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Abstract. In this paper, we start to study the gradient flow of the functional
Lg introduced by Han-Li-Sun in [8]. As a first step, we show that if the initial
surface is symplectic in a Kdhler surface, then the symplectic property is pre-
served along the gradient flow. Then we show that the singularity of the flow
is characterized by the maximal norm of the second fundamental form. When
B=1, we derive a monotonicity formula for the flow. As applications, we show
that the A-tangent cone of the flow consists of the finite flat planes.

AMS subiject classifications: 53C42, 53C44
Key words: S-symplectic critical surfaces, gradient flow, monotonicity formula, tangent
cone.

1 Introduction

Suppose that M is a Kdhler surface. Let w be the Kdhler form on M and let |
be a complex structure compatible with w. The Riemannian metric (-,-) on M is
defined by

(U,vV)=w(U,]V).
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For a compact oriented real surface ¥ which is smoothly immersed in M, one
defines, following [5], the Kdhler angle « of X in M by

w|x =cosadusy, (1.1)

where dyy, is the area element of X of the induced metric from (-,-). We say that
Y. is a holomorphic curve if cosa =1, X is a Lagrangian surface if cosa =0 and X
is a symplectic surface if cosa > 0.

The existence of holomorphic curves in a Kdhler surface is a fundamental
problem in differential geometry. Since holomorphic curves are always area-
minimizing in its homological class due to the Wirtinger inequality, we see that
holomorphic curves are all stable symplectic minimal surfaces. Wolfson [18]
showed that a symplectic minimal surface in a Kdhler-Einstein surface with non-
negative scalar curvature must be holomorphic. Thus, we can look for the holo-
morphic curves by finding the symplectic minimal surfaces in this case.

Furthermore, Chen-Li [3] and Wang [17] showed that symplectic property is
preserved along the mean curvature flow. Therefore, an idea approaching the ex-
istence of holomorphic curves is to looking for symplectic minimal surfaces using
the mean curvature flow starting from a symplectic surface, which we call sym-
plectic mean curvature flow. There are some interesting results on the study of
symplectic mean curvature flow. For instance, Chen-Li [3] and Wang [17] showed
that there is no Type I singularities for such a flow at the finite time. However,
since the flow is of codimension two and the normal bundle is much more com-
plex, it is hard to clear out all singularities. On the other hand, C. Arezzo [2] con-
structed examples which shows that a strictly stable minimal surface in a Kéhler-
Einstein surface with negative scalar curvature may not be holomorphic.

For this reason, we introduce a new idea to approach the existence of holo-
morphic curves using variational method combined with the continuity method.
More precisely, we consider a sequence of functionals [8]

1
¥ cosPu

Lg= du, (1.2)
where B>0. The functional L; was introduce by Han-Li in [7]. The critical point of
the functionals Lg in the class of symplectic surfaces in a Kdhler surface is called
a B-symplectic critical surface. We have proved that (cf., [8]) the Euler-Lagrange
equation of the functional Lg is

cos%cH—,B(](]Vcosoc)T)L:O, (1.3)

where H is the mean curvature vector of ¥ in M, and (-) " means tangential com-
ponents of (-), (-)* means the normal components of (-). It is clear that holo-
morphic curves are B-symplectic critical surfaces for each p. When B =0, the
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functional is exactly the area functional, and 0-symplectic critical surface is ex-
actly minimal surface. We aim to deform, from 0-symplectic critical surface (i.e.,
a minimal surface) to a holomorphic curve when  tends to infinity. We showed
the openness (cf., [8]) and partial results on the compactness (cf., [9]) of the pro-
gram.

The first step is about the existence of B-symplectic critical surface for each
fixed B. Annatural idea is to consider the negative gradient flow of the functional
Lg. For this purpose, let us recall the first variation formula for Lg.

Theorem 1.1 ([8]). Let M be a Kihler surface. The first variational formula of the func-
tional Lg is, for any smooth normal vector field X on ¥,

X-H X- (](]Vc:osoc)T)L

SxLp=—(B+1 d oy du, (14
xLp=—(B+1) [ S durp(p+1) [T, (19)
where H is the mean curvature vector of X in M.
Now, we will consider the negative gradient flow of Lg, i.e.,
7 =cos txH—@(](]Vcosoc) ). (1.5)

We set

f=cos?aH— co‘Bsoc (](]Vcosoc)T)L.

It is clear that f=0 if and only if X is a f-symplectic critical surface.
By the first variation formula, we see that along the flow (1.5),

@——(,3—1—1)/ L coszocH—i(](]Vcosoc)T)L Zd
dt s cosP2u cosw K
1
:—(/3+1)/Zcosﬁ+2a|f|zdy. (1.6)

Thus the flow (1.5) is a gradient flow of the functional Lg. From [8, Proposi-
tion 3.1], we know that the flow (1.5) is a parabolic system, the short time exis-
tence can be shown by a standard argument. The first step to study the flow (1.5)
is to show that symplectic property is preserved along this flow. This is exactly
the first result in this paper.

Theorem 1.2. Symplectic property is preserved along the flow (1.5).
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Since we aim to use the flow (1.5) to derive B-symplectic critical surfaces, one
natural question is when the solution can be extended. For mean curvature flow
dF
i H, (1.7)
Huisken [10] showed that the flow can be extended if the second fundamental
form of ¥ in M is uniformly bounded. We can show that the same conclusion
holds for the flow (1.5) (see Theorem 3.1).

During the study of the geometric flows, singularity analysis is an important
subject. An important tool to study the singularity is the monotonicity formula.
In this paper, we derive the monotonicity formula for the case §=1. For general
B, the parabolic operator associated with the flow (1.5) is % — (cos?a+Bsin?a)A,
which reduces to % —A when B=1. This case is easier to be handled. Although
we prove the monotonicity formula for =1, we believe that the monotonicity
formula also holds for general B.

When the singularity occurs, we can rescale the flow near the singular point
and obtain some limiting model in some sense, which we call A-tangent cones.
Understanding the behaviours of the tangent cones is crucial to study the flow.
For mean curvature flow, from Huisken’s monotonicity formula [11], we know
that the tangent flow are self-shrinkers. There are many important works on clas-
sification of self-shrinkers for mean curvature flow (cf., [6,12]). For Lagrangian
mean curvature flow, we can obtain more information due to the extra geometric
condition (cf., [4,15]).

As a consequence of our monotonicity formula, we can show that the A-tan-
gent cone consists of finite many union of flat planes if it is nonempty.

The advantage of our flow is that we need not to assume that the ambient
Kéhler surface to be Einstein.

2 Preserving the Symplectic Property

In this section, we will prove our first result. To start, we set X; = F(%,t) with
Yy =2. In the following, we will choose a frame {ej,ep,v3,04} at a fixed point
peX so that {eq,e;} spans TE, {v3,v4} spans NX and the complex structure takes
the form

0 cosx  sina 0
—Cos« 0 0 —sina
J=| —sina 0 0 cosa |’ (21)

0 sing —cos« 0
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It is easy to see that (cf., [7]) if we set V=0oav3+ 01404, then (1.5) can be rewritten

as

dF
I :COS2aH—/3sinzocVEf. (2.2)

The evolution of the area form along the flow (1.5) is given in the next lemma:

Lemma 2.1.

d 1.9 2 2 .2
Jpdne = Strg=rdpy = (—cos®a|H|*+Bsin”aV-H)dp;. (2.3)

Proof. We compute it in local coordinates.

0,9 /OF OF\ /of oF\ /oF of
ot ot \ox’ a9/~ \ox’ 9x oxi’ 9x)

_ aF _ o
_ —2<f,m> =—2(thon ),

thus
%dyt = %trgg—‘fdyt = —f-Hdy; = (—cos’a|H[*+ Bsin’aV-H)dyu;.
The proof is complete. O

We also recall the following elliptic equation of the Kédhler angle:

Proposition 2.1 ([7]). If X is a closed symplectic surface which is smoothly immersed in
M with the Kihler angle , then a satisfies the following equation:

Acosa =cosw (—‘h?k—hék‘z— ‘h‘lj‘k—l—hgk‘z)
+sina (H% +H3) —sin®aRic(Jey,e2), (2.4)
where K is the curvature operator of M and H'; = <V£\I,IH,U,X>.

Now we can derive the evolution equation of cosa along the flow (1.5).

Theorem 2.1. Let M be a Kiihler surface. Assume that « is the Kihler angle of ¥y which
evolves by the flow (1.5). Then cos satisfies the equation

%COS!X: (COSZtX-I-/Ssinzoc)Acosa—i—cos%c (‘h?k—hék\z—l- \h§k+h‘{k\2>

1
+cos?asin®aRic(Jey,ep) +Ecosocsin20c|H|2

1 2
V+-H| , 25
T3 (2.5)

where {e1,e3,03,v4} is an orthonormal basis of T,M such that | takes the form (2.1).

— Bcosasin®a
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Proof. Using the fact that w =0 and Lemma 2.1, we have

) o (wleve)\ o o 1 %
N=— < det(gt)>_w(VE1f,eZ) w(Ve,fte1) 2cosoctrgat

=w(Vefer) —w(Ve,f,er)+cosaf-H.
By breaking V,, f and V,,f into the normal and tangential parts, we get
w(velf e2) —w(Ve,f,e1)
(V fel)—l—w(V fe2)— (V Jf,e1)
fe1)— <V€1f ]ez>—|—<V62f Jer)
Varf,er) +cosa (Ve fer) + (Vo fre2))

w(Ve,
(2
(N
(V.

fez

w
w
w

(Ve
(Ve
(Ve
(V f,es
—w(V f,er

V. fe1) —cosa ((£,Vee1+Ve,e2))
Nf ,e1) —cosaf-H.

) -
fe2) -
fe2) ~w
) -
) -

8 8

Therefore, we have
i(:osoc aJ(Vi\jf &) —w (V Jf,e1)
oV 2 )
w( o, (cos?aH —Bsin®a V), ez> w(Ve (cos*aH— Bsin sz),el)
< (cos?aH—Bsin’aV), ]ez> < N(cos aH—Bsin’aV), ]el>
=sin -<Vi\lj(coszo¢H—ﬁsinzocV),v4>+<vg(cos aH— Bsin ocV),03>-

=sina | —2H*sinacosad;a+cos®>a HY —2H sinxcosadya+cos*a H

—B <2V4sinzxcosoc81¢x + sinzsz4 —2V3sinacosadyu +sin2¢xV§> |

— sina | —2sinacosa (H*910+ H39pa) +cos® (H +H3 )]
— Bsina [ZSinacosa (V#0104 V30,0) +sina (V] + V%)]
=1+II. (2.6)
Using Proposition 2.1 and the definition of V, we see that
I=—2sin*xcosaH -V +cos’w [Acosoc—i—cosoc (’h?k—h } + }h4k—i—h ’ )

—i—sinzthic(]el,ez)} :
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We also have
I]=—pBsina _ZSinacosoc|V|2+sinzoc(V"{_|_V3)]

= —Bsina |2sinacosa|V|? —I—sinzocAoc}

= —Bsina -2Sil’wCCOSOC|V’2—|—SiI’IOC(—ACOSOC—COSOC’V(XF)}

= Bsin®aAcosa — Bsin®acosa|V|2.

Putting I and II into (2.6) yields

%cosa: (cosztx+/3sin20c)Acosa—|—cos3oc (‘h?k—hék‘z"' ‘hgk"'h%k“z)

+cos?asin®aRic(Jey,e2) —2sin®acosaH-V — Bsin®acosa| V|2
= (cos®a+Bsin®a) Acosa+cos’a (}h?k—héklz-l— ]hgk-i—h‘llk}z)

2

1 1
2xsin®aRic(Jey,ep) + - cosasin®a|H|* — Bcosasin®a | V4~ H

p p

This proves the theorem. O

+cos

When the ambient manifold is a Kdhler-Einstein surface, we have Ric = %g
where g and Ky are the Kidhler metric and the scalar curvature of M, respectively.

Corollary 2.1. Let M be a Kihler-Einstein surface with scalar curvature Ko. Assume
that o is the Kihler angle of ¥y which evolves by the flow (1.5). Then cosa satisfies the
equation

%COS(X = (cosztx—i—ﬁsinzoc)Acoszx—l—cos%c (}hi’k—héklz—i— ’hgk"‘h%k}‘z)
2

K 1 1
—|——0cos3ocsi1f120<—|——c:osocsinzoc|H|2 —Bcosasin®a |V4=-H| , (2.7)

4 B p

where {ey1,e5,v3,04} is an orthonormal basis of TyM such that | takes the form (2.1).
Consequently, if X is symplectic, then along the flow (1.5), at each time t, ¥ is sym-
plectic.

The above theorem implies that symplectic property is preserved along the
flow (1.5). Notice that we do not need M to be a Kédhler-Einstein surface.
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Corollary 2.2. Let M be a compact Kihler surface and % be a closed symplectic surface
in M. Then along the flow (1.5), if ¥ is symplectic, then along the flow (1.5), at each
time t, ¥y is symplectic. In particular, suppose that |Ricy| <Ky, then we have that

r%incosa > e_Kltrr%incosoc (2.8)
t 0

as long as the smooth solution exists. Furthermore, if M is a Kihler-Einstein surface with
scalar curvature Ky >0, then we have

mincosx > mincosa (2.9)
i pa

as long as the smooth solution exists.

Proof. We can rewrite (2.5) as

%COS“: (cos”a+psina) Acosa+cos’a (}h?k_h%klz'i' ’hgk+h1}k}2>

+cos?asin®aRic(Jeq,ep) —cosasin’a(BV+2H,V)
hgk+h%k}2>

> (cos?a+ Bsin?a) Acosa+cos’a (}h?k—héklz—l—
—Kjcos®asin?a —cosasin®a(fV+2H,V)

> (cos?a+Bsin?a) Acosa+cos’a (}h?k—héklz-l— ]hgk-l—h‘llk}'z)
—Kjcosa —cosasina(fV+2H,V).

Notice that V=0,av3+010v4. Then (2.8) follows by the maximum principle. The
proof of (2.9) is similar by using Corollary 2.1. O

3 Extension of the flow

In this section, we will show that the singularity of the flow (1.5) is characterized
by the maximal norm of the second fundamental form of X in M. More precisely,
we prove that

Theorem 3.1. Let M be a Kihler surface and X be a closed surface. Let F:¥.x [0,T)—M
be a smooth solution to the flow (1.5). Set £y =F(X%,t). If

rr%lax|A|2§A (3.1)
t

forall t €[0,T), then the flow can be extended smoothly to an interval [0,T+¢) for some
e>0.
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Proof. For simplicity, we will prove the theorem for the case M =IR*. The proof
for the general case is similar. By the assumption (3.1), we know that there exists
a constant ro > 0, depending only on A, such that each connected component of
%NBy,(r), with p; € Z; and r <1y, can be graphed over T,,X:NB),(r) by a pair
of functions (f(t),g(t)). Furthermore, the bound in (3.1) also gives us a uniform
bound on the C'*-norm of (f(t),g(t)).

Next we will derive the evolution equations satisfied by f and g. First note
that the flow (1.5) is equivalent to the following equation:

1
(dF) =cos2¢xH—i(](]Vcosoc)T)L. (3.2)

dt cosw
For the immersion given by F(x,y) = (x,y,f(x,y),8(x,y)), we can choose

oF
elzgz(lzolfxlgx)/ 03:(_fx/_gx/1/0)/

oF
2= E =01 fy.8y), va=(—fy,—8y0,1),

so that {eq,e,} spans TX and {v3,v4} spans NX. Then (3.2) is equivalent to that

d

<d—f,v3>=cosZaH3—£<](]vcosa)T,03>, (3.3)
d

<d—1;,v4>:cos2txH4—£<](]Vcoszx)T,v4>. (3.4)

Since ‘fi—lt: =(0,0, f,8t), we see that

4N AN
dtlv?) _ft/ dtlv4 =9t

On the other hand, from the proof of [7, Theorem 2.3], we know that the induced
metric of X in the basis is

(ij)1<ij<2= (1+f§+g§ fxfy_ggxgzy)
I fafy+8x8y 1+fy+8y

and the inverse matrix is

jj 1 ( 1+fy2+g§ _foy_gxgy).

AV
(8 hsij<2 det(gij) \—fxfy—8x8y 1+f2+g3
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Moreover, the metric on the normal bundle T1Y. is

(VST fa&at fusy
(8up)3<a,p<s (fxgx-l-fygy 1+g32c+g§

and the inverse matrix is

1 <1+g§+g§ —fxgx—fygy)

(g“ﬁ)3§a,ﬁ§4:7 _ _ 14 f24 72
det(goc/%) fx8x—fy8y +fx+fy

We have

detg:=det(g;j) =det(gup) =1+ f + f; + 85+ &5+ (fr&y— fy8x)*,
and
1+ fx8y—fy8x
det(g) '

Direct calculation shows that (see [7, Theorem 2.3] and [9, Theorem 2.1] for the
elliptic case) (f,g) satisfies the following system:

COSXx =

fi= deltg {fxx [g11g33cz—ﬁ(g11g22 — ¢12012) (¢354 g% (g12ﬂ—gzzb)]
+fuy _2g33g1262—ﬁ(g11g22 — ¢12012) (¢¥0+ ¢%D) (910 —g110)
—ﬁ(gllgzz—glzglz) (g33a—g34b) (glzﬂ—gzzb)}
+ oy :g22g33cz—/3(g11g22 — ¢12¢12) (33— g34p) (_g11a+g12b)]
+ue [g“g%cz—/%(g“gzz — ¢12¢12) (g3*a+¢%D) (—gzza—gub)]
+9vy [2g34g12c2—[3(g11g22 — ¢12012) (¢¥a+ g%b) (g11b+g120)
~B(g"g? ~8"%8") (%~ g*b) (~gma—gub) |

g |88 - B (282 ~g1%g") (¢°a—g™b) (gub+g1a0) } (3.5

1
8= dotg {fxx 8118%c—B(g"18% ~ 81%'2) (g*a-+5*D) (3120~ g2ob) |

+fxy |:2g34g1202 _‘B (glngZ _g12g12) (g44a+g34b) (ngb —81151)
~B(g"g? - g%g") (g% —g"b) (5120~ g220)|
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+ oy [g22g34cz—[3(g11g22 — g12012) (345 — g44p) (—g11a+g17_b)]

+ue [g“g“cz—ﬁ(g“gn — g12012) (454 g34p) (—gzza—gub)]

+ 9y [2g44g1262—,3(g11g22 — ¢12012) (¢4 + ¢3D) (g11b+g120)
—ﬁ(gllgzz—glzglz) (g34a—g44b) (—gzzﬂ—gub)}

+8yy [82284402—5(811822—812812) (§a—g*b) (811b+812ﬂ)] } (3.6)

where

a=fy+gx, b=fx—gy, c=1+frgy—fygx=1/det(g)cosa.

Since we have uniform C*-estimates for f,¢ by [8, Proposition 3.1] (see also
[7, Theorem 2.3 ]), we see that the system (3.5)-(3.6) is strictly parabolic, with
parabolic constant depending on 8 and A. Schauder estimate for parabolic sys-
tems gives us the uniform C** bound for (f(t),g(t)) for t €[0,T). Arzela-Ascoli
theorem shows that we can have a smooth limit F(T):X— M when t — T. Then
the short time existence of the flow implies that the solution can be extended to
[0,T+¢) for some € >0. This proves the theorem. O

4 Monotonicity formula

In this section, we will consider the monotonicity formula for the negative gradi-
ent flow of the functional L;. Namely, we will consider the flow

C;—IZ =cos?aH—sin?aV =f. (4.1)

We first consider the flow in IR*. We have the following proposition:

Proposition 4.1. Let M=IR*. Then for f(x)=e*’, along the flow (4.1), we have

d 1
%/zf<cosoc)pdyt
. 1
S_/{zlw“m
2

4 to—t

7 4 2 15
)% S )
+4’ +7< COS2IX+4)

s 1
+ (Ecosza—zlcos4a) IH+V|?

2 1 2 5 2
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Proof. By (2.5), we know that when B =1, cosa satisfies the equation

J 3
=708 =Acosa+-cos oc(}h } + |3+ h] )
+cosasin’a|H|? —cosasin®a |V +H|?. (4.3)

In particular, we have that

0 1 1
§<COSOC):A<C05a)_cosa(’hlk hk’ +}h k+h ’ )

Sll’l 14

Sll’l (14

H|> 2 |V|2 (4.4)

COos«x

Let f be a positive function defined on ]R+ to be determined later. Then we have
that

(-2 (aa) =7 (52 s/ |7

:f*l—aﬁthi—h P+ |+l *) -

1 2

cosu

. 2 2
S'Clos V+H| —Zsz]VF] f"sm"‘ywz (4.5)
CO

Now we define

S &
p(X,t) = me 0 .
Then along the flow (4.1), we have that
0 1 (F-Xof) |X—Xo|?
ot (Xt = (to—t 2to—t)  4(to—t)?
We also have that
L (X—Xo,VX)
VeXn= 2(to—t) '
([ IX=X0)"? (F-XoH) 1
Ap(X,t) = ( i(to—t)2  20o—1) to—t)F

Hence we have

d —Xo,f _ 12
(atﬂ)p(m:_(<Fzg§g_;;ﬂ>+|<§(t§og)zl)p. 4o
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Then we compute that

i1 (o) o
:/Z<%f<colw))pdyt+/zf<%9) dﬂt—/ZfoIH)dﬂt
:/ <E—A)f<colsw)pdyt+/f(%JFA)Pth—/fP(fIHWW

2 2 Sln[X
H d
/f <Cosoc|V]Zt| cos [X| "= )P Pt
S o (2 Ay
- Vitpd £.H) ) od
/f costa IV pdp— f( 2(tg—t) + A(tg—t)2 +(f,H) | pdps
Z—/Z{f’<costx|V]zt!2 sm {X|V+H| +25m [X|V]2>
. 2 2
psin’a, oo 1) (F—Xp)" |f-|—H|
—— —+f+H| f- £H)f 5 odus. (4.7
+fcos4oc|’ 4| ty—t i f fHEH)f ppdpr. (4.7)
Recall that
f=cos’aH—sin*aV,
and B
Vs, |?=H]?+2|V|*+2(H,V).
We have that
2
< in“w sin®a
7 (cos Vs P+ g 1P V)
. 2 2
sIn“« f+H
+f VP - | |f+<fH>f
2
=f’cosoc(!H!Z+2!V|2+2<H,v>> Py gy g Sy

sina 1 . :
+f//m |\7|2 — Z } (1 +COSZIX)H—SIHZOCV} f+ <COSZ(XH—SIII2IXV,H>f

1,1 1
= (f’cosoc—Zf—kifcoszoc—zfcos‘}oc) IH|?

n f,2—3cos2¢x-|—3cos4tx
cos3u

1 1—cos?a
—Zf(1—2c052a+cos4oc) +f”m) V|2
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cosu

2.
+ (f/M'i'f (-%—Fcos a—%cos Dé)) (H,V).
Therefore, we have
d 1
ﬁ/zf(cosoc)pdyt

_ 1| (F—Xp)*
__/217

to—t
,2—3cos’a+3cos*a 1 2 4 »1—cos?a ’
+1 f o —Ef(l—Zcos a+cos*a) + f'———— ) |V|

2y
+ <f/4‘3057“2 _|_f <_%+cosz¢x—%cos4lx>> <H/V> }Pd?“' (4'8)

2
1 1 1
+f+H| f+ (f’coszx—A—lf-I—Efcosza—é—lfcos‘Loc) IH|?

cosu

Now we take f(x)= "™ with a>1 to be determined, then
f'=2axf, f'=(2a+4a’x?)f.
Hence, we have
1,1 1
(f’coszx— L—Lf—i—ifcosztx— Zlfcos"‘oc) IH|?

— 2 4 P
N (f,Z 3cos“a+3cos a—if(l—Zcoszoc—l—cos‘Loc) +f”1 cos IX) V2

cosda cos*u
+ (f,élm(zzsoziso;—Z —|—f<—%—|—COSZIX—%COS4(X)) (H,V)
:f(Za—i-l—icosztx—}lCOS 0‘) |H|2
e s N a

4 1 1
+f< 7 +8a—§+cos a—5cos zx) (H,V)

1
f< Cos “_ZCOS4“) H+V|*+f <2a ) IH|?

40>  6a—4a*  8a 1 5
f(cos%c cos*u _Cos2a+6a_zl) M +f(

28 —1) (H,V)

cos?u 2
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1
f( cos? o—cos IX) H+V|?+- f|H|2

2

1 1 1
20— - da—— |V
—I—f(az) 2a—%< -|-a4) |

+f 4q? +6a—4a2_ 8a -|—6a—1— 1 B
cos®a  costa  cos?a 4 291

1
>f< cos? &— cos a) H+V|>+- f|H|2

2a

H+ 5
cos- i

2a
cos?n

1\? 5
+4q—— V

1 1 2a 1
20— | |H — 4a—= |V
+f< ! 2>| +2a—%< cosZa T A 4) |
T 1 4 1 da(da—g) 1 (gl oo
costa  cos?a 4 2a——cos4oc 2a-1 cos’a  2a-1
1 5 )
=f COS a—costa | [H+ V4 fyH]
1 1 2a 1
20— | |H — 4a—= |V
+f< ! 2)‘ +2a—%( costa 4) ‘
2 492 +3qg— L
+f 8ac—3a 1 3a 1 _ +3a—1¢ ]V|2
2a—3 costa 2a—%cos2¢x 2a—1

1
>f< cos? oc—zlcos [X) ]H+V|2—|— f]H]Z

2

1 1 2a 1
2a—— | |H — 4a—— |V
+f<a 4)‘ +2a—%( cosZa T 4) ‘

2a— l costan  2p— 1cos?-oc

4a° —3a
. f(

If we take a=1, then with f(x)=¢e"

d 1
&/zf<coszx)pdm

1(F—Xo)*
S‘/z{z i

to—t

+f+H

1 ¥ o1 t
+ +2a__>|V|2

2
, we have

4

1 1
+ (ECOSZOC——COS41X) H+V/?
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7). 4 2 15 )
+1’H+§<‘m+ 4) g
2 1 1 1
= — )| V|* } fod
+<3cos4oc+cos2zx+24)| | }fp Ht
2
1|(F—Xo)* 1 1
S_/Z{E (toi_(;)—i—f—l—H +(§cosza—1cos4oc)|H+V]2

A B B
4 7 cos?n 4

—|H|2 |V|2}fpdw-

This proves the proposition. O

Next, we will consider the monotonicity formula for the flow (4.1) in a Kéhler
surface M. Let ip; be the injectivity radius of M. We choose a cut-off function
¢ € Cy (B (Xo)) with ¢ =1 in B,(Xo), where Xo € M, 0 <2r <ip. Choose a nor-
mal coordinates in B,,(Xy) and express F using the coordinates (F!,F2,F3,F*) as
a surface in IR*. We define

T(onfo,f)iz/z <P(F)f(

t

) pdpi,

cosu

where f(x)= ¢*. Then we have

Theorem 4.1. Let M* be a compact Kiihler surface. Then there are positive constants c1
and c depending only on M*, Fy, r and to, such that along the flow (4.1), we have

(VT (X o)

(F—Xo)*
to—t

dt

<_eC1\/f0—t/ 1
S s\

last(— 2 D)y
4 7 cos?a 4

1 1
+f+H| + (ECOSZIX—ECOS"WX) H+V|?

—IHI |+V|2}fpdm
+cpeC1vioTt, (4.9)

Proof. Note that
AF = H—I—g”l""‘ Vu
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where {v, }4—3,4 is a basis of NX, g;; is the induced metricon %, (g) is the inverse
of (g;j) and Fk is the Christoffel symbol on M. Then (4.6) reads

9 (F—Xo f+H+gT%0,)  |(X—Xq) 2
(a{+A)pOQO=>—< ) JX=Xo) |

4.10
2(tg—t) 4(tg—t)? (4.10)
Using Theorem 2.1, we have for p=1 that
0 1
——A
<8t >f<cosoc)
d 1|7
_ (2 A Y/
f <8t )coszx oV cosw
)
3 _sina o
si 2 smztx sin®a 5
L i— |V—|—H| —2 ]V|2 sin®aRic(Jey,ez) f” |V] (4.11)

We also have

d
Z9(F)=(Dg1).

Hence, from the proof of Proposition 4.1, we have

d g
dt ¥ (Xotot) T / P (Cosa)pdyt
1 d
:i/¢<——A)mew)PWH+/¢f<g+A)WWt
+/)Q” )ﬂﬂm—/fpfﬂdm
+ / PoAf (Cow)dw— /thPfAPdﬂt
</z{i + <%cos2tx—}1cos4oc) H+V/?
7 4 2 15
+Z ’H—i_? <_COSZIX+ 4 ) _|H|2 |V]2}4>fpdptt

+ /Et<D<PIf>fpdut+ /thpAdeVtH /th (Vo,Vo)dut

(F—Xp)*

f+H
o T
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F XO,g]F U[){> . . 2
+/ ‘PfP d]lt—I—Kl/ f'posin®acosady.
Zt 2(t0—t) Zt

As in the proof of Proposition 2.1 in [4] (see [4, (13)]), we see that

(F—Xo,8''T%0q)

p(Ft)
T <c +C. (4.12)

Vio—t

Furthermore, since ¢ € C3°(Bar(Xp),R™), we have

D 2
¢ ¢>0
We also have that
|£|* = | cos®aH —sin ocV} <|HP*+ |V~

Hence we have

1 Dol|? 1 D2
(Dplfo < gltPoso+2 2 fo< P+ VE)psp+22L f

Note that V¢ =0 in B,(Xp) so that |pA¢| and (Vp,V¢) are bounded in By, (Xp).
We also note by the choice of f that

0< f’sin?acosa =2fsin’x <2f.

Hence we have

d 1
—Y¥(Xo,to,t) < — —
Y Kotot) /2{4
7 4 2 15
+4_L’H+§<_Cosztx+4)

+ \/to__*ﬂc / Fdyz. (4.13)

Since (1.5) is the negative gradient flow of the functional L = fz; osaimt, we

know that , ,
du; < d 414
/zcoszx Vt_/zcosoc Ho ( )

2

F—Xp)* 1 1
F=Xo)” -+ (ECosztx—L—lcos‘La) IH+V|?

f+H
T

—|H|2+|V!2}¢fpdﬂt
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for each t€[0,T). In particular,

1 1
< < = . .
Area(Sy) < /Z — < /Z — o =L1(%o) (4.15)

By (2.8), we know that cosa >4 >0 on [0, o] for some constant § >0 depending on
Yy and fp whenever the flow has a smooth solution on [0,#)]. Hence we have that

f< eéiz for t €[0,t] so that
| fei <eLi(o). (4.16)
t

Therefore, we have from (4.13) that
d 1
— < — —
dt‘I’(Xo,to,t) < /2{4

7 4 2 15

Sy 2\v

+4’ +7< COSZIX+4>
_a
Vig—t

This implies the desired estimate. O

. 1
w+f+l{
to—t

2
1 1
+ (Ec:osztx— ZCOS4“) H+V|?

2
1
+§|Hl2+IV|2}¢fpdﬂt

+ Y +c5.

5 Flatness of the A-tangent cones

In this section, we will use the monotonicity formula obtained in the previous
section to show that the A-tangent cones of the flow (4.1) are union of flat planes.

Suppose that (Xo,T) is a singular point of the flow (4.1) where T is the first
singular time. We now describe the rescaling process around (Xp,T). As in the
previous section, we choose a normal coordinates centered at Xy with radius r
(0<r< ), using the exponential map. We express F in its coordinates functions.
For any t <0, we set

Fy(x,t) =A(F(x, T+A7%t) - Xp),

where A are positive constants which go to infinity. The scaled surface is denoted
by 2 =F, (x,t) on which dy7 is the area element obtained from dy;.
If g)‘ is the metric on X7, it is clear that

gh="gij  (84)7=A"%g".
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It is easy to check that

=\
ot ot’
Va=A"1V, A P=AT2 A%

H,=A"'H,

It follows that the scaled surface also evolves by the flow

oF
a—tA =cos?ayH, —sin’a, V, =f).

(5.1)

The weighted monotonicity formula leads to the following integral estimates.

Proposition 5.1. Let M be a Kihler surface. If the initial compact surface is symplectic,

then for any R>0 and any —oo <s1 <sp <0, we have

52
/ / |HA|2dytAdt—>0 as A—oo,
s1 JZ}NBR(0)

So )
/ / Vi |dutdt—0 as A—co,
S1 Z?OBR

52
/ / £ [2duldt 0 as Ao,
S1 Z?OBR

S
/2/ }FA} du}dt—0 as A—oo.
s1 JEZMNBR(0)

(5.2)
(5.3)
(5.4)

(5.5)

Proof. For any R >0, we choose a cut-off function ¢r € C5°(B2r (0)) with pr=1in
Bg(0), where B,(0) is the metric ball centered at 0 with radius p in R*. For any
fixed t <0, the flow (4.1) has a smooth solution near T+ A2t < T for sufficiently

large A, since T >0 is the first blow-up time of the flow. Set

1
f/\:ecoszuc/\ .

It is clear

f/\—1 Pr(Fy)exp ( — Ll dyup
sA7h0—t 40—ty )"
|F(x, T+A"%t)—Xp|?

1
_/ Hr9(F) (T+/\—2t)eXp<_ 4(T—(T+A2t))

Lria-2

) d}’lt/
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where ¢ is the function defined in the definition of ¥. Note that T-+A~2t— T for
any fixed t as A — co. By (4.9)

J c1/to—t c1/to—t
_ < 1 0
5t (6 L]f) Ccre ,

and it then follows that lim;_¢,e1V0~ ¥ exists. This implies, by taking =T and
t=T+A"2s, that for any fixed s; and s, with —oco <51 <55 <0,

2
cm/T—(T+A—Zsz)/ 1 R A
e Af)‘quO—s exp( 47(0_52) dsg, (5.6)
_e \/ T+)\ 251 f)\(PR

[FAl? A
exp( m d]/lsl —0 as A—oo.

Integrating (4.9) from s; to s yields

oA 52/ rorG—

R
( 0 Sz .usz
E 2
( !A| ) Wl

(F)

—i—ecl\/Tzsl/ qubR

dy?dt

52 —
2/ 1V A Zt/ZAf’\(PRp Fy,t) A+H),
t

51

52 > 1 1
+/s eV A Zt/zAfA‘PRP(Fk/t) (ECOSZM—L—LCOSLLM) [H,+V, [dpf dt
1 t

7 [%2 2 4 2 15
+Z/ eclm//\f/\chp(Fk,t)’H/\—i-? <—7+ 1 )V/\

cos?a

eV [ (G VAR ) Ao Byl

—CA” (sz—sl)eclA VoL (5.7)

dydt

Putting (5.6) and (5.7) together, we have

111’1’1/ / (PRP Fk/ |H/\’2d“l/t dt—

A—r00

111’1’1/ //\(PRP Fk,t)|V)\|2d‘u?\dt:0,
X

A—00 S1
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which yield (5.2) and (5.3) respectively, and

(F)*

dul =0.
to—1 uy =0

+f,+H),

$2
I / E t
m . Z;\(PRP( A1)

A—r00

Recall that
f)\—i_H/\ = (1 —|—C082[X)\)H/\—Sil’1206)\v/\.

Hence (5.2) and (5.3) imply (5.5). (5.4) is a consequence of (5.2) and (5.3).
Lemma 5.1. For any R >0 and any t <0, for sufficiently large A,
it (24 NBr(0)) <CR?,

where Br(0) is a metric ball in R* and C >0 is independent of ).

(5.8)

(5.9)

Proof. We shall first prove the inequality (5.9). We shall use C below for uniform
positive constants which are independent of R and A. Straightforward computa-

tion shows
A(sA 2
£} BR(0)) =A / duy
,”t( t ) ZTM—ZthrlR(XO) 8
_R2(A"'R ‘2/ i
( ) ZTM—ZthrlR(XO)
2 1 R
<CR / e 4(AT'R) d]/lt
ZT—«—/\*Zth/\_lR(XO) 47T()L_1R)2

— CR2Y (XO,T+ (A‘lR)2+/\‘2t,T+/\‘2t) .

By the monotonicity inequality (4.9), we have

i (2 NBr(0)) <CR° (‘I’ (Xo,T+ (A_lR)ZJr/\‘zt,g) +c)

where we have used (4.16).
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Fixed ty <0. By (5.9), for any R >0, we see that the total measure of (ng N
Br(0), y?o ) is bounded from above by CR?, the compactness theorem of the mea-
sures (cf., [16, 4.4]) implies that there is a subsequence A;(R) — oo of A such that,

(z " nBr(0), 1 ™) = (52N Br(0),157)

in the sense of measure. Using a diagonal subsequence argument, we conclude

that, there is a subsequence Ay — oo such that (Z?g‘,y?g‘) — (X&), p5; ) in the sense of

measures.

We now show that, for any t <0, the subsequence Ay which we have chosen
above satisfies (Z?k , y?k) — (Zf, ) in the sense of measure. And consequently
the limiting surface (£, 4¢") is independent of f.

Lemma 5.2. For any t <0, the sequence Ay — oo we chosen above satisfies that (Z?", y?"‘ )
— (X%, u%°) in the sense of measure, where (£°°,u*) is independent of t. The multiplicity
of X% is finite.

Proof. Note that the following standard formula for mean curvature flows

d A 2 , A
7 oy 0t == [ (AP +¥0-£) i (5.10)

is valid for any test function ¢ € C5°(M) (cf., (1) in [14, Section 6]).
Then for any given t <0 integrating (5.10) yields

pd— [ gdnli=[" (#IFL P+Vg-£r, )dp*dt =0 as k—oo
Z?k K Z';\Ok Py = ; Z?k Mk A ) AH
by (5.2) and (54).

So, for any fixed <0, (Z?" , y?" )— (Zf, ) in the sense of measures as k—co. We

denote (X3, ;) by (£%,1), which is independent of f.

The inequality (5.9) yields a uniform upper bound on R‘zy?k(ZtAk NBr(0)),
which yields finiteness of the multiplicity of . O

Definition 5.1. Let (Xo,T) be a singular point of the flow (4.1) of a closed symplectic
surface X in a compact Kihler surface M. We call (£°,du™) obtained in Lemma 5.2
a A-tangent cone of the flow (4.1) at (Xo,T).
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In the remaining part of this section, we prove that the A-tangent cones are
flat. And for simplicity in notation, we write Z;\k as Z’t‘ .
A k-varifold is a Radon measure on GK(M), where G*(M) is the Grassmann

bundle of all k-planes tangent to M. Allard’s compactness theorem for rectifiable
varifolds (see [1, 6.4], [14, 1.9] and [16, Theorem 42.7]) can be stated as follows.

Theorem 5.1 (Allard’s compactness theorem). Let (V;,u;) be a sequence of rectifiable
k-varifolds in M with

sup (u;(U)+[0V;|(U)) <oo foreach UCCM.
i>1

Then there is a rectifiable varifold (V,u) of locally bounded first variation and a subse-
quence, which we also denote by (V;,u;), such that

(i) Convergence of measures: u; — y as Radon measures on M.
(ii) Convergence of tangent planes: V;— V as Radon measures on G*(M).
(iii) Convergence of first variations: 6V; — 6V as T M-valued Radon measures.

(iv) Lower semi-continuity of total first variations: |0V| <liminf; . |0V;| as Radon
measures.

We first show that the A-tangent cone is rectifiable and stationary. The proof
is similar to that of [4, Proposition 3.1].

Proposition 5.2. Let M be a compact Kihler surface. If the initial compact surface is
symplectic, then the A tangent cone X* is rectifiable and stationary.

Proof. We set

Ap=1tc(—00,0)| lim inf H, |2+ |V |?)duk o},
w={re (o) timint [ (PPl £
and
A= | Ar.
R>0

Denote the measures of Ag and A by |Agr| and |A|, respectively. It is clear
from (5.3), (5.4) and (5.2) that |[Ar|=0 for any R >0. So |A|=0.
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Choose t ¢ A. Let VF be the varifold defined by Z¥. Tt is explained in the
previous section, that V} is well defined in Bg(0) C R* for any R > 0 when k
sufficiently large. By the definition of varifolds, we have

vE@)= [ (e =R dpd
t
for any €C)(G?*(R*),R), where G?(R*) is the Grassmanian bundle of all 2-planes
tangent to £° in R*. For each smooth surface XF, the first variation 6V} of V}
(cf., [1], [16, (39.4)] and [14, (1.7)]) is that, for any smooth vector field X with
support in Bg(0),

25VkX:—/ X-Hydyk,
t( ) £KAB(0) kAUt

so by the area upper bound (5.9)

1
2

SVE(X)| < CRIIX] o (/ H, 24 k) . 511
VO] < CRIX s sgion ( gy, o HeP (511)
We therefore have that, for any R >0

i (Br(0)) +6V/ (Br(0)) <C(R) (5.12)

by Allard’s compactness theorem, there exists a subsequence which we also de-
note by (V},u¥) such that (VF,u*)— (V°,u%) with the conclusions in Theorem 5.1
hold in Bg(0). By a diagonal subsequence argument, there exists a subsequence
which we also denote by (V¥,uF) such that (VF,uf) — (V®°,1$°) and satisfies (i) -
(iv) in Theorem 5.1 in R*.

Because t ¢ A, by (5.11), we see that 5V} — 0 at t as k— co and T is rectifiable
by applying Theorem 5.1. Furthermore by (iii) in Theorem 5.1, we have that

— 4™ [ Hoo =0V = lim 6V} =0.
k—o0

Therefore X% is stationary. O

Theorem 5.2. Let M be a compact Kihler surface. If the initial compact surface is sym-
plectic and T >0 is the first blow-up time of the flow (4.1), then the A-tangent cone %
of the flow (4.1) at (Xo,T) is a finite union of planes if it is not empty-set.

Proof. Since £* is not empty, without loss of any generality, we may assume 0 €
>* where 0 is the origin of R*. There is a sequence of points X; € ¥ satisfying
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X —0 as k— co. By Proposition 5.1, for any s; and s, with —co <51 <s, <0 and
any R >0, we have

S
/2/ |F- \ dukdt—0 as k—oo.
*¥NBR(0)

Thus, by (5.9)

S
lim / ’ / \(Pk—Xk)szy’t‘dt
k—o0 vk “NBR(0

§Zlim/ / \P,ﬂ it Clsr—51)R? Jim | X,[2=0.
ZﬂBR

k—o0

Let us denote the tangent spaces of ¥ at the point F;(x,t) and of Z at the point
F*(x,t) by TZF and TZ® respectively. It is clear that

(Fe— Xy) " =dist(Xy, TZF),
(Feo) - =dist(0,TZ™).

By Allard’s compactness theorem, i.e. Theorem 5.1 (ii), we have

? |(Fo) L |Pdpdt
/51 /zmeR(o) ® K

52 . 2
= dist(0, TX%) | du>dt
/51 /ZOOOBR(O) ’ ' ( )} #

. 52 . N2 k
= hm/ / |dist (X, TZf)| “dpgdt
~¥NBR(0)

k—o0

zlim/ / |(Fe—Xp)* Pdpkdt =0
k—o0 ¥NBR(0) k k ’ Kt

By [13, Theorem 1], we know that X% is smooth outside a discrete set of points S.
So outside S, we have
<Foo,v“> — O.

Note that the above inner product is taken in R*, and differentiating in R* then
yields
0 - <81Foo,vpc> + <Foo,alvpc> - <Foo,al’0a>.

Because 0;Fw is tangential to 2*°, by Weingarten’s equation we observe

(heo)jj{Feos€j) =0 forall w, i=1,2.
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So for a =1,2, we have

det ((heo)l) =0.

Since H=0, for « =1,2 we also have
tr((hoo)f}) =0.

It then follows immediately that the symmetric matrix ((hoo)f;) is in fact the zero
matrix, for all 7,j,& = 1,2, which obviously yields |Acw| =0. By Lemma 5.1, the
tangent cone consists of finitely many planes. This completes the proof of Theo-
rem 5.2. 0
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