xp Zel if

From Corollary 7.5, with Ee[e; X;;|X] =0 we get

4€LB

- 5(e | mas| S )
LB

<% zmgzp.mz%wm/iﬂfzp.
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EZp(B*) <4e L,/ Zk’ng’” <4ALelB\ | Zk’ng’”. (8.30)

With A > ALelB/ W and (8.30), we conclude from (8.29) that

Thus, for A>1,

P (zMu%*) >54Le!" bg%) <P(Zu(B") = A +EZy(B)) < (2p)
Finally, we complete the proof of Proposition 8.4 by letting % >5ALetB/ ZIOTgZP
and setting B=B € Zn(B*). O

Let S:=S(B*) for B* defined in (8.23) and s:=|S|. To obtain sharp oracle
inequalities for Lasso penalized Poisson regression, we consider the following
regularity conditions:

e (H.1): The covariate X is almost surely bounded || X ||c<L a.s. for L>0;
e (H.2): There exists a constant B >0 such that ||8*||; < B;

e (H.3): (Stabil Condition) For £:=E(XXT), there exist a k€ (0,1) such that

5T25>k2(5]2 forany 5€C(co,S):= {5e]RP: .2 X §c02|5j| }
jes jese j€s

The Stabil Condition (H.3) is denoted as S(cy,S,k,%) which is a similar ver-
sion of the RE condition in the Lasso linear models proposed in [19]. Due to the
random variance, Poisson regression is more complex than the linear model with
the constant variance assumption. Thus, (H.1) and (H.2) are stronger than those
assumed for the linear models. Based on the high-probability event A and B, we
have the oracle inequalities for estimation and prediction for Lasso estimator f3
in (8.21) for the Poisson regressions.

Theorem 8.1. Assume conditions (H.1)— (H.3) hold. Let A be chosen such that

2
Azmax{16A L;Sg(zp),SALeLzB @,20/&&3 Zk’ng’” for A>V2.

(8.31)
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Suppose that we have a new covariate vector X* (as the test data) which is an independent
copy of X (as the training data), and E* represents the expectation with respect to X* only,
then

10LB
p(Ex(B-pR < 2 —sr?),

4€5LB A2

P18 <2 st ) 21— () - p) .

The Theorem 8.1 leads to the persistence and ¢;-consistency if max{sA,sA?}
—0.

Proof. The proof consists of three steps. The techniques are adapted from [41, 98]
and references therein.

Step 1: Check B—B* € C(3,5). From the definition of the Lasso estimates j3
(see (8.21)),
Pul(B)+ MBIl <Pul(B7) +AlIBIlr- (8.32)

By adding P(I(B) —1(B*))+4|B— B*||1 to both sides of (8.32), we have
P(I(B)-1B)+ 5 1B~
< (Pu =) (1(B)~1(B)) + 5 |B—B* 11+ A8 1~ 1B,
which leads
PI(B)-1(B) +5 BB
<Py~ P)(1(B)~1(B) + 5 1B~ B 11+ (I8 1~ 1B1)
<AB=B i +A (B I —11Bl1)- (8.33)
By the definition of g*, P(I(B)—1(B*)) > 0. The above inequality and the fact

B~ B:1+1B:1~1Bj| =0 for j¢ S and |B;| — B;| < |B;— B for j€ S lead to

MBI < A= p 1+ 2181~ 1Bl1)
<20)(BB")s]., 39

Thus, 3[|(B—B")sc 1 <1.5A]|(B—B")s|l1 and then B—B* €C(3,5).
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Step 2: Choosing A. Since P(I(B) —1(B*)) >0, (8.33) implies

MBZE <\ g1+ A8 1~ 1Bl1)
AIBIAIB T +A (I T~ IBI) =248 1. (835)

Thus (H.2) implies ||8— B*||; <4B. After having shown Propositions 8.3 and 8.4,
we need the result on the high probability of the event AN B, whose proof is
skipped.

Proposition 8.5. Under the event AN\B with (H.1)-(H.3), we have B€ Sy (B*). And
2

A

if A are chosen as (8.31), then P(ANB) >1— (2p)1=4* —(2p)~ 7.

Step 3: Error bounds from Stabil Condition. As X* is an independent copy
of X,

P{I(B)—1(B")} =E* [E{1(B)~1(8") X"}

=B {E[-YXT () +eX PP x" | ’ﬁ—ﬁ

B {B[—Y[X] X T (- )+ (X =X ) x|
(E[yIx)=exF)
_pf_ X*T’B* X*T’B* -1 X*Tﬁ «T _ 2
E{ e +e +27 e PIX* T (B—B)] Hﬁ—f;
:2—1E* eX*TB X*T _p* 2 ,
[P re-py,
where X*T = (1—t)X*T 8* +tX*T B is an intermediate point of X*' and X*T  with
te[0,1].
Note that ||8*||; <B by (H.1) and || — B*||1 <4B, (H.2) yields
|X*TB|Stlx*TB_X*Tﬁ*“F‘X*Tﬁ*’
<[1X*[leo- 1B B[l +[ X B7|
<4LB+LB=5LB,

p=p

. . . —5LB
which implies for c:=¢ 5

]P{Z(B‘) —l(ﬁ*)} zinf|t\§5L32_1E*{eX*TB [X*T(ﬂ_ﬁ*)]z} ’ﬁ_B

— B [X*T(B—B)]". (8.36)
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AsE*(X*X*T) =L, E*[X*(B—B") = (B—B)Z(B-B").
Having checked the cone condition C(3,S), we apply the Stabil Condition

c(B—B")E(B—B") =k (BB sl (8.37)
From (8.33), (8.34) and (8.36), we get

cE*[X*(B—B"))° —wﬁ Al
P(I(B)-1(B")) +5m%¢%mé2MMB—ﬂws

(8.38)
which gives

A * As * A *
k|| (B—B)s 13+ 5 1B—B7ll, <27 (B~B")s .,
by plugging (8.37) into (8.38). Then, employing Cauchy’s inequality, we have

SHz

<ar (s (3= B")sl3)" <4\ | (B—B")s] (5.39)

where the last inequality is from the elementary inequality 2xy < txz-l—g for all
t>0. Let us set t=(2ck) ! in (8.39), thus

5 2\s  4e°LB
—B*|1 <4tAs==—"=
BBl <aras=22 =5
To derive the oracle inequality of prediction error, from (8.38), we obtain

CE* [X*(B—B)]* <154 (B—B*)s |l <1.5A| (B~ ),

which implies

SA.

o 1.54 3sA2  12¢10LB
B (X (BB <2 (B=p) < S =A%

4€5LB

where the last inequality is from || —*||; < sA. O

For general losses beyond linear models, the crucial techniques in the non-
asymptotical analysis of increasing-dimensional and high-dimensional regres-
sions, which are Bahadur representation’s for the M-estimator [49, 64] and con-
centration for Lipschitz loss functions [18,98], respectively. In large-dimensional
regressions with £ — ¢, the theory of random matrix [93], leave-one-out analy-
sis [27,53] and approximate message passing [23,26,27] play important roles for
obtaining asymptotical results.
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9 Extensions

The review has been focused on the sum of independent RVs in the Euclidean
space. However, independence structure may not be suitable for some applica-
tions, for instance, econometrics, survival analysis, and graphical models. At the
same time, the Euclidean valued RVs may not be appropriate for functional data
and image data. In the following we point out results in settings not covered to
broaden this review.

By ClIs for the martingales, oracle inequalities have been proposed for Lasso
penalized Cox models, see [42]. Some statistical models, such as the Ising model
involving Markov’s chains. [62] applied Hoeffding’s inequality for Markov’s
chains to deal with this difficulty, see [28] for a review. In time series analy-
sis, [90] studies the square-root Lasso method for HD linear models with «,p,
¢-mixing or m-dependent errors. The Hoeffding’s and Bernstein’s Cls for weakly
dependent summations can be found in [13]. Via sub-Weibull concentrations un-
der B-mixing, non-asymptotic inequalities for estimation errors, and the predic-
tion errors are obtained by [89] for the Lasso-regularized sparse VAR model with
sub-Weibull innovations. U-Statistic is another dependent sum, and Example 2.2
provides a concentration result by McDiarmid’s inequality. [12] introduces the
concentration for the Banach-valued U-statistics.

In non-parametric regressions, the corresponding score functions may be RVs
in Banach (or Hilbert) space, see the monographs [51,95] for introductions. Ex-
ponential tail bounds for Banach- or Hilbert-valued RVs are indispensable for
deriving sharp oracle inequalities of the error bounds, see [54, 101]. Recently,
Banach-valued Cls are applied to conceive non-asymptotic hypothesis testing for
non-parametric regressions, see [92]. To extend the empirical covariance matri-
ces from finite to infinite dimension, the sample covariance operator is treated as
a random element in Banach spaces. The concentrations of empirical covariance
operator also have been raised attention in kernel principal components analysis,
and functional data analysis, see [20, 71].

Testing hypotheses on the regression coefficients are a necessity in measuring
the effects of covariates on the certain response variables. Scientists are interested
in testing the significance of a large number of covariates simultaneously. From
this backgrounds, [102] proposed simultaneous tests for coefficients in HD linear
models under the “large p, small n” situations by U-statistics motivated by [22].
However, their HD tests are asymptotical without a non-asymptotic guarantee.
Motivated by [2, 104] invents a new methodology for testing the linearity hy-
pothesis in HD linear models, and the test they proposed does not impose any
restriction of model sparsity. Based on the concentration of Lipschitz functions
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of Gaussian distributions or strongly log-concave distribution, [103] developed
a new concentration-based test in HD regressions. Recently, [87] studied non-
asymptotical two-sample testing using Projected Wasserstein Distance, via Mc-
Diarmid’s inequality.

In future, it would be essential and practical to study the estimator for the sub-
exponential, sub-Gaussian, sub-Weibull and GBO norms as the unknown param-
eters when constructing non-asymptotical and data-driven confidence intervals.
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