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Abstract: We introduce the triple crossing number, a variation of the crossing

number, of a graph, which is the minimal number of crossing points in all drawings

of the graph with only triple crossings. It is defined to be zero for planar graphs, and

to be infinite for non-planar graphs which do not admit a drawing with only triple

crossings. In this paper, we determine the triple crossing numbers for all complete

multipartite graphs which include all complete graphs.
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1 Introduction

Let G be a graph. A drawing of G means a representation of the graph in the Euclidean

plane or the 2-sphere, where vertices are points and edges are simple arcs joining their end-

vertices. Since each edge is simple, no edge admits self crossings. Furthermore, we assume

that the interiors of edges do not contain vertices, and that two edges do not intersect if

they have a common vertex, and that two edges without common end-vertex intersect at

most once, and if so, then they intersect transversally. These requirements are essential in

this paper. A drawing is called a regular drawing (resp. semi-regular drawing) if it has only

double (resp. triple) crossing points. From the requirements, we know that a graph has at

least 6 vertices if it admits a semi-regular drawing with at least one triple crossing point.

The crossing number cr(G) of G is defined to be the minimal number of crossing points

over all regular drawings of G. In particular, cr(G) = 0 if G is planar. In this paper, we
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introduce a new variation of the crossing number. The triple crossing number tcr(G) is zero

if G is planar, and ∞ if G does not admit a semi-regular drawing. Otherwise, tcr(G) is

defined to be the minimal number of triple crossing points over all semi-regular drawings of

G. In particular, tcr(G) = 0 if and only if G is planar.

The triple crossing number can be regarded as a specialization of the degenerate crossing

number introduced by Pach and Tóth[1]. In addition, for example, the Petersen graph is

known to have the crossing number two (and thus non-planar), and hence has the triple

crossing number one from Fig. 1.1. In general, we have the inequality cr(G) ≤ 3tcr(G)

for these two notions, since we obtain a regular drawing from a semi-regular drawing by

perturbing each triple crossing point into three double crossing points.

Fig. 1.1 The Petersen graph

In this paper, we determine the triple crossing numbers for all complete multipartite

graphs. A complete multipartite graph is a graph whose vertex set can be partitioned into

at least two, mutually disjoint non-empty sets, called the partite sets, so that two vertices

u and v are adjacent if and only if u and v belong to different sets of the partition. If the

partite sets are of sizes n1, · · · , nt (ni ≥ 1), then the graph is denoted by Kn1,··· ,nt . We

always assume that ni ≥ nj if i < j. In particular, if ni = 1 for each i, then the graph

K1,··· ,1 is the complete graph Kt with t vertices.

Here is how this paper is organized. After we describe basic lemmas, used in the paper

repeatedly, in Section 2, we show that the triple crossing number of a complete t-partite

graph is ∞ if t ≥ 5 in Section 3. In the successive sections, we work on the cases when t ≤ 4.

Here we mention that the hardest part is the case where t = 2, in particular, long, but

elementary, geometric arguments are needed to show that K5,4, K4,4, K5,3 and Kn,3 with

n ≥ 7 do not admit a semi-regular drawing. This is treated in Sections 4, 5 and 6. After

concluding the case where t = 2 in Section 7, the cases where t = 4 and t = 3 are established

in Sections 8 and 9, respectively. Section 10 contains some remarks on our requirements for

drawings and a generalization of triple crossing number.

2 Basic Lemmas

Basic terms of graph theory can be found in textbooks such as [2]–[3].

Lemma 2.1 The complete bipartite graph K3,3 and the complete graph K5 with five ver-

tices are non-planar. Also, a graph is non-planar if it contains K3,3 or K5 as a subgraph.
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For a graph with p vertices and q edges, let d = 3p− q − 6.

Lemma 2.2 Let G be a plane graph with p(≥ 3) vertices and q edges. Then G has a

vertex of degree less than 6 and the inequality d ≥ 0 holds. Furthermore, d = 0 if and only

if each region of G is 3-sided.

For the proofs of these lemmas, see [2].

Lemma 2.3 Let G be a graph with p(≥ 3) vertices and q edges. If G admits a semi-regular

drawing, then d ≥ 0. Thus, if d < 0, then tcr(G) = ∞.

Proof. Let D be a semi-regular drawing of G, and let k be the number of triple crossing

points in D. If a new vertex is added to each triple crossing point, then we obtain a (simple)

plane graph G′. Since G′ has p+ k vertices and q+3k edges, we have q+3k ≤ 3(p+ k)− 6

by Lemma 2.2, from which we have the conclusion.

Lemma 2.4 Let G be a connected plane graph with p(≥ 3) vertices, q edges and r faces.

(1) If d = 1, then one face is 4-sided, and the others are 3-sided.

(2) If d = 2, then either

(a) one face is 5-sided, and the others are 3-sided; or

(b) two faces are 4-sided, and the others are 3-sided.

(3) If d = 3, then either

(a) one face is 6-sided, and the others are 3-sided; or

(b) one face is 5-sided, another face is 4-sided, and the others are 3-sided; or

(c) three faces are 4-sided, and the others are 3-sided.

Proof. By Euler’s formula (see [2]), p − q + r = 2. Let ri denote the number of i-sided

faces of G. Then

3r3 + 4r4 + 5r5 + 6r6 +
∑
i≥7

iri = 2q. (2.1)

Thus

7r − 4r3 − 3r4 − 2r5 − r6 ≤ 2q.

Since q = p+ r − 2 and d = 2p− r − 4, we have

4r − d ≤ 4r3 + 3r4 + 2r5 + r6 ≤ 4(r3 + r4 + r5 + r6) ≤ 4r. (2.2)

In particular, the difference between the second and third terms, which is r4 + 2r5 + 3r6, is

at most d. We remark that d ≡ r (mod 2).

When d ∈ {1, 2, 3}, 4r is the only multiple of four within the interval [4r − d, 4r].

Since 4(r3 + r4 + r5 + r6) is a multiple of four, we see 4(r3 + r4 + r5 + r6) = 4r, giving

r3 + r4 + r5 + r6 = r. Furthermore, if r5 = r6 = 0, then (2.1) reduces to 3r3 + 4r4 = 2q.

Combining this with r3 + r4 = r gives r4 = 2q − 3r = d.

(1) Since r4 +2r5 +3r6 ≤ d = 1, we have r5 = r6 = 0. Then r4 = 1, and thus r3 = r− 1.

(2) Since r4 + 2r5 + 3r6 ≤ 2, we have r6 = 0 and r5 ≤ 1. If r5 = 1, then r4 = 0, giving

r3 = r − 1. This is the conclusion (a). If r5 = 0, then r4 = 2, and thus r3 = r − 2. This is

the conclusion (b).



4 COMM. MATH. RES. VOL. 32

(3) Since r4 + 2r5 + 3r6 ≤ 3, we have r6 ≤ 1. If r6 = 1, then r4 = r5 = 0, and thus

r3 = r − 1. This is the conclusion (a).

Suppose r6 = 0. Since r4 + 2r5 ≤ 3, we see r5 ≤ 1.

If r5 = 1, then r4 ≤ 1. From (2.1), 3r3+4r4 = 2q−5. Combining this with r3+r4 = r−1

gives r4 = 2q−3r−2. Since r ≡ 1 (mod 2), we have r4 = 1. Hence r4 = r5 = 1 and r3 = r−2.

This is the conclusion (b).

Finally suppose r5 = 0. Then r4 = 3, and thus r3 = r − 3. This is the conclusion (c).

3 Complete t-partite Graphs (t ≥ 5)

Theorem 3.1 If G is a complete t-partite graph with t ≥ 5, then G does not admit a

semi-regular drawing. Thus, tcr(G) = ∞.

Proof. Assume for a contradiction that G admits a semi-regular drawing D. Let t ≥ 7. If

a new vertex is added to each triple crossing point, then we have a plane graph G′. However,

the original vertices have degree at least t − 1(≥ 6), and the new vertices have degree 6.

This contradicts Lemma 2.2.

Let G = Kn1,n2,··· ,n6 . Then G has p =
∑
i

ni vertices and q =
∑
i<j

ninj edges. So

q − 3p+ 6 = (n1 + n4 − 3)(n2 + n3 − 3) + n1n4 + n2n3

+ (n5 + n6)(n1 + n2 + n3 + n4 − 3) + n5n6 − 3

≥ (2n4 − 3)2 + 2n2
4

≥ 3.

This contradicts Lemma 2.3.

Finally, let G = Kn1,n2,··· ,n5 . As above,

q − 3p+ 6 = (n1 + n4 − 3)(n2 + n3 − 3) + n1n4 + n2n3

+ n5(n1 + n2 + n3 + n4 − 3)− 3

≥ (2n4 − 3)2 + 2n2
4 + n5 − 3

≥ 1.

This contradicts Lemma 2.3 again.

Corollary 3.1 Let Kn be the complete graph with n vertices. Then

tcr(Kn) =

{
0, n ≤ 4;

∞, otherwise.

4 K5,4

Throughout this section, we assume that G = K5,4 admits a semi-regular drawing. We show

that this is impossible.

Let V1 = {x1, x2, x3, x4, x5} and V2 = {A, B, C, D} be the partite sets of G. For

convenience, we refer to vertices of V1 (resp. V2) as black (resp. white) vertices. We denote
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the edge Axi by ai for 1 ≤ i ≤ 5. These are called A-lines. Similarly, define bi, ci, di, and

call them B-, C-, D-lines, respectively. In particular, each black vertex is of degree four,

and is incident with four distinct classes of lines.

We fix a semi-regular drawing of G hereafter, which is denoted by the same symbol G.

Notice that any line in G connects a white vertex and a black vertex, and there may be

triple crossing points on it. From our requirements for drawings, each triple crossing point

of G arises from three distinct classes of lines. This fact will be referred to as property (∗)
throughout the paper. Property (∗) is very useful and powerful. For example, if an A-line

and a B-line intersect at a triple crossing point, then we can conclude that the remaining

line through the triple crossing point is either a C- or D-line.

Let k be the number of triple crossing points. Add a new vertex to each triple crossing

point. Then we have a plane graph G′ with 9 + k vertices and 20 + 3k edges. Since

3(9 + k) − (20 + 3k) − 6 = 1, the faces of the plane graph G′ are all 3-sided, except a

single 4-sided face by Lemma 2.4. For the semi-regular drawing G, a face means that of G′,

although it is an abuse of words. A 3-sided face is also called a triangle.

Take a look around vertex A. There are five faces of G, since A is not a cut vertex. We

may assume that all five faces around vertex A are triangles without loss of generality, since

the 4-sided face is incident with at most two white vertices. There are two types of triangles

around vertex A as shown in Fig. 4.1. A type I triangle is incident with two triple crossing

points, and a type II triangle is incident with a black vertex and a triple crossing point.

type I type II adjoint pair

Fig. 4.1 Two types of triangles at A and an adjoint pair of type II triangles

Notice that type II triangles appear in pairs. More precisely, this means that every type

II triangle at A shares an A-line fully with another type II triangle. Such a pair of type

II triangle is referred to as an adjoint pair of type II triangles. See Fig. 4.1. Hence the

number of type II triangles around vertex A is either 0, 2 or 4. We will eliminate these three

possibilities.

Lemma 4.1 The number of type II triangles at vertex A is not four.

Proof. Suppose that there are four type II triangles at A. Then we can assume that

the local configuration at A is as shown in Fig. 4.2(1) by renaming B, C, D, if necessary.

(Recall that each black vertex is incident with four distinct classes of lines.)

Then, by property (∗), the horizontal line is a B- or D-line, and the right lower line is a

C- or D-line. See Fig. 4.2(2), where the symbol B/D, for example, indicates the class of the
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horizontal line. It does not mean that vertex B or D locates the left side of the horizontal

line. Thus there are four cases as shown in Fig. 4.3.

(1) (2)

Fig. 4.2 Four type II triangles at A

(1) (2) (3) (4)

Fig. 4.3 Four cases where are four type II triangles

The class of the right upper line is determined by property (∗) and the fact that each

black vertex is incident with four distinct classes of lines. For Fig. 4.3(4), the right upper line

may be a C-line. But then, it can be reduced to (3) by renaming B and D and symmetry.

Claim 4.1 Fig. 4.3(1) is impossible.

Proof. Consider the B-line b2. Let f1, f2 be the faces incident with b2 and vertex x2. See

Fig. 4.4.

Fig. 4.4 The B-line b2 and two faces f1, f2

If f1 is 4-sided, then f2 is 3-sided, because there is only one 4-sided face. Since two

B-lines cannot intersect at a triple crossing point by property (∗), the horizontal B-line and

b2 meet at vertex B as shown in the second of Fig. 4.4 in order to make f2 3-sided. However,

f1 cannot be 4-sided. Thus we can conclude that f1 is 3-sided. Then vertex B is located

around f1 as shown in the first of Fig. 4.5 by the same reason as above.
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Fig. 4.5 f1 is 3-sided

Also, then f2 cannot be 4-sided, and thus 3-sided. Hence the B-line, intersecting two

A-lines a3 and a4, turns out to be b1. That is, it goes to black vertex x1 as shown in the

third of Fig. 4.5. (At this point, b1 may contain triple crossing points on it after crossing

a4.) Consider the face f3, which is adjacent to f1 along the B-line b5.

If f3 is 3-sided, then the B-line b, which must be b3 or b4, intersects the A-line a1. Then

b can reach neither x3 nor x4, because b cannot cross b1 or meet a1 twice. Therefore, we

found that f3 is the only 4-sided face. Thus f4 is 3-sided. We see that the line going through

the upper triple crossing point of f4 is either an A- or B-line by property (∗). Since f5 is

also 3-sided, the B-line b′ goes to x3, or crosses the A-line a3. In any case, f6 cannot be

3-sided as described in Fig. 4.6. This is a contradiction.

Fig. 4.6 b′ goes to x3 or crosses a3

Claim 4.2 Fig. 4.3(2) is impossible.

Proof. First, since the horizontal D-line intersects a3, a4, c5, it is either d1 or d2 from

our requirements for drawings. By symmetry, we can assume that f1 is 3-sided as in Fig.

4.7. Then vertex D is located around f1. Then the horizontal D-line turns out to be d1.

However, neither f2 nor f3 is 3-sided, which contradicts that there is only one 4-sided face.
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Fig. 4.7 f1 is 3-sided

Claim 4.3 Fig. 4.3(3) is impossible.

Proof. In Fig. 4.8, either f3 or f4 is 4-sided. (For, if f3 is not 4-sided, then it is 3-sided.

Then vertex D is located there, which implies that f4 is not 3-sided.) Thus both f1 and f2

are 3-sided. Then the B-line b1 is determined. Since f5 is 3-sided, the B-line b, which is b3

or b4, crosses the A-line a1. Then b can reach neither x3 nor x4, a contradiction.

Fig. 4.8 Both f1 and f2 are 3-sided

Claim 4.4 Fig. 4.3(4) is impossible.

Proof. In Fig. 4.9, if f1 is not 3-sided, then f2 is 3-sided, and then vertex D is located

there. But then, f1 cannot be 4-sided. Hence f1 is 3-sided. Similarly, so is f2. Then the

D-line d1 is determined. If f3 is 3-sided, then the D-line d, which is d3 or d4, crosses the

A-line a1. Then d cannot reach any black vertex as before. Hence f3 is 4-sided. As in the

proof of Claim 4.1, examining f4, f5, f6 leads to a contradiction.

Fig. 4.9 Both f1 and f2 are 3-sided

This completes the proof of Lemma 4.1.

Lemma 4.2 The number of type II triangles at vertex A is not two.
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Proof. Suppose that there are two type II triangles at A. Then we can assume that the

local configuration at A is as shown in Fig. 4.10(1), up to renaming. By property (∗), the
left upper line is a B- or D-line. Similarly, the right upper line is a C- or D-line. See Fig.

4.10(2). Then there are three cases, up to symmetry and relabeling of vertices, as shown in

Fig. 4.11, where the class of the horizontal line is determined by property (∗).

(1) (2)

Fig. 4.10 Two type II triangles at A

(1) (2) (3)

Fig. 4.11 Three cases where there are two type II triangles

Claim 4.5 Fig. 4.11(1) is impossible.

Proof. First, assume that f1 is 4-sided in Fig. 4.12. Then the others are all 3-sided. Thus

f2 and f3, and then f4, f5 are determined as in Fig. 4.12. (If an A-line goes through the

left triple crossing point of f2, then the face sharing a D-line with f2 cannot be 3-sided.

Similarly for f3.)

Fig. 4.12 Assume that f1 is 4-sided

Consider the B-line b. It goes to x2 or crosses the A-line a2. Suppose that the former

happens. Then f6, · · · , f9 are determined as in Fig. 4.13. Moreover, the D-line d5 is also

determined.



10 COMM. MATH. RES. VOL. 32

Fig. 4.13 The case where b goes to x2

Then the C-line c cannot go to x5, since it crosses d5. Hence it crosses the A-line a5.

This forces the D-line d to cross the same a5. Then it cannot reach any black vertex, a

contradiction. Therefore, b crosses the A-line a2. By the same reason, c crosses a5.

Repeating the same argument, we obtain the configuration as shown in Fig. 4.14.

Fig. 4.14 A final contradiction when f1 is 4-sided

If the B-line b′ crosses the A-line a4, then both b′ and b′′ go to x3, a contradiction. Thus

b′ goes to x4. Similarly, the C-line c3 is determined. See the second of Fig. 4.14.

Then f1 can be incident with neither vertex B nor C. For example, if f1 is incident

with B, then the left face of f1 cannot be 3-sided. Hence f1 is incident with two more triple

crossing points. Then the upper horizontal line of f1 is an A- or D-line by property (∗).
From our requirements, it cannot be an A-line. Thus we have the third of Fig. 4.14, but

then vertex D cannot be located.

Next, assume that f1 is 3-sided. We see that a D-line goes through the upper triple
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crossing point of f1 from our requirements and property (∗).
By symmetry, we can assume that f2 is 3-sided. See Fig. 4.15.

Fig. 4.15 f1 is 3-sided

If f3 is also 3-sided, then the B-line b′′′ and the C-line c′ meet twice, a contradiction.

Hence f3 turns out to be 4-sided. Also, no A-line is adjacent to f3, because each of the

four A-lines a2, · · · , a5 meets b′′′ or c′. Thus vertex B is located as in Fig. 4.15. Again,

examining f4, f5, f6 leads to a contradiction as in the proof of Claim 4.1.

Claim 4.6 Fig. 4.11(2) is impossible.

Proof. In Fig. 4.16, suppose that f1 is 4-sided. Then f2 is 3-sided, and so vertex D appears

there. Then f3 is not 3-sided, a contradiction. Hence f1 is 3-sided.

Fig. 4.16 f1 is 3-sided

If f2 is 3-sided, then f3 is 4-sided as above. Otherwise, f2 is 4-sided. In any case, f4 is

3-sided, and vertex C appears. Also, f5 and f6 are 3-sided. But this is impossible as in the

proof of Claim 4.1 again.

Claim 4.7 Fig. 4.11(3) is impossible.
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Proof. In Fig. 4.17, at least two of f1, f2, f3 are 3-sided. If f1 and f2 are 3-sided, then

vertex D cannot be located correctly. Similarly for the case where f1 and f3 are 3-sided.

Hence f2 and f3 are 3-sided. Then the D-line d goes to x2 or x3, and another D-line d′ goes

to x4 or x5. But this is impossible.

Fig. 4.17 f2 and f3 are 3-sided

This completes the proof of Lemma 4.2.

Lemma 4.3 The number of type II triangles at vertex A is not zero.

Proof. Assume that there are no type II triangles at A. Up to symmetry and relabeling of

vertices, the local configuration at A can be assumed as in the first of Fig. 4.18.

Fig. 4.18 Five type I triangles at A

By symmetry, we can assume that the right hand side does not contain a 4-sided face.

More precisely, f1, · · · , f4 are all 3-sided. Thus vertex B is located. Then examining f2, f3,

f4, as in the proof of Claim 4.1, leads to a contradiction. (In this case, f3 can be incident

with x5. Then f4 cannot be 3-sided likewise.)

Theorem 4.1 K5,4 does not admit a semi-regular drawing.

Proof. This follows from Lemmas 4.1, 4.2 and 4.3.
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5 K4,4

Throughout this section, we assume that G = K4,4 admits a semi-regular drawing. We will

show that this is impossible.

Let V1 = {x1, x2, x3, x4} and V2 = {A,B,C,D} be the partite sets of G. As in Section 4,

we refer to vertices of V1 (resp. V2) as black (resp. white) vertices, and use the same notions

as A-lines, type I or II triangles, so on. Also, property (∗) holds from our requirements.

We fix a semi-regular drawing of G, which is denoted by G again. Let k be the number

of triple crossing points. Add a new vertex to each triple crossing point. Then we have a

plane graph G′ with 8 + k vertices and 16 + 3k edges. Since 3(8 + k) − (16 + 3k) − 6 = 2,

either

(1) one face of G′ is 5-sided, and the others are 3-sided; or

(2) two faces of G′ are 4-sided, and the others are 3-sided

by Lemma 2.4. As in Section 4, a face of G means that of G′.

5.1 Case (1)

We treat the case where one face of G is 5-sided, and the others are 3-sided. At most two

white vertices appear in the 5-sided face. Hence we can assume that four faces at vertex A

are all 3-sided. Thus the number of type II triangles at vertex A is either 0, 2 or 4. We will

eliminate these three possibilities.

Lemma 5.1 The number of type II triangles at vertex A is not four.

Proof. Assume that there are four type II triangles at A. We may assume that the local

configuration at A is as shown in Fig. 5.1(1), up to renaming. By property (∗), the right

upper line is a C- or D-line, and the left upper line is a B- or D-line (see Fig. 5.1(2)). Up

to symmetry and relabeling, there are two possibilities as shown in Fig. 5.2.

(1) (2)

Fig. 5.1 Four type II triangles at A
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(1) (2)

Fig. 5.2 Two cases where there are four type II triangles

Claim 5.1 Fig. 5.2(1) is impossible.

Proof. By symmetry, we can assume that both f1 and f2 are 3-sided. Since f1 is 3-sided,

vertex D is located. Then f2 cannot be 3-sided, a contradiction.

Claim 5.2 Fig. 5.2(2) is impossible.

Proof. By symmetry, we can assume that f1, f2 are 3-sided again. Then the B-line b3

meets the C-line c3, a contradiction.

This complete the proof of Lemma 5.1.

Lemma 5.2 The number of type II triangles at vertex A is not two.

Proof. Assume that there are two type II triangles at A. As before, we may assume that

the local configuration at A is as shown in Fig. 5.3(1). By property (∗), the right upper line
is a C- or D-line, and the left upper line is a B- or D-line (see Fig. 5.3). Up to symmetry

and relabeling, there are two possibilities as shown in Fig. 5.4.

(1) (2)

Fig. 5.3 Two type II triangles at A
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(1) (2)

Fig. 5.4 Two cases where there are two type II triangles

Claim 5.3 Fig. 5.4(1) is impossible.

Proof. Assume that f2 is not 3-sided. Then f1 is 3-sided, and so vertex B is located there.

Thus the B-line b2 is determined. See the first of Fig. 5.5. Another B-line b crosses the

A-line a2, but then it cannot reach any black vertex.

Fig. 5.5 b crosses a2

Hence f2 is 3-sided, so vertex D is located. Then f3 cannot be 3-sided. Thus f1 is

3-sided, so vertex B is located, and the B-line b2 is determined again as in the second of

Fig. 5.5. Examining b leads to a contradiction as above.

Claim 5.4 Fig. 5.4(2) is impossible.

Proof. By symmetry, we may assume that both f1 and f2 are 3-sided. Then vertex B is

located. See the first of Fig. 5.6.

If f3 is 3-sided, then the B-line b and the C-line c meet twice, a contradiction. Hence f3

is not 3-sided, and b goes to x2 as in Fig. 5.6. Then a line b′ turns out to be a B-line. But

this B-line cannot reach any black vertex, otherwise it crosses a2 twice.

This completes the proof of Lemma 5.2.
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Fig. 5.6 Both f1 and f2 are 3-sided

Lemma 5.3 The number of type II triangles at vertex A is not zero.

Proof. Assume that there is no type II triangle at A. Up to symmetry and relabeling, there

are two possibilities as shown in Fig. 5.7.

(1) (2)

Fig. 5.7 Two cases where there are four type I triangles

In any case, we can assume that f1 is 3-sided by symmetry. Then vertex B is located

there. The B-line b goes to x1 or x2, and the B-line b′ goes to x3 or x4. This is impossible.

Proposition 5.1 Case (1) is impossible.

Proof. This immediately follows from Lemmas 5.1, 5.2 and 5.3.

5.2 Case (2)

We treat the case where two faces of G are 4-sided, and the others are 3-sided. There are

two subcases:

(2-1) All white vertices are incident with a 4-sided face.

(2-2) There is a white vertex which is not incident with a 4-sided face.

5.2.1 Subcase (2-1)

Around each 4-sided face, just two white vertices appear. Hence there is just one 4-sided

face around each white vertex. Also, it implies that if a face is incident with two adjacent
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triple crossing points or an adjacent pair of a triple crossing point and a black vertex, then

it must be 3-sided.

In this subcase, then the number of type II triangle at vertex A is 0, 1, 2 or 3.

Lemma 5.4 The number of type II triangles at A is not three.

Proof. Assume that there are thee type II triangle at A. Up to symmetry and renaming,

the situation is as shown in Fig. 5.8(1), where f is 4-sided.

(1) (2)

Fig. 5.8 Three type II triangles at A

As remarked above, f1 is 3-sided. If f is incident with vertex D, then f1 is incident with

vertex D. This is impossible. Thus f is incident with vertex C. See Fig. 5.8(2). Since f2 is

also 3-sided, the left upper line of f2 is a B-line. We have the configuration as in Fig. 5.9(1).

(1) (2)

Fig. 5.9 Three type II triangles at A (continued)

Then f3 is 3-sided, but this forces f4 to be neither 3-sided nor 4-sided, a contradiction. See

Fig. 5.9(2).
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Lemma 5.5 The number of type II triangles at A is not two.

Proof. Assume that there are two type II triangles at A. Up to symmetry and renaming,

there are two possibilities as shown in Fig. 5.10, where f is 4-sided. Notice that f1 and f2

are 3-sided.

(1) (2)

Fig. 5.10 Two cases where there are two type II triangles

For Fig. 5.10(1), either vertex C or D appears around f by property (∗). Since f1 is

3-sided, the former is impossible. The latter is also impossible, because f2 is 3-sided. For

Fig. 5.10(2), vertex C appears around f by property (∗). Then f1 gives a contradiction,

again.

Lemma 5.6 The number of type II triangles at A is not one.

Proof. Suppose that there is one type II triangle at A. Up to symmetry and renaming, the

configuration is as shown in Fig. 5.11, where f is 4-sided.

Fig. 5.11 One type II triangle at A

Notice that f1 is 3-sided. If f is incident with vertex C, then f1 is incident with C, an

impossible. Hence f is incident with vertex D. Thus we have the configuration as in Fig.

5.11. The fact that f2 is 3-sided forces f3 to be 4-sided. Then f3 is incident with vertices C

and D, which contradicts the fact that D is incident with only one 4-sided face.

Lemma 5.7 The number of type II triangles at A is not zero.
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Proof. Assume that there is no type II triangle at A. Up to symmetry and renaming, there

are two possibilities as shown in Fig. 5.12, where f is 4-sided.

(1) (2)

Fig. 5.12 Two cases where there is no type II triangle

For Fig. 5.12(1), f1 is 3-sided, so vertex B is located there. Then b goes to x1 or x2, and

b′ goes to x3 or x4. This is impossible.

For Fig. 5.12(2), vertex C appears around f by property (∗). On the other hand, f1 is

3-sided. This is impossible.

5.2.2 Subcase (2-2)

In this subcase, we may assume that vertex A is not incident with a 4-sided face without

loss of generality. Thus the number of type II triangles at A is 0, 2 or 4.

Lemma 5.8 The number of type II triangles at A is not four.

Proof. Suppose that there are four type II triangles at A. Then there are two possibilities

as in Fig. 5.2.

Claim 5.5 Fig. 5.2(1) is impossible.

Proof. Among the four faces f1, · · · , f4, at least two are 3-sided. Furthermore, if f1 (resp.

f3) is 3-sided, then f2 (resp. f4) is 4-sided, and vice versa. Up to symmetry, there are three

possibilities:

(a) f1 and f3 are 3-sided;

(b) f1 and f4 are 3-sided;

(c) f2 and f3 are 3-sided.

In case (a), f2 and f4 are 4-sided. Thus the others are all 3-sided. See Fig. 5.13(1). By

examining f5, the left upper line of f4 is not an A-line. Since f5 and f6 are 3-sided, two

D-lines d and d′ go to x2, or cross, a contradiction.

In case (b), f2 and f3 are 4-sided. By examining d and d′ shown in Fig. 5.13(2), the

same argument as (a) leads to a contradiction.
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(1) (2)

Fig. 5.13 For (a) and (b)

In case (c), f1 and f4 are 4-sided. As above, we see that neither f1 nor f4 is incident

with an A-line. See the first of Fig. 5.14. Thus we have two B-lines b and b′ as shown there.

Since f5 and f6 are 3-sided, vertex B is located as in the second of Fig. 5.14. But then f7

cannot be 3-sided, a contradiction. Since f5 and f6 are 3-sided, vertex B is located as in

the second of Fig. 5.14. But then f7 cannot be 3-sided, a contradiction.

Fig. 5.14 For (c)

Claim 5.6 Fig. 5.2(2) is impossible.

Proof. If both f1 and f2 are 3-sided, then we have a contradiction as in the proof of Claim

5.2. Hence either of f1 or f2 is 4-sided. Similarly, either f3 or f4 is 4-sided. Then there are
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two possibilities, up to symmetry:

(d) f1 and f3 are 4-sided;

(e) f1 and f4 are 4-sided.

In case (d), f2 and f4 are 3-sided as in the first of Fig. 5.15.

Fig. 5.15 For (d)

By property (∗), the right upper line ℓ of f3 is an A- or B-line. If ℓ is an A-line, then it

is either a2 or a4. But if ℓ is a4, then ℓ meets c1 twice, impossible. If ℓ is a2, then ℓ meets

b1 twice, impossible. Thus ℓ is a B-line. By the same reason, the right lower line of f1 is

not an A-line, and so a C-line.

Thus vertices B and C are located as in the second of Fig. 5.15. After locating f5 and

f6 as in the third of Fig. 5.15, consider the B-line b and the C-line c. If b crosses the A-line

a2, then so does c1 through the same triple crossing point on a2. Then f7 cannot be 3-sided.

Hence b, and then c, go to x2. Then f7 and f8 cannot be 3-sided simultaneously.

In case (e), f2 and f3 are 3-sided. See Fig. 5.16.

By the same argument as (d), the right lower line of f1 turns out to be a C-line. Similarly,

the upper line of f4 is a C-line. Since both f1 and f4 are 4-sided, vertex C is located as in

the second of Fig. 5.16. Then f5 is not 3-sided, a contradiction.

This completes the proof of Lemma 5.8.

Lemma 5.9 The number of type II triangles at A is not two.

Proof. Suppose that there are two type II triangles at A. Then the local configuration at

A is Fig. 5.4(1) or (2).
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Fig. 5.16 For (e)

Claim 5.7 Fig. 5.4(1) is impossible.

Proof. We claim that f1 is 4-sided. Assume that f1 is 3-sided. Then vertex B is located,

and the B-line b2 is determined as in Fig. 5.17.

Fig. 5.17 The case where f1 is 3-sided

Suppose further that f2 is 4-sided. If vertex D is incident with f2, then f2 cannot be

4-sided. Hence f2 is incident with two more triple crossing points. Then the fourth line of

f2 is an A-, B- or C-line by property (∗). However, the existence of b2 implies that it is

neither an A- nor B-line. Thus the right lower line of f2 is a C-line. Then the second of

Fig. 5.18 is the only possible configuration for f2. But this is impossible, because two lines
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meet at most once.

Thus we see that f2 is 3-sided, so vertex D is located as in Fig. 5.18. Then f3 is 4-sided,

and the D-lines d3 and d4, and thus d2, are determined. But, f4 can be neither 3-sided nor

4-sided, because the existence of b2 disturbs an A-line and a B-line as above. We have thus

shown that f1 is 4-sided.

Fig. 5.18 The case where f1 is 3-sided (continued)

Next, we claim that f2 is 4-sided. Assume not. Then vertex D is located, and thus d4 is

determined. Also, f3 is 4-sided. If f3 is incident with x2, then the D-line d2 is determined,

and thus d3 cannot be drawn. Hence f3 is incident with another triple crossing point as in

the first of Fig. 5.19, where an A- or C-line goes through. If it is a C-line, then f4 cannot

be 3-sided. Hence it is an A-line, in particular, a2. See the second of Fig. 5.19. Then d2

cannot be drawn.

Fig. 5.19 The case where f2 is 3-sided

Thus we have specified two 4-sided faces f1 and f2.

Now, f3 is 3-sided. By property (∗), the right lower line of f2 is an A- or C-line. See the

first of Fig. 5.20. If it is an A-line, then it is a2. But this is impossible, because the right

upper line of f2 already meets a2. Thus the right lower line of f2 is a C-line. Furthermore,

if f2 is incident with x4, then the situation is drawn as in the second of Fig. 5.20. Then b2
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is determined, and thus vertex B is located. However, b1 cannot be drawn.

Fig. 5.20 f1 and f2 are 4-sided

Thus f2 is incident with a triple crossing point at its right. See the first of Fig. 5.21. By

property (∗), an A- or B-line goes through the triple crossing point. But it cannot be an

A-line by examining the (3-sided) face right above f2. After locating vertex B, the B-line

b2 is determined. Then b1 cannot be drawn.

Fig. 5.21 f1 and f2 are 4-sided (continued)

Claim 5.8 Fig. 5.4(2) is impossible.

Proof. We claim that f1 and f4 are 4-sided. Assume that f1 is 3-sided. Then vertex B is

located, and then the B-line b2 is determined. See the first of Fig. 5.22.

Suppose further that f2 is 4-sided. Then f2 is incident with either vertex C, or vertex

D, or two more triple crossing points. If f2 is incident with vertex C, then c4 is determined,

and then c1 cannot be drawn. If f2 is incident with vertex D, then an A- or B-line appears

at the triple crossing point where a C-line meets a D-line. But this is impossible by the

existence of b2 as in the proof of Claim 5.7. If f2 is incident with two more triple crossing
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points, then a similar argument to the proof of Claim 5.7 gives a contradiction again (see

Fig. 5.22). Thus f2 is 3-sided.

Fig. 5.22 The case where f1 is 3-sided

Then the situation is as in the proof of Claim 5.4, leading to a contradiction. Thus f1

is 4-sided. By the same argument, f4 is 4-sided. Then f2 and f3 are 3-sided. But this is

impossible, because there are a B-line and C-line meeting twice.

This completes the proof of Lemma 5.9.

Lemma 5.10 The number of type II triangles at A is not zero.

Proof. Suppose that there is no type II triangle at A. Then the local configuration at A is

Fig. 5.7(1) or (2).

In Fig. 5.7(1), if f1 or f2 is 3-sided, then we have a contradiction as in the proof of Lemma

5.3. Thus both are 4-sided. By the same reason, f3 and f4 are 4-sided, a contradiction.

In Fig. 5.7(2), if f1 or f2 is 3-sided, then we have a contradiction as above. Hence f1

and f2 are 4-sided. Thus f3 and f4 are 3-sided. Then the C-line c meets the D-line d twice,

a contradiction.

Proposition 5.2 Case (2) is impossible.

Proof. This follows from Lemmas 5.4–5.10.

Theorem 5.1 K4,4 does not admit a semi-regular drawing.

Proof. This follows from Propositions 5.1 and 5.2.

6 Kn,3

Let G = Kn,3 with n ≥ 5. In this section, we show that if n ̸= 6 then G does not admit a

semi-regular drawing. Hereafter, we assume that n ≥ 5 and n ̸= 6.
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6.1 Exceptional faces

Let V1 and V2 = {A, B, C} be the partite sets of G. As before, we refer to a vertex of

V1 (resp. V2) as a black (resp. white) vertex. Any black vertex is incident with an A-line,

B-line and C-line.

Suppose that G admits a semi-regular drawing. Fix such a drawing, denoted by G again.

Property (∗) holds. That is, at each triple crossing point, an A-line, a B-line and a C-line

meet. Let k be the number of triple crossing points. Add a new vertex to each triple crossing

point. Then we have a plane graph G′ with n + 3 + k vertices and 3n + 3k edges. Since

3(n + 3 + k) − (3n + 3k) − 6 = 3, the faces of G′ are 3-sided, except at most three faces,

by Lemma 2.4. We refer to a non-triangular face as an exceptional face. More precisely,

Lemma 2.4 claims that either

(1) G′ has only one exceptional face, which is 6-sided; or

(2) G′ has just two exceptional faces, which are 5-sided and 4-sided, respectively; or

(3) G′ has just three exceptional faces, which are 4-sided.

As before, a face of G means that of G′. Let N be the number (counted with multiplic-

ities) of white vertices which are incident with exceptional faces. Then 0 ≤ N ≤ 6, because

two white vertices are not adjacent in G′. Since a white vertex is not a cut-vertex of G′, a

white vertex cannot appear around one exceptional face twice.

Lemma 6.1 Two exceptional faces are not incident with the same pair of white vertices.

Proof. Suppose that two exceptional faces f and f ′ are incident with white vertices A and

B, say. Then both f and f ′ are 4-sided, or one is 4-sided and the other 5-sided. See Fig.

6.1. Recall that any black vertex is incident with a C-line. Thus, in any case, we cannot

place C-lines.

Fig. 6.1 Two exceptional faces with the same pair of white vertices

Recall that there are two types of triangles at a white vertex as shown in Fig. 4.1. Let

X = B or C. At vertex A, if a type I triangle is bounded by two A-lines and an X-line,

then it is said to be of type I-X. See Fig. 6.2. Furthermore, a type I-X triangle is said to

be good if the face sharing the X-line with the type I-X triangle is 3-sided. Otherwise, it is
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bad. In particular, a bad type I triangle is adjacent to an exceptional face, which is referred

to as its associated exceptional face.

type I-B type I-C

Fig. 6.2 A type I-B triangle and a type I-C triangle

Lemma 6.2 Let {X, Y } = {B, C}. If there is a good type I-X triangle at vertex A,

then there is neither an exceptional face incident with both A and Y , nor another good type

I-X triangle at A. In particular, the number of good type I triangles is at most two.

Proof. Let f1 be a good type I-C triangle at A. Then the face f2 sharing the C-line with

f1 is 3-sided, so vertex B is located there. Suppose that an exceptional face f is incident

with vertex A and B. a similar situation to the proof of Lemma 6.1. Hence we cannot place

C-lines. The existence of another good type I-C triangle is excluded by a similar argument.

See Fig. 6.3. Here, we cannot place the C-lines going to the left upper black vertex and the

left lower black vertex simultaneously.

Fig. 6.3 Two good type I-C triangles at A

Lemma 6.3 Suppose that there is a bad type I triangle f at vertex A. Let g be the

associated exceptional face of f . If g is k-sided (4 ≤ k ≤ 6), then g is incident with at most

k − 4 white vertices.

Proof. We may assume that f is a bad type I-B triangle without loss of generality. As

shown in the first of Fig. 6.2, the boundary of g contains a sequence of

a C-line, a triple crossing point, a B-line, a triple crossing point, a C-line.

The existence of this sequence forces g to admit at most k − 4 white vertices.
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Lemma 6.4 Two bad type I triangles at vertex A cannot have the same associated excep-

tional face.

Proof. Let f1 and f2 be bad type I triangles at A whose associated exceptional faces

coincide. Let g be the common associated exceptional face. When g is 4- or 5-sided, the

situation is as shown in Fig. 6.4, where labels B and C may be exchanged.

Fig. 6.4 Two bad type I triangles with the same associated 4- or 5-sided exceptional face

Then we cannot place C-lines as before. If g is 6-sided, then the situation is as shown in

Fig. 6.5. Similarly, we cannot draw C-lines.

Fig. 6.5 Two bad type I triangles with the same associated 6-sided exceptional face

Lemma 6.5 Suppose that G satisfies one of the following conditions:

(1) G has a 5-sided exceptional face incident with exactly one white vertex and a 4-sided

exceptional face incident with at least one white vertex;

(2) G has three 4-sided exceptional faces, only one of which is incident with no white

vertex.

Then there is at most one bad type I triangle at vertex A.

Proof. Let fi be a bad type I triangle at A, and let gi be the associated exceptional face

for i = 1, 2. By Lemma 6.3, we have g1 = g2. But this contradicts Lemma 6.4.



NO. 1 TANAKA H. et al. TRIPLE CROSSING NUMBERS OF GRAPHS 29

Lemma 6.6 There is at most three bad type I triangles at vertex A.

Proof. Suppose that there are four bad type I triangles at vertex A. Since G has at most

three exceptional faces and each bad type I triangle is adjacent to an exceptional face, there

exist two bad type I triangles whose associated exceptional faces coincide, contradicting

Lemma 6.4.

Recall that an adjoint pair of type II triangles at vertex A is a pair of type II triangles

sharing an A-line fully. See Fig. 6.6(1).

(1) (2)

Fig. 6.6 Type II triangles at A

Lemma 6.7 Suppose that G satisfies one of the following conditions:

(1) G has a single 6-sided exceptional face, which is incident with all white vertices;

(2) G has a 5-sided exceptional face incident with two white vertices and a 4-sided ex-

ceptional face incident with a white vertex;

(3) G has three 4-sided exceptional faces, each of which is incident with a white vertex.

Then there is no adjoint pair of type II triangles at vertex A. Hence, if there is a type II

triangle at A, then it shares an A-line fully with an exceptional face (Fig. 6.6(2)).

Proof. Suppose that there is an adjoint pair of type II triangle at A. Then f , indicated in

Fig. 6.6(1), is not 3-sided. However, f cannot be an exceptional face from the assumption,

a contradiction.

Lemma 6.8 There is at most one adjoint pairs of type II triangle at vertex A.

Proof. As in the proof of Lemma 6.7, each adjoint pair of type II triangles yields an

exceptional face. If two such pairs share the same exceptional face, then the exceptional

face must be a 6-sided face without a white vertex. The situation is as shown in Fig. 6.7.

Then we cannot draw C-lines to the left two black vertices from vertex C.

Hence the number of adjoint pairs of type II triangles is no greater than the number of

exceptional faces. When G has a 6-sided exceptional face, we have the conclusion.
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Fig. 6.7 Two adjoint pairs of type II triangles sharing the same exceptional face

Assume that G has at least two, then two or three, exceptional faces. Suppose that there

are two adjoint pairs of type II triangle. Then these pairs correspond to distinct exceptional

faces as above. In any case, there exists an adjoint pair of type II triangles which yields a

4-sided exceptional face f . Then the situation is as shown in Fig. 6.8.

Fig. 6.8 An adjoint pair of type II triangles adjacent to a 4-sided face

This implies that both g and h are exceptional. Another adjoint pair of type II triangles

yields one more exceptional face. Thus G would have 4 exceptional faces, a contradiction.

Lemma 6.9 If n is odd, then each white vertex is incident with an exceptional face, hence

N ≥ 3.

Proof. Assume that only triangles appear at a white vertex, A, say. Each triangle at A

is incident with either a B-line or a C-line. Moreover, such triangles appear alternatively

around A. Hence n must be even.

Lemma 6.10 Suppose that vertex A is incident with only one exceptional face f . If f is

4-sided and incident with two white vertices, then n is even.

Proof. We may assume that f is incident with A and B. Then each triangle adjacent to f

at A is incident with a C-line. By the same reason as the proof of Lemma 6.9, n is even.
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6.2 Reduction

Lemma 6.11 N ̸= 6.

Proof. Let N = 6. This happens only when G has three 4-sided exceptional faces, each of

which is incident with two white vertices. In particular, a face incident with two adjacent

triple crossing points is 3-sided. By Lemma 6.1, there is one exceptional face for each pair

of A, B, C. We examine the local configuration at vertex A.

By Lemmas 6.2 and 6.3, there is no type I triangle. By Lemma 6.7, each type II triangle

is adjacent to an exceptional face.

If two exceptional faces at A share an A-line, then there are at most two type II triangles.

This implies that n ≤ 4, a contradiction. (We remark that this situation can happen when

n = 4.) Otherwise, there are at most four type II triangles. In fact, both sides of a type II

triangle cannot be exceptional faces, because there is only one exceptional (4-sided) face for

each pair of A, B, C (see Fig. 6.6(2)). Hence there are exactly four type II triangles and

two exceptional faces around A, giving n = 6, a contradiction.

Lemma 6.12 N ̸= 5.

Proof. Assume N = 5. This happens only when G has three 4-sided exceptional faces f1,

f2, f3, two of which are incident with two white vertices, the other to one white vertex. By

Lemma 6.1, we may assume that f1 is incident with A and B, f2 is incident with B and C,

and f3 is incident with B or C.

We examine the local configuration at A. By Lemma 6.3, there is no bad type I triangle.

Assume that f3 is incident with B. By Lemma 6.2, a good type I-C triangle is impossible,

and at most one good type I-B triangle is possible. By Lemma 6.7, there are at most two

type II triangles, which are adjacent to f1. Hence we have n ≤ 4, a contradiction.

The case where f3 is incident with C is similar.

Lemma 6.13 N ̸= 4.

Proof. Assume N = 4. Then G has at least two exceptional faces.

First, suppose that G has a 5-sided face f and a 4-sided face f ′. Then both f and f ′ are

incident with two white vertices. We may assume that f are incident with A, B, and f ′ to

B, C. This case is handled by the same argument as in the second paragraph of the proof

of Lemma 6.12.

Next, suppose that G has three 4-sided faces f1, f2, f3. By Lemma 6.1, there are five

possibilities for three exceptional faces as shown in Table 6.1, up to renaming. By Lemmas

6.9 and 6.10, n ≥ 8 in any case.
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Table 6.1 Five possibilities

f1 f2 f3

(a) A, B B, C none

(b) A, B B B

(c) B, C B C

(d) A, B C C

(e) A, B B C

From (b) to (e), there is neither bad type I triangle (by Lemma 6.3) nor adjoint pair

of type II triangle (by Lemma 6.7). Moreover, there are at most two good type I triangles

(by Lemma 6.2) and at most two type II triangles (by Lemma 6.7). This gives n ≤ 5, a

contradiction.

Consider (a). By Lemma 6.2, there is no good type I-C triangle at A, and at most one

good type I-B triangle is possible. By Lemma 6.5, there is at most one bad type I triangle.

In total, there are at most two type I triangles. By Lemma 6.8, there is at most one adjoint

pair of type II triangles, and further at most two type II triangles, which are adjacent to f1,

can be possible. Hence we have n ≤ 7, a contradiction.

Lemma 6.14 N ̸= 3.

Proof. Assume N = 3. We divide the proof into three cases, according to the set of

exceptional faces of G′.

Case 1. G has a single 6-sided exceptional face.

Let f be the exceptional face. Then each white vertex is incident with f . By Lemmas 6.2

and 6.3, there is no type I triangle. By Lemma 6.7, there are at most two type II triangles

adjacent to f . Hence n ≤ 3, a contradiction.

Case 2. G has a 5-sided exceptional face and a 4-sided exceptional face.

Let f1 and f2 be the 5-sided, 4-sided exceptional faces, respectively. According to white

vertices incident with them, there are four possibilities as in Table 6.2, up to renaming.

Table 6.2 Four possibilities and triangles at A

f1 f2 good I-B good I-C bad I adjoint II pair

(a) B, C B ≤ 1 ≤ 1 × ×
(b) A, B C ≤ 1 × × ×
(c) B B, C ≤ 1 ≤ 1 ≤ 1 ≤ 1

(d) C A, B ≤ 1 × ≤ 1 ≤ 1

By Lemmas 6.9 and 6.10, we have n ≥ 8, except case (b).

(a) There is neither bad type I triangle (by Lemma 6.3) nor type II triangle (by Lemma

6.7). By Lemma 6.2, there are at most two good type I triangles. So, n ≤ 2, a contradiction.

(b) By Lemma 6.7, there are at most two type II triangles, which are incident with f1.

There is neither bad type I triangle nor good type I-C triangle. Thus n ≤ 4, a contradiction.
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(c) There can be a good type I-X triangle at A for X ∈ {B,C}. Hence there are at most

two good type I triangles by Lemma 6.2. By Lemma 6.5, there is at most one bad type I

triangle. There is at most one adjoint pair of type II triangles by Lemma 6.8.

Claim 6.1 A bad type I triangle does not coexist with an adjoint pair of type II triangles.

Proof. Suppose that there is an adjoint pair of type II triangles. Then it is adjacent to f1

(see Fig. 6.6(1)). If there is a bad type I triangle, then its associated exceptional face is also

f1 by Lemma 6.3. Hence f1 is not incident with a white vertex, a contradiction.

In any case, we have n ≤ 4, a contradiction.

(d) There is no good type I-C triangle. By Lemma 6.5, there is at most one bad type I

triangle. Claim 6.1 holds again. There are at most two type II triangles, which are incident

with f2, by Lemma 6.8. In any case, we have n ≤ 6, a contradiction.

Case 3. G has three 4-sided exceptional faces.

Let f1, f2, f3 be the exceptional faces. There are five possibilities as in Table 6.3. Again,

we have n ≥ 8, except case (e), by Lemmas 6.9 and 6.10.

Table 6.3 Five possibilities and triangles at A

f1 f2 f3 good I bad I adjoint II pair n

(a) B, C B none ≤ 2 ≤ 1 ≤ 1 ≤ 5

(b) A, B C none ≤ 1 ≤ 1 ≤ 1 ≤ 7

(c) B B B ≤ 2 × × ≤ 2

(d) B B C ≤ 2 × × ≤ 2

(e) A B C ≤ 2 × × ≤ 3

The number of good type I triangles is at most two, except (b), by Lemma 6.2. For (b),

there is no good type I-C triangle by Lemma 6.2. For (c), (d) and (e), there is neither bad

type I triangle (by Lemma 6.3) nor adjoint pair of type II triangles (by Lemma 6.7). Thus

(c) and (d) are settled as in Table 6.3. For (a) and (b), there is at most one bad type I

triangle (by Lemma 6.5) and at most one adjoint pair of type II triangles (by Lemma 6.8).

Thus these cases are also settled as in Table 6.3.

The remaining case is (e). If there is no type II triangle, then we have n ≤ 3, a contra-

diction. Otherwise, let g be a type II triangle. Then g is adjacent to the exceptional face

f1. We may assume that g is incident with a B-line. Let h be the face sharing this B-line

with g. Then h is 3-sided, so vertex C is located there. This implies that f1 is incident with

A and C, a contradiction.

Lemma 6.15 N ≥ 3.

Proof. Assume N ≤ 2. We can assume that vertex A is not incident with an exceptional

face. By Lemma 6.9, n is even, so n ≥ 8. We estimate the number of triangles at A as

before. By Lemmas 6.2 and 6.6, there are at most two good type I triangles and at most

three bad type I triangles.
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Since A is not incident with an exceptional face, type II triangles appear as adjoint pairs.

By Lemma 6.8, there is at most one adjoint pair of type II triangles. Then we have n ≤ 7,

a contradiction.

Theorem 6.1 Let n ≥ 5 and n ̸= 6. Then Kn,3 cannot admit a semi-regular drawing.

Proof. By Lemma 6.15, N ≥ 3. However, this is impossible by Lemmas 6.11–6.14.

7 Complete Bipartite Graphs

We have already shown that K4,4, K5,4, K5,3 and Kn,3 with n ≥ 7 do not admit a semi-

regular drawing in Sections 4, 5 and 6.

Theorem 7.1 Let G = Kn1,n2 . If n2 ≤ 2, then tcr(G) = 0. If n2 ≥ 3, then tcr(G) = ∞
except K3,3, K4,3, K6,3, K6,4. Moreover, tcr(K3,3) = tcr(K4,3) = 1, tcr(K6,3) = 2 and

tcr(K6,4) = 4.

Proof. If n2 ≤ 2, then G is planar, and thus tcr(G) = 0. The graph G has p = n1 + n2

vertices and q = n1n2 edges. Then

q − 3p+ 6 = (n1 − 3)(n2 − 3)− 3.

Hence if n2 ≥ 5, or n2 = 4 and n1 ≥ 7, then

q − 3p+ 6 > 0,

and thus tcr(G) = ∞ by Lemma 2.3.

Fig. 7.1 K3,1,1,1 and K4,1,1,1

Fig. 7.1 (after removing three edges v2v3, v3v4, v4v2) shows that tcr(K3,3) = tcr(K4,3) =

1, since K3,3 and K4,3 are not planar from Lemma 2.1. Note that tcr(K6,3) ≥ 2, since

cr(K6,3) = 6 (see [4]) and 3tcr(K6,3) ≥ cr(K6,3). Thus we have that tcr(K6,3) = 2 from Fig.

7.2 (after removing three edges v2v3, v3v4, v4v2).
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Fig. 7.2 K6,1,1,1

Similarly, we have that tcr(K6,4) = 4 from the fact cr(K6,4) = 12 (see [4]) and Fig. 7.3.

Fig. 7.3 K6,4

Theorems 4.1, 5.1 and 6.1 show that G = Kn1,n2 has no semi-regular drawing for

(n1, n2) = (4, 4), (5, 4), (5, 3), (n, 3) with n ≥ 7.

8 Complete 4-partite Graphs

Theorem 8.1 Let G = Kn1,n2,n3,n4 . Then tcr(G) = ∞, except Kn1,1,1,1 with n1 ∈ {1, 2,

3, 4, 6}. Also,

tcr(Kn1,1,1,1) =


0, n1 = 1, 2;

1, n1 = 3, 4;

2, n1 = 6.
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Proof. The graph G has p =
∑
i

ni vertices and q =
∑
i<j

ninj edges. If n2 ≥ 2, then

q − 3p+ 6 = (n1 − 1)(n2 − 1) + (n1 + n2)(n3 + n4 − 2) + (n3 − 3)(n4 − 3)− 4

≥ 1 + 4(n3 + n4 − 2) + (n3 − 3)(n4 − 3)− 4

= (n3 + 1)(n4 + 1)− 3 ≥ 1.

Hence we have tcr(G) = ∞ by Lemma 2.3.

Consider the case where n2 = n3 = n4 = 1. If n1 = 1 or 2, then G is planar, and thus

tcr(G) = 0. Suppose n1 ≥ 3. Then G is non-planar by Lemma 2.1, because G contains K3,3

as a subgraph. Let V be the partite set of G with n1 elements, and let v2, v3, v4 be the

other vertices of G. Notice that if G admits a semi-regular drawing, then no edge of the

triangle v2v3v4 contains a triple crossing point. By removing the three edges of the triangle

from G, we obtain a semi-regular drawing of a complete bipartite graph Kn1,3. However,

this is impossible by Theorem 7.1, unless n1 = 3, 4 or 6. Since K3,1,1,1 and K4,1,1,1 admit a

semi-regular drawing with one triple crossing as shown in Fig. 7.1, they have triple crossing

number one.

Finally, K6,1,1,1 admits a semi-regular drawing with two triple crossings as shown in Fig.

7.2. Since tcr(K6,3) = 2 by Theorem 7.1, tcr(K6,1,1,1) = 2.

9 Complete Tripartite Graphs

Theorem 9.1 Let G = Kn1,n2,n3 . Then we have the value of the triple crossing number

of G as in Table 9.1.

Table 9.1 tcr(Kn1,n2,n3)

n3 n2 n1 tcr(G)

≥ 3 ∞
≥ 3 ∞

2 ≥ 3 ∞
2 2 0

1

≥ 4 ∞

3
≥ 4 ∞
3 1

2

̸= 2, 3, 4, 6 ∞
6 2

3, 4 1

2 0

1 0

Proof. The graph G has p =
∑
i

ni vertices and q =
∑
i<j

ninj edges. Then

q − 3p+ 6 = (n1 + n3 − 3)(n2 + n3 − 3)− n2
3 + 3n3 − 3

≥ (2n3 − 3)2 − n2
3 + 3n3 − 3

= 3(n3 − 1)(n3 − 2).
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If n3 ≥ 3, then

q − 3p+ 6 > 0.

Thus we obtain tcr(G) = ∞ by Lemma 2.3.

Let n3 = 2. Then

q − 3p+ 6 = (n1 − 1)(n2 − 1)− 1.

If n2 ≥ 3, then

q − 3p+ 6 > 0.

If n2 = 2, then

q − 3p+ 6 > 0,

except when n1 = 2. For these cases, tcr(G) = ∞ by Lemma 2.3 again. Since K2,2,2 is

planar, tcr(K2,2,2) = 0.

Let n3 = 1. We have

q − 3p+ 6 = (n1 − 2)(n2 − 2)− 1.

If n2 ≥ 4, or if n2 = 3 and n1 ≥ 4, then

q − 3p+ 6 > 0.

For these cases, tcr(G) = ∞. Since K3,3,1 is not planar (it contains K3,3 as a subgraph)

and it admits a semi-regular drawing with one triple crossing as shown in Fig. 9.1, we have

tcr(K3,3,1) = 1.

Fig. 9.1 K3,3,1

The remaining cases are when n2 = 1, 2. If n2 = 1 or n1 = n2 = 2, G is planar. Therefore

consider the case where n2 = 2 and n1 ≥ 3. Let V1 and V2 be the partite sets of G with n1

and n2 elements, respectively, and let v3 be the remaining vertex. Assume that G admits a

semi-regular drawing. Notice that no edge connecting v3 and a vertex of V2 contains a triple

crossing point, since |V2| = 2. Thus we obtain a semi-regular drawing of a complete bipartite

graph Kn1,3 by removing two edges between v3 and V2. Then we have that n1 = 3, 4 or

6 from Theorem 7.1. In either case, G is not planar, since G contains K3,3 as a subgraph.

Thus we have

tcr(K3,2,1) = tcr(K4,2,1) = 1

by Fig. 7.1 (after removing the edge v2v4). Since tcr(K6,3) = 2 by Theorem 7.1, we obtain

tcr(K6,2,1) = 2

by Fig. 7.2 (after removing the edge v2v4).
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10 Comments

In this paper, we require that two edges intersect at most once, and two edges with a

common end-vertex do not intersect. This is one natural standpoint in the study of the

crossing number (see [5]–[6]), but this might be so strong that most complete multipartite

graphs do not admit semi-regular drawings. If we relax it, then K4,4, for example, admits a

semi-regular drawing as shown in Fig. 10.1.

Fig. 10.1 Two edges intersect twice

In general, for n ≥ 4, we can define the n-fold crossing number for a graph G to be the

minimal number of n-fold crossing points over all drawings with only n-fold crossings. By

a similar argument, we can show that Theorem 3.1 holds for the n-fold crossing number.

Furthermore, if G is a non-planar complete t-partite graph with t ≥ 3, then we can show

that G does not admit a drawing with only n-fold crossings by similar arguments to those

of Sections 2, 8 and 9. It might be possible to determine the values of this invariant for

complete bipartite graphs.
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