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Abstract: A weakly 2-primal ring is a common generalization of a semicommutative
ring, a 2-primal ring and a locally 2-primal ring. In this paper, we investigate Ore
extensions over weakly 2-primal rings. Let a be an endomorphism and 6 an a-
derivation of a ring R. We prove that (1) If R is an («, d)-compatible and weakly
2-primal ring, then R[z; «, d] is weakly semicommutative; (2) If R is (o, §)-compatible,
then R is weakly 2-primal if and only if R[z; «,d] is weakly 2-primal.
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1 Introduction

Throughout this paper, R denotes an associative ring with identity, o is an endomorphism
of R and ¢ is an a-derivation of R, that is, J is an additive map such that 6(ab) = §(a)b+
a(a)d(b) for a,b € R. We denote by R[z; «,d] the Ore extension whose elements are the
polynomials over R, the addition is defined as usual, and the multiplication subject to the
reaction xr = a(r)x + 6(r) for any r € R. Particularly, if § = Op, we denote by R[z;q]
the skew polynomial ring; if & = 1g, we denote by R][z;d] the differential polynomial ring.
For a ring R, we denote by nil(R) the set of all nilpotent elements of R, Nil.(R) its lower
nil-radical, Nil*(R) its upper nil-radical and L-rad(R) its Levitzki radical. For a nonempty
subset M of a ring R, the symbol (M) denotes the subring (may not with 1) generated by
M.
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Recall that a ring R is called reduced if it has no nonzero nilpotent elements; R is
symmetric if abc = 0 implies achb = 0 for all a,b,¢ € R; R is semicommutative if ab = 0
implies aRb = 0 for all a,b € R. In [1], semicommutative property is called the insertion-
of-factors-property, or IFP. There are many papers to study semicommutative rings and
their generalization (see [2]-[5]). Liu and Zhao ([6], Lemma 3.1) has proved that if R is
a semicommutative ring, then nil(R) is an ideal of R. Liang et all’! called a ring R to
be weakly semicommutative if ab = 0 implies aRb C nil(R) for any a,b € R. This notion
is a proper generalization of semicommutative rings by Example 2.2 in [5]. According to
Chenl? | a ring R is called nil-semicommutative if ab € nil(R) implies aRb C nil(R) for any
a,b € R. A nil-semicommutative ring is weakly semicommutative, but the converse is not
true by Example 2.2 in [2]. Recall that a ring R is 2-primal if nil(R) = Nil,(R). Hong et
al.ll called a ring R to be locally 2-primal if each finite subset generates a 2-primal ring,
and have shown that if R is a nil ring then R is locally 2-primal if and only if R is a Levitzki
radical ring. Chen and Cuil®! called a ring R to be weakly 2-primal if the set of nilpotent
elements in R coincides with its Levitzki radical, that is, nil(R)=L-rad(R). Due to Marks!®,
a ring R is called NT if nil(R) = Nil*(R). It is obvious that a ring R is NI if and only if
nil(R) forms an ideal, if and only if R/Nil*(R) is reduced. Hwang et al.[’! considered basic
structure and some extensions of NI rings, and Proposition 2.1 in [3] has presented their
some characterizations. The following implications hold:

Reduced = Symmetric = Semicommutative = 2-primal = Locally 2-primal

= Weakly 2-primal = NI-ring = Weakly semicommutative.
In general, each of these implications is irreversible (see [3], [7]).

According to Annin', for an endomorphism « and an a-derivation 4, a ring R is said
to be a-compatible if for each a,b € R, ab = 0 & aa(b) = 0. Moreover, R is called to
be d-compatible if for each a,b € R, ab = 0 = ad(b) = 0. If R is both a-compatible
and J-compatible, R is called («,d)-compatible. Liang et al.’! have proved that if R is
a-compatible semicommutative, then R[z; o] is weakly semicommutative. Chen and Cuil?!
have shown that if R is weakly 2-primal and a-compatible, then R[x; «] is weakly 2-primal
and hence weakly semicommutative. In this paper, we extend respectively the above results
to more general cases, the Ore extensions over weakly 2-primal rings, and generalize recent
some related work on polynomial rings and skew polynomial rings. In particular, we show
that if R is an («,d)-compatible and weakly 2-primal ring, then R[x; «,d] is a weakly
semicommutative ring; if R is («,d)-compatible, then R is weakly 2-primal if and only if
Rlz; «,d] is weakly 2-primal. At the same time, we also extend a main result proved by
Chenl to the Ore extensions R[z; «,d] over weakly 2-primal ring, and obtain that if R
is an («, d)-compatible and weakly 2-primal ring, then R[x; «, ] is a nil-semicommutative
ring.

In the following, for integers i, j with 0 < i < j, ff € End(R, +) denotes the map which
is the sum of all possible words in «, ¢ built with ¢ letters o and j — i letters §. For instance,
f3=0a%5? + §%a? + 60?5 + ad’a + adad + dada. In particular, f§ =1, fi = of, fi = &%,
f]j_l =al 1+l 25a+ - + da? L. For every fij € End(R, +) with 0 < i < j, it has CJZ:
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monomials in «, ¢ built with ¢ letters o and j — ¢ letters §. As is known to all that for any
n

integer n and r € R, we have z"r = > f7(r)2’ in the ring R[z; «,d].
i=0

2  Weakly Semicommutative Property of R[z;«, ]

In this section, we discuss the weakly semicommutative property and nil-semicommutative
property of Ore extensions R[z; «, ] over weakly 2-primal rings. In general, one may suspect
that if R is (o, 0)-compatible, then R is weakly semicommutative (resp., nil-semicommutative)
if and only if R[z; «,d] is weakly semicommutative (resp., nil-semicommutative). Since any
subring of a weakly semicommutative (resp., nil-semicommutative) ring is also a weakly
semicommutative (resp., nil-semicommutative) ring, it is clear that if R[z;«,d] is weakly
semicommutative (resp., nil-semicommutative), then R is weakly semicommutative (resp.,
nil-semicommutative). Unfortunately, the converse is negative. Chen ([2], Theorem 2.6) has
proved that there exists a nil-semicommutative ring R over which the polynomial ring R[z]
is not nil-semicommutative. Example 2.1 in the following shows that there exists a weakly
semicommutative ring R over which the polynomial ring R[z] is not weakly semicommuta-

tive.

Example 2.1 Let Z, be the field of integers modulo 2 and S = Zs{agp, a1, az,bg, by,
ba,c) be the free algebra in noncommuting indeterminates ag, a1, aq, bo, b1, ba,c over Zs.
Let A = Zs[ag, a1, a2, by, by, ba, ¢] be the subalgebra in S, of polynomials with zero constant
terms. Note that A is a ring without identity and consider an ideal of Zo+ A, say I, generated
by agpbg, agb1 + a1bg, agbs + a1by + asby, a1bs + asbi, asba, agrby, (ag+ ar + az)r(bo+ b1 + b2)
with r € A and r17ror3ry with 71, 79, 73, 74 € A. Then, clearly, A* € I. Let T = (Z,+ A)/I.
Then T is semicommutative by Example 2 in [5]. Thus R = T'[z] is weakly semicommutative
by Corollary 3.1 in [5]. Next we prove that R[y] is not weakly semicommutative. Notice
that (ag + a1r + asx?)(bg + byw + bex?) € I[x], then

(ap + (ap + a12)y + (ap + a1x + asz®)y?) (bo + (bo + br2)y + (bo + biz + bax?)y?) € I[z][y],
but

(ao + (ag + a12)y + (ao + a1z + azx?)y?)c(bo + (b + brx)y + (bo + bz + bax?)y?) ¢ I[z][y]
since ageby + ajcbg ¢ I. Therefore, T[x] is not weakly semicommutative.

To prove the main results of this section, we need the following lemma and several

propositions.

Lemma 2.1 Let R be an (a, §)-compatible ring. Then
(1) Ifab =0, then aa™(b) = a™(a)b =0 for all positive integers n;
(2) If a*(a)b = 0 for some positive integer k, then ab = 0;
(3) If ab =0, then a™(a)d™(b) = d™(a)a™(b) = 0 for all positive integers m, n.

Proposition 2.1  Let R be an («, §)-compatible ring. Then
(1) Ifab=0, thenafij(b):()forallOgigjanda,beR;
(2) Fora,be€ R and any positive integer m, ab € nil(R) if and only if aa™(b) € nil(R).
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Proof. (1) If ab = 0, then ac‘(b) = ad’(b) = 0 for all i > 0 and j > 0 by Lemma 2.1.
Hence afg(b) =0forall 0 <i<j.

(2) It is an immediate consequence of Lemma 3.1 in [5] and Lemma 2.8 in [12].

Proposition 2.2  Let R be an («, §)-compatible ring. Then
(1) If abc = 0, then ad(b)e = 0 for any a,b,c € R;
(2) If abc =0, then afij(b)c =0 forall0<i<janda,b,c€ R;
(3) If ab € nil(R), then ad(b) € nil(R) for any a,b € R.

Proof. (1) If abc = 0, we have a(ab)d(c) =0, a(a)a(b)d(c) = 0 and aa(b)d(c) = 0. On the
other hand, we also have ad(bc) = 0, a(6(b)c+ a(b)d(c)) = 0 and ad(b)c + aa(b)d(c) = 0. So
ad(b)ec = 0.

(2) If abc = 0, we have aa(bc) = 0, ax(b)a(c) = 0 and aa(b)e = 0. It follows that
aa™(b)c = 0 and ad™a™(b)c = 0 for any positive integers m, n. Meanwhile, we can obtain
that ad(b)c = 0 by (1), which implies that ad?(b)c = 0 and aa’d? (b)c = 0. Therefore, we
have af? (b)e = 0 for all 0 <4 < j.

(3) Since ab € nil(R), there exists some positive integer k such that (ab)* = 0. In the
following computations, we use freely (1):

(ab)* = ab(ab---ab) =0
= ad(b)(ab---ab) = (ad(b)a)b(ab---ab) =0
= (ad(b)a)d(b)(ab---ab) =0
== ..
= (ad(b))*tabl =0
= (ad(b))F = 0.
This implies that ad(b) € nil(R).

Proposition 2.3  If R is an («, §)-compatible NI ring, then ab € nil(R) implies af? (b) €
nil(R) for all 0 <i < j and a,b € R.

Proof. If ab € nil(R), then we have aa’(b), ad’(b) € nil(R) for all i > 0 and j > 0 by
Propositions 2.1 and 2.2. This implies ad’a’(b), aa’é?(b) € nil(R). Since R is NI, we have
af! (b) € nil(R) for all 0 < i < j.

Proposition 2.4  Let R be an («a,d)-compatible NI ring, and f(z) = > a;zt, g(x) =
i=0

> bjxl € Rlz; a,d]. Then f(x)g(x) = 0 implies a;b; € nil(R) for each i, j.
=0

Proof. Suppose f(z) = Y a;z?, g(x) = 3 bjad € Rlx; «,d] such that f(x)g(x) = 0. Then
i=0 3=0

we have

F@)g(x) = (ix) (be>
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= <§:aimi>bo + <§:aixi>blx+--'+ (iaixi)bnaj"
=0 =0 i=0
= iaifg@()) + (iaﬁf(b@)m 4+ 4 (iaif;'(bo))xs + o+ ama™ (bo)z™
+ (iaifg(bl) + <§:a¢f§(b1)>xs +--- 4+ amam(bl)xm)x + -
i=0 i=s
+ (iaifg(bn) + <§:aiff(bn)>x + 4 amam(bn)xm>x"

m

= 3 adifho) + (zalfl (bo) +zalfo o))t
+( > (zaif;w))xk+...+amam<bn>xm+n

s+t=k
=0.
It follows that
Aern = ama’m(bn) =0, (21)
Am+n—1 = amam(bn 1) + apm— 1Olm71(b ) + amf:y?_l(bn) =0, (22)
m
Appn—2 = apma™ Z fm 1(bn—1) + Z f’fn—Q(bn) =0, (2.3)
i=m—1 1=m—2

2= 3 (Lasoo)-o (24
s+t=k 1=s
From (2.1), we have a,,b, = 0 since R is (a,d)-compatible. Thus, by Proposition 2.1,

(
A fE(by) = 0 for all 0 < s < t. From (2.2), we have
Al = ™ (bp—1) + am—12™ (b,) = 0. (2.5)
If we multiply (2.5) on the left side by b,,, then we obtain
bpama™ (bp—1) + bnam,lam_l(bn) =0.
Since a,,b, = 0, we have b,a,, € nil(R). So
b 1™ (b)) = —bpama™(b,_1) € nil(R),
because the nil(R) of an NI ring R is an ideal. Thus, b,ap,—1b, € nil(R) by Proposition
2.1, and hence b,a;,—1 € nil(R), ay—_1b, € nil(R) and a,,—1a™ 1(b,) € nil(R). It fol-
lows that am,a™(b,—1) € nil(R) and so am,b,—1 € nil(R) by Proposition 2.1. Therefore,
mbn—1, @m-1b, € nil(R). By Proposition 2.3 and (2.3),
Amin—2 = ama™(by—2) + apm_1a™” 1(bn_1) +amf_1(bp—1) + am_gamfz(bn)
+ am—1fo 21(bn) + am fr—2(bn)
=0,
we have

Al o= @™ (bp—2) + @m—10™  (by—1) + am—2a™2(b,) € nil(R). (2.6)
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If we multiply (2.6) on the left side by b,,, b,—_1, b, —2, respectively, then we obtain a,,_sb,, €
nil(R), am—1bn—1 € nil(R) and amy,b,—2 € nil(R) in turn.

Continuing this procedure yields that a;b; € nil(R) for all i, j.

The index of nilpotency of a nilpotent element z in a ring R is the least positive integer
n such that ™ = 0. The index of nilpotency of a subset I of R is the supremum of the
indices of nilpotency of all nilpotent elements in I. If such a supremum is finite, then I is

said to be of bounded index of nilpotency.

Proposition 2.5  Let R be («,d)-compatible and f(x) = Z a;x* € R[z; «,8]. Then

(1) If R is an NI ring, then f(x) € nil(R[z; «,d)) zmplzes a; € nil(R) for all0 < i < n;
(2) If R is a weakly 2-primal ring, then a; € nil(R) for all 0 < i < n implies f(x) €
nil(R[z; «,d]);
(3) IfNil*(R) is nilpotent, then a; € nil(R) for 0 < i < n implies f(x) € nil(R[z; «,d]);
(4) If R is of bounded index of nilpotency, then a; € nil(R) for all 0 < i < n implies
f(z) € nil(R[z; a,d)).

Proof. (1) Let f(z) = > a;z’ € nil(R[z; «,d]). Then there exists a positive integer k such

i=0
that
f@)k = (ap+ a1z + - - + anz™)®
= lower order terms + a,a™(ay)a?(ay) - - - ¥~V (g, )z"*
=0.
Hence

an)a®™(ay) - - a(k—l)n(an) —0
(an)a™(an) - O‘(k72)n(an)) =0

ana”(
(

= a2a"(ay) - a* " (a,)aF "D (a,) =0
(an)

= a,a”

= ada(ay) - aF(a,) =0
:> .
= afL =0

= a, € nil(R).
So by Proposition 2.3, a, = 1-a, € nil(R) implies 1 - fi(a,) = fi(a,) € nil(R) for all
0<s<t.Let Q=ag+aix+ -+ an_12" . Then
0=(Q+anz")"
= (Q + an2")(Q + anx™) - -+ (Q + anz™)
=(Q*+ Q- ap2™ 4+ anx™ - Q + a,2" - anxz™)(Q + anz™) - (Q + anz™)

=Q"+ 4,
where A € R[x; «,d]. Notice that the coefficients of A can be written as sums of monomials

in a;, and fJ(a;), where a;,a; € {ag,a1, - ,a,} and 0 < u < v are positive integers, and
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each monomial has a,, or f!(a,). Since nil(R) is an ideal of R, we obtain that each monomial
is in nil(R), and then A € nil(R)[z; «,d]. Thus
(ag+arx+---+ an_lxnfl)k
= lower order terms + a, 10" Han_1)---a™"VED (g, Yz =DR e nil(R)[z; «,d].
Hence, by Proposition 2.3,
an_1)---a"DED (g ) e nil(R)
an_10"Y(a,_1) - a"VE=D (g, 1)) € nil(R)

(
(

= a2 0" Yap_1)---a"DED (g, ) € nil(R)
(

= an—lan71 an—l) e Ol(nil)(kig) (Cln_l) S HII(R)
:> .
= af~1 € nil(R)

= ap—1 € nil(R).
By using induction on n, we have a; € nil(R) for all 0 <i <n.
(2) Consider the finite subset {ag,a1, - ,a,}. Since R is weakly 2-primal and hence
nil(R)=L-rad(R), {ag, a1, - ,a,) is nilpotent subring of R. So there exists a positive integer

k such that any product of k elements a;ia;s---a; from {ag,aq, - ,a,} is zero. Note
k41

n .
that the coefficients of f(z)**! = ( > aat in R[z; «,d] can be written as sums of
i=0

monomials of length k+1 in a; and f(a;), where a;,a; € {ag,a1,--- ,a,} and 0 < u < v are

th+1
foii1 (@iys, ), where @, a4y, a4, €

positive integers. For each monomial a;, f2(a;,) - -
{ap,a1,--- ,an} and t;, s; (t; > s;, 2 < j < k + 1) are nonnegative integers, we obtain
ai, f22(a,) - - 5,’;11 (ai,,,) = 0 by Propositions 2.1 and 2.2. Therefore, we have f(z)**1 =0
and so f(z) € nil(R[z; «,d]).

(3) In this case, nil(R) = Nil*(R)=L-rad(R), the proof is similar to that of (2).

(4) By Proposition 22.2 in [13], in this case, R is locally nilpotent, and hence nil(R) =
Nil*(R)=L-rad(R) = R.

Corollary 2.1  Let R be a weakly 2-primal ring. If R is («, §)-compatible, then
nil(R[z; «,0]) = nil(R)[z; «,d]).

Corollary 2.2 Let R be («a,d)-compatible. Then
(1) If R is weakly 2-primal, then R[z; «,0] is NI,
(2) If Nil*(R) is nilpotent, then R[z; «,d] is NI;
(3) If R is of bounded index of nilpotency, then R[x; «,d] is N1.

Proof.  Since nil(R)[x; «,d] is an ideal of R[z; «,d]), we have
nil(R[z; a,d]) = nil(R)[z; «,d]) = Nil*(R)|z; «,d]
by Proposition 2.5.

Corollary 2.3  Let R be a weakly 2-primal ring. Then nil(R[z]) = nil(R)[z].
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Proposition 2.6  Let R be an (o, d)-compatible weakly 2-primal ring. Then, for f(x) =
m ) n ) P
Y aixt, g(x) = Y bjad, h(z) = Y epak € R[z; 6] and ¢ € R, we have
i=0 §=0 k=0
(1) fgenil(R[z; a,d]) © a;b; € nil(R) for all0 <i<m, 0<j <n;
(2) fgcenil(R[z; «,]) < aibje € nil(R) for all0 <i<m, 0<j<mn
(3) fgh €nil(R[z; «,d]) & a;bjcp € nil(R) for all0 <i<m,0<j<nand0<k<p.

Proof. (1) = . Suppose f(z) = > a;x', g(z) = Y bja? € R[x; «,6] such that fg €
i=0 §=0
nil(R[z; «,d]). Then

v
/‘\
O
i%
<
~

+ (;aiﬁ(bo) +§;a’ifé(b1)>x+
(X @gaif;(bt)))xu

s+t=k
+ @™ (bp)x™ ™ € nil(R[z; o, ).
Thus, by Proposition 2.5, we have that

Drntn = ama™(by) € nil(R), (2.7)
D1 = @™ (by_1) + am_1a™ 1 (by) + am f7_ (b,) € nil(R), (2.8)
m
Q7n+n—2 = ama” (by— 2 Z fm 1 bp— 1 + Z m 2 E nll(R) (29)
i=m—1 1=m—2

%= (Zalf bt)eml( ). (2.10)

s+t=k i=s
From Proposition 2.1 and (2.7), we have a,,b, € nil(R). Next we show that a;b, € nil(R)

for all 0 < i < m. If we multiply (2.8) on the left side by b, then b,a,,—1a™~1(b,) € nil(R)

since nil(R) is an ideal of R. Thus, by Proposition 2.1, b,,a.,—1b, € nil(R), and so b,a;,—1 €

nil(R), am—1b, € nil(R). Multiplying (2.9) on the left side by b, since nil(R) is an ideal of

R, we obtain

brtm 2™ 2(by) = by 2min—2 — bpama™ (bp—2) — bptm 1™ (bp_1) — bpam ™ 1 (bp_1)
— b1 [ (bn) — bpam f_5(by) € nil(R).

Thus b,ay,—2 € nil(R) and a,,—2b, € nil(R). Continuing this procedure yields that a;b, €

nil(R) for all 0 < i < m, and so a;fL(b,) € nil(R) for any 0 < s < t and 0 < i < m by

Proposition 2.3. Thus it is easy to verify that

m n—1
(Z aixi) < Z bj:cj> € nil(R[z; «,d]).
i=0 §=0
Applying the preceding method repeatedly, we obtain that a;b; € nil(R) for all 0 < i < m
and 0 < j <n.
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<. Let a;b; € nil(R) for all i, j. Then a;f! € nil(R) for all 4, j and all positive integers
0 < s < i by Proposition 2.3. Thus

3 (Zaz ) enil(R), k=012 min
s+t=k
Hence, by Proposition 2.5,

fg= i ( > (iaifg(bt)»xk € nil(R[z; «,d)).

k=0 >s+t=k

SOIUVICERO SUTIC) FRRHEN O DINAC) EEREY W EHE
j=1 j=s
=Ag+ w4+ A A+ Apa”,
where Ag = i bjfi(c), 0 < s <n. By (1), we have

Jj=s
aiAS:(Jbi(ijfsj(c))Enil(R)7 0<i<m, 0<s<n.
j=s
For s = n, we have
a; A, = a;bpa”™(c) € nil(R), 0<i<m.

Then, by Proposition 2.1, a;b,c € nil(R) for all 0 < i < m.
For s =n — 1, we have
aildn_1 = aib,_1a" " (c) + ab, f7_(c) € nil(R), 0<i<m.
Since a;b,c € nil(R), by Proposition 2.3, we have a;b, f'_;(c) € nil(R). Hence
aiby_10"Hc) = a; A1 — aib, f 1 (c) € nil(R),
and so a;byc € nil(R) for all 0 < i < m.
Now suppose that k is a positive integer such that a;bjc € nil(R) for all 0 < i < m when
j > k. We show that a;bic € nil(R) for all 0 <7 < m.
If s=k, for all 0 < i < m, we have
a; Ay, = aibpa®(c) + aibpy1 [T () + -+ + aibn fiH(c) € nil(R).
Since a;b;jc € nil(R) for 0 < ¢ < m and k < j < n, by Proposition 2.3, we have
aibjf,g(c)enil(R), 0<i<m, k<j<n.
It follows that a;bra*(c) € nil(R), and hence a;bx.c € nil(R) for all 0 < i < m. By induction,
we obtain that a;b;c € nil(R) for all 0 <4 <mand 0 < j < n.
<. Suppose that a;bjc € nil(R) for all 0 < i < m and 0 < j < n. Then a;b;fi(c) €
nil(R), and so a; zn: (bjfi(c)) € nil(R) for all 0 < i < m and 0 < j < n. By (1), we obtain
j=s
fge € nil(R[z; «,0]).
3)

m—+n

fo=> < > (iaif;(bt)»ml = ; Azl

=0 s+t=I



NO. 1 WANG Y. et al. ORE EXTENSIONS OVER WEAKLY 2-PRIMAL RINGS 79

=. First we show that fgh € nil(R[z; «,d]) implies fgcp € nil(R[z; «,d]) for all
0 <k <p. For any 0 < k < p, since fgh € nil(R[z; «,d]), by (1), we have

m
Ay, = Z (ZaJﬁ(bﬂ)ckEnil(R), 0<li<m+n,
s+t=l 1=s
and so fgex € nil(R[z; «,d]) with £ € 0,1,---,p. Now (2) implies that a;b;c, € nil(R) for
al0<i<m,0<j<nand 0 <k <p.
<. Suppose that a;bjc, € nil(R) for all 0 <i<m, 0 < j <nand 0 <k <p. Then we
have fgei € nil(R[z; «,d]) for all 0 < k < p, and so Ajci, € nil(R) for all 0 <1 < m+n and
0 < k < p by (2). Therefore, (1) implies fgh € nil(R[z; «,d]).

Theorem 2.1  Let R be a weakly 2-primal ring. If R is («, d)-compatible, then R[x; «, )
is weakly semicommutative.

Proof. Assume f(z) = Y a;2?, g(z) = 3 bjal € Rlz; «,6] such that f(z)g(z) = 0. By
i=0 §=0
Proposition 2.4, we have a;b; € nil(R) for all 4, j, and hence b;a; € nil(R). Since nil(R) is an

ideal of weakly 2-primal ring R, we know rb;a; € nil(R), and hence a;rb; € nil(R) for each
P

r € R. It follows that fhg € nil(R[z; a,d]) by Proposition 2.6 for any h(z) = Y cpz* €
k=0

Rlz; «,d].

Corollary 2.4  If R is a weakly 2-primal ring, then R[z] is weakly semicommutative.

Corollary 2.5 If R is an a-compatible and weakly 2-primal ring, then R[x; «] is a weakly
semicommutative ring.

Corollary 2.6  If R is a 0-compatible and weakly 2-primal ring, then R[x; ] is a weakly
semicommutative ring.

Chen ([2], Theorem 2.6) has shown that there exists a nil-semicommutative ring R over
which the polynomial ring R[z] is not nil-semicommutative. Nevertheless, we obtain that
if R is semicommutative, then R[] is nil-semicommutative. For the more general case, we
have the following theorem.

Theorem 2.2  Let R be a weakly 2-primal ring. If R is (a, §)-compatible, then R[x; «, ]
is nil-semicommutative.

Proof. Assume f(z) = > a;a’, g(x) = > bja? € R[z; «,d] such that f(x)g(z) = 0.
i=0 3=0

By Proposition 2.4 we have a;b; € nil(R) for all i,7. Since nil(R) is an ideal of weakly

2-primal ring R, rbja; € nil(R), and so a;rb; € nil(R) for each r € R. It follows that
P

fhg € nil(R[x; «,6]) for any h(z) = Y cxz* € R[x; «, ] by Proposition 2.6.
k=0

Corollary 2.7  If R is a weakly 2-primal ring, then R[z] is nil-semicommutative.
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Corollary 2.821  Let R be a weakly 2-primal ring. If R is an a-compatible ring, then

Rlz; o] is nil-semicommutative.

Corollary 2.9  Let R be a weakly 2-primal ring. If R is a 0-compatible ring, then R[xz; 0]
s nil-semicommutative.

3 Weakly 2-primal Property of R[x; «,]

In this section, we consider the relationship between the properties of being the weakly
2-primal of a ring R and that of the Ore extension R[x; «,d].

Lemma 3.1B!  Let R be an (a, §)-compatible ring. If k1, ko, -+ -, ky, are arbitrary nonneg-

atiwe integers and a1, ag, -+ , a, are arbitrary elements in R, then

alas---a, =0 & Ozkl (al)ak2 (GQ) s Oék" (an) =0.

Proposition 3.1  Let R be an («, §)-compatible ring. Then

(1) If arag---a, = 0, then 6% (ay)6%2(az)--- 8% (a,) = 0, where ki, ko, -+, k, are
arbitrary nonnegative integers and a1, as, - -- , an are arbitrary elements in R;

(2) If araz---an =0, then fi(a1)fi2(az)--- fir(an) =0 for all a; € R and 0 < s; < t;,
i=1,2,-- n.

Proof. (1) Let abc = 0 for all a, b, c € R. We have ad(b)c = 0 by Proposition 2.2. According
to Lemma 2.1 and d-compatibility, we have d(a)d(b)d(c) =
§*1(a1)o%2 (az) - - - 6% (ay) = 0.

(2) It is an immediate consequence of (1) and Lemma 3.1.

0. Thus ajas - --a, = 0 implies

Theorem 3.1  Let R be («,0)-compatible. Then R is weakly 2-primal if and only if
Rlz; «,d] is weakly 2-primal.

Proof. By Proposition 3.1 in [3], each subring of weakly 2-primal rings is weakly 2-primal.
So we just to prove the necessity.

Since R is weakly 2-primal, L-rad(R)=nil(R), and so R/nil(R) is reduced. The endo-
morphism « of R induces an endomorphism @ of R/nil(R) via &(a+nil(R)) = a(a)+ nil(R)
since a(nil(R)) C nil(R). And the a-derivation § of R also induces an a-derivation § of
R/nil(R) via 6(a + nil(R)) = 6(a) + nil(R) since d(nil(R)) C nil(R).

We claim that R/nil(R) is (@,)-compatible. In fact, for any a,b € R, if ab = 0 in
R/nil(R), then ab € nil(R). This implies aa(b) € nil(R) by Proposition 2.1. Hence aa(b) =
0. If aa(b) = 0 in R/nil(R), then ac(b) € nil(R). This implies ab € nil(R) by Proposition
2.1. Hence ab = 0. Thus R/nil(R) is a-compatible. On the other hand, if ab = 0 in R/nil(R),
then ab € nil(R). This implies ad(b) € nil(R) by Proposition 2.2. Hence ad(b) = 0. Thus
R/nil(R) is é-compatible. So R/nil(R) is (&, §)-compatible.
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We need to prove that nil(R[z; «,0]) = L-rad(R[z; «,d]). It is enough to show that
nil(R[z; «,d]) C L-rad(R[z; «,d]) since the reverse inclusion is obvious. It is a routine task
to check that there exists an onto ring homomorphism
B: R[z; a,6) — R/nil(R)[z; &,d] with B(ag + a1 + -+ + a,a™) = ag + a1 + -+ + a,z",
where @; = a + nil(R), 0 < i < n, and the meaning of @, J is the same as in the first
paragraph.

First we show that nil(R[z; «,d]) C nil(R)[z; «,d] = L-rad(R)[z; «,d]. Suppose that

f(x) = 3" a;2’ is nilpotent with the nilpotent index k in R[z; «, d]. Then in R/nil(R)[z; &, §],
i=0

flz) = Xn: a;x’ satisfies f(z)* = 0. Because R/nil(R) is reduced and (&, §)-compatible, we
can obtéxi_r(lJ a; € nil(R/nil(R)) for all 0 < i < n by Proposition 2.5. Hence a; € nil(R) for all
0 < i <n. Thus nil(R[z; a,d]) Cnil(R)[z; «,d] = L-rad(R)[z; «,d].
Next we prove that L-rad(R)[z; «, d] is locally nilpotent. Suppose that
fi(@), fa(x), -+, fr(x) € Lrad(R) [z; v, 6].

We prove that the finitely generated subring (without 1) W = {(f;(z), fa(x), -, fu(z)) of
L-rad(R)[z; «,d] is nilpotent. Write f;(x) = a0+ ainz+---+a;,x", where a;; is in L-rad(R)
forall i = 1,2,--- k; § = 0,1,2,---,n. Let M = {aj0,ai1, ** ,ain | ¢ = 1,2,--- ,k}.
Then M is a finite subset of L-rad(R). So the subring (M) (without 1) generated by
M is nilpotent. There exists a positive integer p such that (M)? = 0. Hence for any
by,ba, -+ ,b, € (M), we have biby---b, = 0. Now we prove that W? = 0. In fact, for any
91(2),g2(2),- -+, gp(x) € W, we may write g;(z) = bjo +bj1x+---+bjma™, j=1,2,--- ,p.
It is easy to see that b;; € M for all j and ¢ =0,1,2,--- ,m. Note that

g1(x)g2(z) = < Z bu%i) ( Z b2j50j>
i=0 =0
= <Z b1i$i> bao + <Z blixi) borx+ -+ (Z buxi) bomaz™
i=0 i=0 i=0
= Z blifé(bzo) + -+ <Z bufé(bgo)) ¥+t blmam(bgo)itm
i=0 i—s
+ (Z biifo(ba1) + (Z bliff(bm))x +-F blmam(bm)mm)w
i=0 i—1
+t+ <Z b1 fi(bam) + (Z b1z’ff(b2m)>$ ++ b1mam(b2m)$m>$m
i=0 i=1
= Z b fa(bao) + <Z bii fi(bao) + Z bufg(bm)) x
i=0 i=1 i=0

+---+< > (iblifsi(bgt))>xk+---+b1mam(b2m)x2m.

s+t=k 1=s
It is easy to check that the coefficients of g1(x)gz2(z)--- gp(z) can be written as sums of
monomials of length p in bj; and f(b;), where bj;,b;r € {bjy,bj1,- ,bjm | j=1,2,--- ,p}
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and 0 < u < v are positive integers. Consider each monomial by;, f£2 (bas, ) - - - f;f; (bpi, ), where
b1i17b2i27”' ,bp,‘p S {bjoabj17”' ,bjm | j=12--- ,p} andtj,sj (0 <s; <tj, 1<y Sp—l)
are nonnegative integers. Since b1y, b2i,, -+, bpi, € M, we have by;, ba;, - - - by, = 0. Hence
bii, f22(baiy) - - fﬁﬁ(bpip) = 0 by Proposition 3.1. It follows that g1(x)gz2(x)---gp(x) = 0,
and so L-rad(R)[z; «,d] is locally nilpotent. Since nil(R) = L-rad(R) is an ideal of R and
a(nil(R)) C nil(R) and §(nil(R)) C nil(R), L-rad(R)[z; «,d] is an ideal of R[z; «,d]. Noting
that L-rad(R)[z; «,d] is locally nilpotent, we have L-rad(R)[z; «,d] C L-rad(R[z; a,d]).
From the above argument, we have
nil(R[z; «,d]) Cnil(R)[z; «,d] = L-rad(R)[z; «,d] C L-rad(R[x; «,?]).

Corollary 3.1  Let R be a weakly 2-primal ring. If R is («, §)-compatible, then R[x; «, ]

is NI and weakly semicommutative.

Corollary 3.283  Let R be a-compatible. Then R is weakly 2-primal if and only if Rlz; «]

is weakly 2-primal.

Corollary 3.3  Let R be d-compatible. Then R is weakly 2-primal if and only if R[x; d]

is weakly 2-primal.
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