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Abstract: We establish that the generalized Fischer-Burmeister(FB) function and

penalized Generalized Fischer-Burmeister (FB) function defined on symmetric cones

are complementarity functions (C-functions), in terms of Euclidean Jordan algebras,

and the Generalized Fischer-Burmeister complementarity function for the symmetric

cone complementarity problem (SCCP). It provides an affirmative answer to the open

question by Kum and Lim (Kum S H, Lim Y. Penalized complementarity functions

on symmetric cones. J. Glob. Optim.. 2010, 46: 475–485) for any positive integer.
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1 Introduction

The symmetric cone complementarity problem (SCCP) is defined to find x, y ∈ V such that

x ∈ K, y = f(x) ∈ K, ⟨x, y⟩ = 0, (1.1)

where K is the cone of squares in Euclidean Jordan algebra V , and F : V → V is a continu-

ously differentiable mapping (see [1]–[2]). This class of problem provides a unified framework

for the classical nonlinear and complementarity problem (NCP), the second-order cone opti-

mization and complementarity problem (SCOCP), and the semi-definite programming and

complementarity problem (SDCP), and has attracted much attention due to its various

applications in operations research, economics and engineering.
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A popular and powerful approach to solve the complementarity problem is to reformu-

late each problem as an equivalent system of non-smooth equations by a complementarity

function (C-function) (see [3]–[4]) or as an unconstrained minimization problem by merit

function (M-function) (see [5]). A function ϕ : V × V → V is called a C-function for SCCP

if

ϕ(x, y) = 0 ⇔ x ∈ K, y = f(x) ∈ K, ⟨x, y⟩ = 0. (1.2)

Various C-functions for the standard NCP functions ware extend to the SCCP. For instance,

Gowda et al.[6] showed that the Fischer-Burmeister function

ϕFB(x, y) = x+ y− (x2 + y2)1/2 (1.3)

are C-function for any Euclidean Jordan algebra.

A function that can constitute an equivalent unconstrained minimization problem for

the SCCP is called an M-function. In other words, a merit function is a function whose

global minima is coincident with the solutions of the original SCCP. For constructing an

M-function, the C-function severs an important role.

In order to solve (1.1), we only need to find the solution of the nonlinear equations

ϕ(x, F(x)) = 0 induced via the C-function associated with the symmetric cone. Take FB

function as a example, the SCCP is equivalent to a system of nonlinear equations:

Φ(x) =

 ϕFB(x1, F (x1))
...

ϕFB(xn, F (xn))

 = 0. (1.4)

For each C-function, there is a natural merit function ΨFB given by

ΨFB :=
1

2
∥ΦFB∥2 =

1

2

n∑
i=1

ϕFB(xi, F (xi))
2, (1.5)

from which the SCCP can be recast as an unconstrained minimization

min
x∈Rn

ΨFB(x). (1.6)

In this paper, we are particularly interested in the generalized FB, which is presented

in a recent paper to deal with NCP by Chen[7]–[8]. The definition of the generalized FB

function is as follows.

Let x,y ∈ Rn. For p > 1,

ϕp(x, y) = x+ y− (|x|p + |y|p)1/p (1.7)

is called the generalized FB function of NCP.

Shortly afterwards, Pan et al.[9] developed the M-function method for SOCCP based on

the generalized FB function and Kum et al.[10] proved that generalized FB function and

penalized generalized FB function are complementarity functions for SOCCP. Nowadays,

Kum[11] extends the generalized FB function to the SCCP when p = 1, 2, 3, 4 and proposes

a question that “Is the function a C-function for any positive integer n ≥ 2?” Motivated

by the above mentioned work, we are trying to extend the generalized FB function to the

SCCP when p>1. Moreover, under suitable conditions, we derive the boundedness of level

set of the natural M-function induced by the penalized generalized FB function from a trace

inequality in Euclidean Jordan algebras, which is very useful toward an entire development

of the M-function theory for SCCP based on the penalized version as a future research.
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2 Preliminaries

In this section, we mention some concepts and materials of Euclidean Jordan algebras that

will be used throughout this paper. For more detailed expositions of Euclidean Jordan

algebras, the readers can find in the monograph[12].

A Euclidean Jordan algebra is a triple (V, ◦, ⟨ · , · ⟩), where V is a finite-dimensional

inner product space over the real field R, and (x, y) 7→ x ◦ y : V × V → V is a bilinear

mapping which satisfies the following conditions:

(1) x ◦ y = y ◦ x for all x,y ∈ V ;

(2) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x,y ∈ V , where x2 := x ◦ x;
(3) ⟨x ◦ y, z⟩ = ⟨x, y ◦ z⟩ for all x,y, z ∈ V .

We call x ◦ y the Jordan product of x and y. In addition, we assume that there is an

element e, called the unit element, such that x ◦ e = x for all x ∈ V . An element c ∈ V

is idempotent if c2 = c, and two idempotents c and c′ are orthogonal if c ◦ c′ = 0. If

an idempotent cannot be written by a sum of two non-zero idempotents, then c is called

primitive. A complete system of orthogonal idempotents is finite set {c1, c2, · · · , ck} of

idempotents with ci ◦ cj = 0 and
k∑

i=1

ci = e. A complete system of orthogonal primitive

idempotents is called a Jordan frame of V . The important spectral decomposition theorems

are stated as follows.

Theorem 2.1 [12] (spectral theorem, first version) For an element of an Euclidean Jordan

algebra, there exist unique real numbers λ1(x), λ2(x), · · · , λk(x) and a unique complete

system of orthogonal idempotents {c1, c2, · · · , ck} such that

x = λ1(x)c1 + λ2(x)c2 + · · ·+ λk(x)ck. (2.1)

The uniqueness is in the following sense: if there exist a complete system of orthogonal

idempotents {e1, e2, · · · , es} and distinct real numbers η1(x), η2(x), · · · , ηs(x) such that

x = η1(x)e1 + η2(x)e2 + · · ·+ ηs(x)es, then k = s, ηi = λi and ei = ci for all 1 ≤ i ≤ k.

Theorem 2.2 [12] (spectral theorem, second version) Let V be a Euclidean Jordan algebra

with rank r. Then for every x ∈ V, there exist a Jordan frame {c1, c2, · · · , cr} and real

numbers {c1, c2, · · · , cr} such that

x = λ1(x)c1 + λ2(x)c2 + · · ·+ λr(x)cr, (2.2)

where the numbers λi(x) (i = 1, 2, · · · , r) are the eigenvalues of x.

Let tr(x) =
r∑

i=1

λi(x) be the trace of x = λ1(x)c1 +λ2(x)c2 + · · ·+λr(x)cr in the second

spectral theorem. Note that the trace is associative, i.e., tr(x, y◦z) = tr(x◦y, z), we define
the inner product tr(x, y ◦ z) = tr(x ◦ y, z) by tr(x, y ◦ z) = tr(x ◦ y, z). Thus, we may

define norm on V by

∥x∥ =
√

⟨x, x⟩ =
√
tr(x2) =

√√√√ r∑
i=1

λ2i (x), x ∈ V. (2.3)
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Given a Euclidean Jordan algebra V , we define the set of squares as K = {x2 : x ∈ V }. K,

if closed, convex, homogeneous and self-dual cone, is the symmetric cone. Recall the partial

order on V defined by x ≼ y :⇔ y− x ∈ K̄, and x ≺ y :⇔ y− x ∈ K̄, where K̄ denotes the

interior of K.

Lemma 2.1 Let p be a positive real number.

(1) Each element x ≽ 0 has a unique p-th root denote by x1/p in K̄. If x ∈ K̄ has a

spectral decomposition, then

x1/p =
r∑

i=1

(λi(x))
1/pci;

(2) (The Löwner-Heinz inequality[13])

0 ≼ x ≼ y ⇒ xp ≼ yp, 0 ≤ p ≤ 1. (2.4)

Let g : R → R be a real-valued function. Define the corresponding Löwner operator G(x) :

J → J as

G(x) :=
r∑

j=1

g(λj(x))cj(x) = g(λ1(x)c1(x) + λ2(x)c2(x) + · · ·+ λr(x)cr(x)). (2.5)

In particular, letting t+ = max{0, t}, t− = max{0, −t}, and noting |t| = t+ + t−, we

define x+ =
r∑

i=1

(λi(x))+ci(x), x− =
r∑

i=1

(λi(x))−ci(x) and |x| =
r∑

i=1

|λi(x)|ci(x). Note that

x ∈ K (x ∈ int(K)) if and only if λi(x) ≥ 0 (λi(x) > 0) for all i ∈ {1, 2, · · · , r}, where int(K)

denotes the interior of K. It is obvious that x ∈ K, x = x+−x− and |x| = x++x−. We also

can define x−1 =
r∑

i=1

λi(x)
−1ci(x), x

1/2 =
r∑

i=1

λi(x)
1/2ci(x), and denote |x| by |x| = (x2)1/2

and x+ =
x+ |x|

2
, x− =

|x| − x

2
. It is easy to verify that x+ ◦ x− = 0 and ⟨x+, x−⟩ = 0.

3 The Main Result

In this section, we present two complementarity functions for SCCP. For this purpose, we

need to show the following useful proposition.

Proposition 3.1 The followings are equivalent:

(1) x,y ≽ 0 and ⟨x, y⟩ = 0;

(2) x,y ≽ 0 and x ◦ y = 0;

(3) x+ y = (x2 + y2)1/2;

(4) x+ y ≽ 0 and x ◦ y = 0;

(5) x,y ≽ 0 and xt ◦ ys = 0 for all nonnegative real numbers s, t.

Proof. The equivalences from (1) to (4) appear in [14, Proposition 6] and (5) in [11, Propo-

sition 3.1(vii)]. Suppose that x,y ≽ 0 and x ◦ y = 0. Let A := {t ≥ 0 | xt ◦ y = 0} by

continuity of the Jordan product. It is a closed subset of [0, ∞). We claim that contains

all positive dyadic powers

{
m

2n

∣∣∣n,m ∈ N

}
.
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From

0 = ⟨x, y⟩

= ⟨x, (y1/2)2⟩

= ⟨x ◦ y1/2, y1/2⟩

= ⟨L(x) ◦ y1/2, y1/2⟩

= ⟨L(x)1/2 ◦ y1/2, L(x)1/2 ◦ y1/2⟩,
where we used the fact that l(x) is positive semi-definite and hence it has the square root

L(x)1/2, we have

L(x)1/2 ◦ y1/2 = 0

or

L(x)y1/2 ◦ y1/2 = x ◦ y1/2 = 0.

Similarly,

y ◦ x1/2 = 0.

By induction, one has

x
1
2n ◦ y = 0

for all positive integers n.

For positive integer m ≥ 2,

0 = ⟨x ◦ y, xm−1⟩ = ⟨y, xm⟩.
This implies

y ◦ xm = 0.

Therefore,

x
m
2n ◦ y = 0

for all positive integers n and m.

By the density of A in the space of non-negative real numbers, we conclude that

xt ◦ y = 0

for all nonnegative real numbers t.

Theorem 3.1 The function ϕp(x, y) : V ×V → V defined as (1.7) is a C-function, where

V is any Euclidean Jordan algebra.

Proof. First, suppose that x,y ≽ 0 and x ◦ y = 0. It is obvious that x = |x| and y = |y|.
For t ≥ 1, we have, by means of Proposition 3.1(5), xty = 0 and ytx = 0 for all nonnegative

real numbers t. This implies by induction that

(x+ y)p = xp + yp.

Indeed, letting p > 1, one has

(x+ y)p = (x+ y)p−1 ◦ (x+ y)

= (xp−1 + yp−1) ◦ (x+ y)

= xp + yp + xp−1 ◦ y+ yp−1 ◦ x

= xp + yp.
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Therefore,

x+ y = (xp + yp)1/p = (|x|p + |y|p)1/p,

that is,

ϕp(x, y) = x+ y− (|x|p + |y|p)1/p = 0.

Second, suppose that

ϕp(x, y) = x+ y− (|x|p + |y|p)1/p = 0,

that is,

x+ y = (|x|p + |y|p)1/p.

Setting

ω = (|x|p + |y|p)1/p,

we have

ωp = (|x|p + |y|p) ≽ |x|

and

ωp = (|x|p + |y|p) ≽ |y|.

By Löwner-Heinz inequality, we know that ω ≽ |x| and ω ≽ |y|. Since |x| ≽ x and |y| ≽ y,

we have

x = ω − y ≽ ω − |y| ≽ 0, y = ω − x ≽ ω − |x| ≽ 0.

Thus,

|x| = x, |y| = y,

and so

(x+ y)p = (|x|p + |y|p) = xp + yp.

Therefore,

(x+ y)p−1 = xp−1 + yp−1.

From

(x+ y)p = (x+ y)p−1 ◦ (x+ y)

= (xp−1 + yp−1) ◦ (x+ y)

= xp + yp + xp−1 ◦ y+ yp−1 ◦ x

= xp + yp,

we have

xp−1 ◦ y+ yp−1 ◦ x = 0.

The associative property of the inner product yields

0 = ⟨xp−1 ◦ y+ yp−1 ◦ x, e⟩ = ⟨xp−1, y⟩+ ⟨yp−1, x⟩.
Since x,y ≽ 0, the terms ⟨xp−1, y⟩ and ⟨yp−1, x⟩ are non-negative and hence must be

zero. It follows from Proposition 3.1 together with its proof that

xp−1 ◦ y = 0.
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Hence

x ◦ y = 0.

We conclude that ϕp(x, y) : V × V → V defined as (1.7) is a C-function.

Similarly, we show that a penalized version of the generalized FB function is also a

C-function of SCCP. For p > 1 and α > 0, define a function as

ψp(x, y) = x+ y− (|x|p + |y|p)1/p + αx+ ◦ y+. (3.1)

We call ψp(x, y) the penalized version of the generalized FB function.

Theorem 3.2 For p > 1 and α > 0, the penalized version of the generalized FB function

ψp(x, y) = x+ y− (|x|p + |y|p)1/p + αx+ ◦ y+
is still a C-function of SCCP.

Proof. First, assume that x,y ≽ 0 and x ◦ y = 0. Then x+ = x and y+ = y. We have

x+ ◦ y+ = x ◦ y = 0.

Hence, from Theorem 3.1, one has

ψp(x, y) = x+ y− (|x|p + |y|p)1/p = ϕp(x, y) = 0.

Second, suppose that

ψp(x, y) = x+ y− (|x|p + |y|p)1/p + αx+ ◦ y+ = 0.

We decompose x as x = x+ − x−, where x− = (−x)+. Taking the inner product with −x−,

we have

0 = ⟨−x−, x+ y− (|x|p + |y|p)1/p + αx+ ◦ y+⟩

= ⟨−x−, x+ − x− − [(|x|p + |y|p)1/p − y] + αx+ ◦ y+⟩

= ⟨−x−, x+⟩+ ⟨x−, x−⟩+ ⟨x−, (|x|p + |y|p)1/p − y⟩+ ⟨−x−, αx+ ◦ y+⟩

= 0 + ∥x−∥2 + ⟨x−, (|x|p + |y|p)1/p − y⟩+ ⟨−x− ◦ x+, αy+⟩

= ∥x−∥2 + ⟨x−, (|x|p + |y|p)1/p − y⟩+ 0.

It follows from Löwner-Heinz inequality that

(|x|p + |y|p)1/p − y ∈ K.

Hence ∥x−∥2 and ⟨x−, (|x|p + |y|p)1/p − y⟩ are both nonnegative. Since

0 = ∥x−∥2 + ⟨x−, (|x|p + |y|p)1/p − y⟩,
we obtain x− = 0. So x ≽ 0.

Similarly, we can get y ≽ 0.

Thus

x+ y− (xp + yp)1/p + αx ◦ y = 0.

So we have

(x+ y+ αx ◦ y)p = (xp + yp),

that is,

(x+ y+ αx ◦ y)p = (x+ y+ αx ◦ y)p−1 ◦ (x+ y+ αx ◦ y)

= (xp−1 + yp−1) ◦ (x+ y+ αx ◦ y)

= xp + yp + xp−1 ◦ y+ αxp−1 ◦ (x ◦ y) + yp−1 ◦ x+ αyp−1 ◦ (x ◦ y)

= xp + yp.
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We have

xp−1 ◦ y+ αxp−1 ◦ (x ◦ y) + yp−1 ◦ x+ αyp−1 ◦ (x ◦ y) = 0.

The associative property of the inner product yields

0 = ⟨xp−1 ◦ y+ αxp−1 ◦ (x ◦ y) + yp−1 ◦ x+ αyp−1 ◦ (x ◦ y), e⟩

= ⟨xp−1, y⟩+ α⟨xp−1, x ◦ y⟩+ ⟨yp−1, x⟩+ α⟨yp−1, x ◦ y⟩

= ⟨xp−1, y⟩+ ⟨yp−1, x⟩+ α⟨xp, y⟩+ α⟨yp, x⟩.
Since x,y ≽ 0, all the terms are non-negative and hence must be zero. It follows from

Proposition 3.1(5) together with its proof that xp ◦ y = 0. Hence x ◦ y = 0.

4 Concluding Remarks

In this paper, we extend the generalized FB function to SCCP and introduce a penalized

generalized FB function over symmetric. In future research, the next logical step is to

analyze semi-smoothness of differentiability of the generalized FB function.
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