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Abstract: A weakly 2-primal ring is a common generalization of a semicommutative

ring, a 2-primal ring and a locally 2-primal ring. In this paper, we investigate Ore

extensions over weakly 2-primal rings. Let α be an endomorphism and δ an α-

derivation of a ring R. We prove that (1) If R is an (α, δ)-compatible and weakly

2-primal ring, then R[x; α, δ] is weakly semicommutative; (2) If R is (α, δ)-compatible,

then R is weakly 2-primal if and only if R[x; α, δ] is weakly 2-primal.
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1 Introduction

Throughout this paper, R denotes an associative ring with identity, α is an endomorphism

of R and δ is an α-derivation of R, that is, δ is an additive map such that δ(ab) = δ(a)b+

α(a)δ(b) for a, b ∈ R. We denote by R[x; α, δ] the Ore extension whose elements are the

polynomials over R, the addition is defined as usual, and the multiplication subject to the

reaction xr = α(r)x + δ(r) for any r ∈ R. Particularly, if δ = 0R, we denote by R[x;α]

the skew polynomial ring; if α = 1R, we denote by R[x; δ] the differential polynomial ring.

For a ring R, we denote by nil(R) the set of all nilpotent elements of R, Nil∗(R) its lower

nil-radical, Nil∗(R) its upper nil-radical and L-rad(R) its Levitzki radical. For a nonempty

subset M of a ring R, the symbol ⟨M⟩ denotes the subring (may not with 1) generated by

M .
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Recall that a ring R is called reduced if it has no nonzero nilpotent elements; R is

symmetric if abc = 0 implies acb = 0 for all a, b, c ∈ R; R is semicommutative if ab = 0

implies aRb = 0 for all a, b ∈ R. In [1], semicommutative property is called the insertion-

of-factors-property, or IFP. There are many papers to study semicommutative rings and

their generalization (see [2]–[5]). Liu and Zhao ([6], Lemma 3.1) has proved that if R is

a semicommutative ring, then nil(R) is an ideal of R. Liang et al.[5] called a ring R to

be weakly semicommutative if ab = 0 implies aRb ⊆ nil(R) for any a, b ∈ R. This notion

is a proper generalization of semicommutative rings by Example 2.2 in [5]. According to

Chen[2], a ring R is called nil-semicommutative if ab ∈ nil(R) implies aRb ⊆ nil(R) for any

a, b ∈ R. A nil-semicommutative ring is weakly semicommutative, but the converse is not

true by Example 2.2 in [2]. Recall that a ring R is 2-primal if nil(R) = Nil∗(R). Hong et

al.[7] called a ring R to be locally 2-primal if each finite subset generates a 2-primal ring,

and have shown that if R is a nil ring then R is locally 2-primal if and only if R is a Levitzki

radical ring. Chen and Cui[3] called a ring R to be weakly 2-primal if the set of nilpotent

elements in R coincides with its Levitzki radical, that is, nil(R)=L-rad(R). Due to Marks[8],

a ring R is called NI if nil(R) = Nil∗(R). It is obvious that a ring R is NI if and only if

nil(R) forms an ideal, if and only if R/Nil∗(R) is reduced. Hwang et al.[9] considered basic

structure and some extensions of NI rings, and Proposition 2.1 in [3] has presented their

some characterizations. The following implications hold:

Reduced ⇒ Symmetric ⇒ Semicommutative ⇒ 2-primal ⇒ Locally 2-primal

⇒ Weakly 2-primal ⇒ NI-ring ⇒ Weakly semicommutative.

In general, each of these implications is irreversible (see [3], [7]).

According to Annin[10], for an endomorphism α and an α-derivation δ, a ring R is said

to be α-compatible if for each a, b ∈ R, ab = 0 ⇔ aα(b) = 0. Moreover, R is called to

be δ-compatible if for each a, b ∈ R, ab = 0 ⇒ aδ(b) = 0. If R is both α-compatible

and δ-compatible, R is called (α, δ)-compatible. Liang et al.[5] have proved that if R is

α-compatible semicommutative, then R[x; α] is weakly semicommutative. Chen and Cui[3]

have shown that if R is weakly 2-primal and α-compatible, then R[x; α] is weakly 2-primal

and hence weakly semicommutative. In this paper, we extend respectively the above results

to more general cases, the Ore extensions over weakly 2-primal rings, and generalize recent

some related work on polynomial rings and skew polynomial rings. In particular, we show

that if R is an (α, δ)-compatible and weakly 2-primal ring, then R[x; α, δ] is a weakly

semicommutative ring; if R is (α, δ)-compatible, then R is weakly 2-primal if and only if

R[x; α, δ] is weakly 2-primal. At the same time, we also extend a main result proved by

Chen[2] to the Ore extensions R[x; α, δ] over weakly 2-primal ring, and obtain that if R

is an (α, δ)-compatible and weakly 2-primal ring, then R[x; α, δ] is a nil-semicommutative

ring.

In the following, for integers i, j with 0 ≤ i ≤ j, f j
i ∈ End(R,+) denotes the map which

is the sum of all possible words in α, δ built with i letters α and j− i letters δ. For instance,

f4
2 = α2δ2 + δ2α2 + δα2δ + αδ2α + αδαδ + δαδα. In particular, f0

0 = 1, f i
i = αi, f i

0 = δi,

f j
j−1 = αj−1δ + αj−2δα + · · ·+ δαj−1. For every f j

i ∈ End(R,+) with 0 ≤ i ≤ j, it has Ci
j
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monomials in α, δ built with i letters α and j − i letters δ. As is known to all that for any

integer n and r ∈ R, we have xnr =
n∑

i=0

fn
i (r)x

i in the ring R[x; α, δ].

2 Weakly Semicommutative Property of R[x;α, δ]

In this section, we discuss the weakly semicommutative property and nil-semicommutative

property of Ore extensions R[x; α, δ] over weakly 2-primal rings. In general, one may suspect

that ifR is (α, δ)-compatible, thenR is weakly semicommutative (resp., nil-semicommutative)

if and only if R[x; α, δ] is weakly semicommutative (resp., nil-semicommutative). Since any

subring of a weakly semicommutative (resp., nil-semicommutative) ring is also a weakly

semicommutative (resp., nil-semicommutative) ring, it is clear that if R[x;α, δ] is weakly

semicommutative (resp., nil-semicommutative), then R is weakly semicommutative (resp.,

nil-semicommutative). Unfortunately, the converse is negative. Chen ([2], Theorem 2.6) has

proved that there exists a nil-semicommutative ring R over which the polynomial ring R[x]

is not nil-semicommutative. Example 2.1 in the following shows that there exists a weakly

semicommutative ring R over which the polynomial ring R[x] is not weakly semicommuta-

tive.

Example 2.1 [4] Let Z2 be the field of integers modulo 2 and S = Z2⟨a0, a1, a2, b0, b1,
b2, c⟩ be the free algebra in noncommuting indeterminates a0, a1, a2, b0, b1, b2, c over Z2.

Let A = Z2[a0, a1, a2, b0, b1, b2, c] be the subalgebra in S, of polynomials with zero constant

terms. Note that A is a ring without identity and consider an ideal of Z2+A, say I, generated

by a0b0, a0b1+a1b0, a0b2+a1b1+a2b0, a1b2+a2b1, a2b2, a0rb0, (a0+a1+a2)r(b0+ b1+ b2)

with r ∈ A and r1r2r3r4 with r1, r2, r3, r4 ∈ A. Then, clearly, A4 ∈ I. Let T = (Z2+A)/I.

Then T is semicommutative by Example 2 in [5]. Thus R = T [x] is weakly semicommutative

by Corollary 3.1 in [5]. Next we prove that R[y] is not weakly semicommutative. Notice

that (a0 + a1x+ a2x
2)(b0 + b1x+ b2x

2) ∈ I[x], then

(a0 + (a0 + a1x)y + (a0 + a1x+ a2x
2)y2)(b0 + (b0 + b1x)y + (b0 + b1x+ b2x

2)y2) ∈ I[x][y],

but

(a0 + (a0 + a1x)y + (a0 + a1x+ a2x
2)y2)c(b0 + (b0 + b1x)y + (b0 + b1x+ b2x

2)y2) /∈ I[x][y]

since a0cb1 + a1cb0 /∈ I. Therefore, T [x] is not weakly semicommutative.

To prove the main results of this section, we need the following lemma and several

propositions.

Lemma 2.1 [11] Let R be an (α, δ)-compatible ring. Then

(1) If ab = 0, then aαn(b) = αn(a)b = 0 for all positive integers n;

(2) If αk(a)b = 0 for some positive integer k, then ab = 0;

(3) If ab = 0, then αn(a)δm(b) = δm(a)αn(b) = 0 for all positive integers m, n.

Proposition 2.1 Let R be an (α, δ)-compatible ring. Then

(1) If ab = 0, then af j
i (b) = 0 for all 0 ≤ i ≤ j and a, b ∈ R;

(2) For a, b ∈ R and any positive integer m, ab ∈ nil(R) if and only if aαm(b) ∈ nil(R).
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Proof. (1) If ab = 0, then aαi(b) = aδj(b) = 0 for all i ≥ 0 and j ≥ 0 by Lemma 2.1.

Hence af j
i (b) = 0 for all 0 ≤ i ≤ j.

(2) It is an immediate consequence of Lemma 3.1 in [5] and Lemma 2.8 in [12].

Proposition 2.2 Let R be an (α, δ)-compatible ring. Then

(1) If abc = 0, then aδ(b)c = 0 for any a, b, c ∈ R;

(2) If abc = 0, then af j
i (b)c = 0 for all 0 ≤ i ≤ j and a, b, c ∈ R;

(3) If ab ∈ nil(R), then aδ(b) ∈ nil(R) for any a, b ∈ R.

Proof. (1) If abc = 0, we have α(ab)δ(c) = 0, α(a)α(b)δ(c) = 0 and aα(b)δ(c) = 0. On the

other hand, we also have aδ(bc) = 0, a(δ(b)c+α(b)δ(c)) = 0 and aδ(b)c+ aα(b)δ(c) = 0. So

aδ(b)c = 0.

(2) If abc = 0, we have aα(bc) = 0, aα(b)α(c) = 0 and aα(b)c = 0. It follows that

aαm(b)c = 0 and aδnαm(b)c = 0 for any positive integers m, n. Meanwhile, we can obtain

that aδ(b)c = 0 by (1), which implies that aδj(b)c = 0 and aαiδj(b)c = 0. Therefore, we

have af j
i (b)c = 0 for all 0 ≤ i ≤ j.

(3) Since ab ∈ nil(R), there exists some positive integer k such that (ab)k = 0. In the

following computations, we use freely (1):

(ab)k = ab(ab · · · ab) = 0

⇒ aδ(b)(ab · · · ab) = (aδ(b)a)b(ab · · · ab) = 0

⇒ (aδ(b)a)δ(b)(ab · · · ab) = 0

⇒ · · ·

⇒ (aδ(b))k−1ab1 = 0

⇒ (aδ(b))k = 0.

This implies that aδ(b) ∈ nil(R).

Proposition 2.3 If R is an (α, δ)-compatible NI ring, then ab ∈ nil(R) implies af j
i (b) ∈

nil(R) for all 0 ≤ i ≤ j and a, b ∈ R.

Proof. If ab ∈ nil(R), then we have aαi(b), aδj(b) ∈ nil(R) for all i ≥ 0 and j ≥ 0 by

Propositions 2.1 and 2.2. This implies aδjαi(b), aαiδj(b) ∈ nil(R). Since R is NI, we have

af j
i (b) ∈ nil(R) for all 0 ≤ i ≤ j.

Proposition 2.4 Let R be an (α, δ)-compatible NI ring, and f(x) =
m∑
i=0

aix
i, g(x) =

n∑
j=0

bjx
j ∈ R[x; α, δ]. Then f(x)g(x) = 0 implies aibj ∈ nil(R) for each i, j.

Proof. Suppose f(x) =
m∑
i=0

aix
i, g(x) =

n∑
j=0

bjx
j ∈ R[x; α, δ] such that f(x)g(x) = 0. Then

we have

f(x)g(x) =

( m∑
i=0

aix
i

)( n∑
j=0

bjx
j

)
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=

( m∑
i=0

aix
i

)
b0 +

( m∑
i=0

aix
i

)
b1x+ · · ·+

( m∑
i=0

aix
i

)
bnx

n

=
m∑
i=0

aif
i
0(b0) +

( m∑
i=1

aif
i
1(b0)

)
x+ · · ·+

( m∑
i=s

aif
i
s(b0)

)
xs + · · ·+ amαm(b0)x

m

+

( m∑
i=0

aif
i
0(b1) + · · ·+

( m∑
i=s

aif
i
s(b1)

)
xs + · · ·+ amαm(b1)x

m

)
x+ · · ·

+

( m∑
i=0

aif
i
0(bn) +

( m∑
i=1

aif
i
1(bn)

)
x+ · · ·+ amαm(bn)x

m

)
xn

=

m∑
i=0

aif
i
0(b0) +

( m∑
i=1

aif
i
1(b0) +

m∑
i=0

aif
i
0(b1)

)
x+ · · ·

+

( ∑
s+t=k

( m∑
i=s

aif
i
s(bt)

))
xk + · · ·+ amαm(bn)x

m+n

= 0.

It follows that

∆m+n = amαm(bn) = 0, (2.1)

∆m+n−1 = amαm(bn−1) + am−1α
m−1(bn) + amfm

m−1(bn) = 0, (2.2)

∆m+n−2 = amαm(bn−2) +

m∑
i=m−1

f i
m−1(bn−1) +

m∑
i=m−2

f i
m−2(bn) = 0, (2.3)

...

∆k =
∑

s+t=k

( m∑
i=s

aif
i
s(bt)

)
= 0. (2.4)

From (2.1), we have ambn = 0 since R is (α, δ)-compatible. Thus, by Proposition 2.1,

amf t
s(bn) = 0 for all 0 ≤ s ≤ t. From (2.2), we have

∆′
m+n−1 = amαm(bn−1) + am−1α

m−1(bn) = 0. (2.5)

If we multiply (2.5) on the left side by bn, then we obtain

bnamαm(bn−1) + bnam−1α
m−1(bn) = 0.

Since ambn = 0, we have bnam ∈ nil(R). So

bnam−1α
m−1(bn) = −bnamαm(bn−1) ∈ nil(R),

because the nil(R) of an NI ring R is an ideal. Thus, bnam−1bn ∈ nil(R) by Proposition

2.1, and hence bnam−1 ∈ nil(R), am−1bn ∈ nil(R) and am−1α
m−1(bn) ∈ nil(R). It fol-

lows that amαm(bn−1) ∈ nil(R) and so ambn−1 ∈ nil(R) by Proposition 2.1. Therefore,

ambn−1, am−1bn ∈ nil(R). By Proposition 2.3 and (2.3),

∆m+n−2 = amαm(bn−2) + am−1α
m−1(bn−1) + amfm

m−1(bn−1) + am−2α
m−2(bn)

+ am−1f
m−1
m−2 (bn) + amfm

m−2(bn)

= 0,

we have

∆′
m+n−2 = amαm(bn−2) + am−1α

m−1(bn−1) + am−2α
m−2(bn) ∈ nil(R). (2.6)
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If we multiply (2.6) on the left side by bn, bn−1, bn−2, respectively, then we obtain am−2bn ∈
nil(R), am−1bn−1 ∈ nil(R) and ambn−2 ∈ nil(R) in turn.

Continuing this procedure yields that aibj ∈ nil(R) for all i, j.

The index of nilpotency of a nilpotent element x in a ring R is the least positive integer

n such that xn = 0. The index of nilpotency of a subset I of R is the supremum of the

indices of nilpotency of all nilpotent elements in I. If such a supremum is finite, then I is

said to be of bounded index of nilpotency.

Proposition 2.5 Let R be (α, δ)-compatible and f(x) =
n∑

i=0

aix
i ∈ R[x; α, δ]. Then

(1) If R is an NI ring, then f(x) ∈ nil(R[x; α, δ]) implies ai ∈ nil(R) for all 0 ≤ i ≤ n;

(2) If R is a weakly 2-primal ring, then ai ∈ nil(R) for all 0 ≤ i ≤ n implies f(x) ∈
nil(R[x; α, δ]);

(3) If Nil∗(R) is nilpotent, then ai ∈ nil(R) for 0 ≤ i ≤ n implies f(x) ∈ nil(R[x; α, δ]);

(4) If R is of bounded index of nilpotency, then ai ∈ nil(R) for all 0 ≤ i ≤ n implies

f(x) ∈ nil(R[x; α, δ]).

Proof. (1) Let f(x) =
n∑

i=0

aix
i ∈ nil(R[x; α, δ]). Then there exists a positive integer k such

that

f(x)k = (a0 + a1x+ · · ·+ anx
n)k

= lower order terms + anα
n(an)α

2n(an) · · ·α(k−1)n(an)x
nk

= 0.

Hence

anα
n(an)α

2n(an) · · ·α(k−1)n(an) = 0

⇒ anα
n((an)α

n(an) · · ·α(k−2)n(an)) = 0

⇒ a2nα
n(an) · · ·α(k−3)n(an)α

(k−2)n(an) = 0

⇒ a3nα
n(an) · · ·α(k−3)n(an) = 0

⇒ · · ·

⇒ akn = 0

⇒ an ∈ nil(R).

So by Proposition 2.3, an = 1 · an ∈ nil(R) implies 1 · f t
s(an) = f t

s(an) ∈ nil(R) for all

0 ≤ s ≤ t. Let Q = a0 + a1x+ · · ·+ an−1x
n−1. Then

0 = (Q+ anx
n)k

= (Q+ anx
n)(Q+ anx

n) · · · (Q+ anx
n)

= (Q2 +Q · anxn + anx
n ·Q+ anx

n · anxn)(Q+ anx
n) · · · (Q+ anx

n)

= · · ·

= Qk +∆,

where ∆ ∈ R[x; α, δ]. Notice that the coefficients of ∆ can be written as sums of monomials

in ai and fv
u(aj), where ai, aj ∈ {a0, a1, · · · , an} and 0 ≤ u ≤ v are positive integers, and
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each monomial has an or f t
s(an). Since nil(R) is an ideal of R, we obtain that each monomial

is in nil(R), and then ∆ ∈ nil(R)[x; α, δ]. Thus

(a0 + a1x+ · · ·+ an−1x
n−1)k

= lower order terms + an−1α
n−1(an−1) · · ·α(n−1)(k−1)(an−1)x

(n−1)k ∈ nil(R)[x; α, δ].

Hence, by Proposition 2.3,

an−1α
n−1(an−1) · · ·α(n−1)(k−1)(an−1) ∈ nil(R)

⇒ an−1α
n−1(an−1α

n−1(an−1) · · ·α(n−1)(k−2)(an−1)) ∈ nil(R)

⇒ a2n−1α
n−1(an−1) · · ·α(n−1)(k−2)(an−1) ∈ nil(R)

⇒ a3n−1α
n−1(an−1) · · ·α(n−1)(k−3)(an−1) ∈ nil(R)

⇒ · · ·

⇒ ak−1
n−1 ∈ nil(R)

⇒ an−1 ∈ nil(R).

By using induction on n, we have ai ∈ nil(R) for all 0 ≤ i ≤ n.

(2) Consider the finite subset {a0, a1, · · · , an}. Since R is weakly 2-primal and hence

nil(R)=L-rad(R), ⟨a0, a1, · · · , an⟩ is nilpotent subring of R. So there exists a positive integer

k such that any product of k elements ai1ai2 · · · aik from {a0, a1, · · · , an} is zero. Note

that the coefficients of f(x)k+1 =

(
n∑

i=0

aix
i

)k+1

in R[x; α, δ] can be written as sums of

monomials of length k+1 in ai and fv
u(aj), where ai, aj ∈ {a0, a1, · · · , an} and 0 ≤ u ≤ v are

positive integers. For each monomial ai1f
t2
s2 (ai2) · · · f

tk+1
sk+1 (aik+1

), where ai1 , ai2 , · · · , aik+1
∈

{a0, a1, · · · , an} and tj , sj (tj ≥ sj , 2 ≤ j ≤ k + 1) are nonnegative integers, we obtain

ai1f
t2
s2 (ai2) · · · f

tk+1
sk+1 (aik+1

) = 0 by Propositions 2.1 and 2.2. Therefore, we have f(x)k+1 = 0

and so f(x) ∈ nil(R[x; α, δ]).

(3) In this case, nil(R) = Nil∗(R)=L-rad(R), the proof is similar to that of (2).

(4) By Proposition 22.2 in [13], in this case, R is locally nilpotent, and hence nil(R) =

Nil∗(R)=L-rad(R) = R.

Corollary 2.1 Let R be a weakly 2-primal ring. If R is (α, δ)-compatible, then

nil(R[x; α, δ]) = nil(R)[x; α, δ]).

Corollary 2.2 Let R be (α, δ)-compatible. Then

(1) If R is weakly 2-primal, then R[x; α, δ] is NI;

(2) If Nil∗(R) is nilpotent, then R[x; α, δ] is NI;

(3) If R is of bounded index of nilpotency, then R[x; α, δ] is NI.

Proof. Since nil(R)[x; α, δ] is an ideal of R[x; α, δ]), we have

nil(R[x; α, δ]) = nil(R)[x; α, δ]) = Nil∗(R)[x; α, δ]

by Proposition 2.5.

Corollary 2.3 Let R be a weakly 2-primal ring. Then nil(R[x]) = nil(R)[x].
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Proposition 2.6 Let R be an (α, δ)-compatible weakly 2-primal ring. Then, for f(x) =
m∑
i=0

aix
i, g(x) =

n∑
j=0

bjx
j , h(x) =

p∑
k=0

ckx
k ∈ R[x; α, δ] and c ∈ R, we have

(1) fg ∈ nil(R[x; α, δ]) ⇔ aibj ∈ nil(R) for all 0 ≤ i ≤ m, 0 ≤ j ≤ n;

(2) fgc ∈ nil(R[x; α, δ]) ⇔ aibjc ∈ nil(R) for all 0 ≤ i ≤ m, 0 ≤ j ≤ n;

(3) fgh ∈ nil(R[x; α, δ]) ⇔ aibjck ∈ nil(R) for all 0 ≤ i ≤ m, 0 ≤ j ≤ n and 0 ≤ k ≤ p.

Proof. (1) ⇒ . Suppose f(x) =
m∑
i=0

aix
i, g(x) =

n∑
j=0

bjx
j ∈ R[x; α, δ] such that fg ∈

nil(R[x; α, δ]). Then

f(x)g(x) =

( m∑
i=0

aix
i

)( n∑
j=0

bjx
j

)

=
m∑
i=0

aif
i
0(b0) +

( m∑
i=1

aif
i
1(b0) +

m∑
i=0

aif
i
0(b1)

)
x+ · · ·

+

( ∑
s+t=k

( m∑
i=s

aif
i
s(bt)

))
xk + · · ·

+ amαm(bn)x
m+n ∈ nil(R[x; α, δ]).

Thus, by Proposition 2.5, we have that

Ωm+n = amαm(bn) ∈ nil(R), (2.7)

Ωm+n−1 = amαm(bn−1) + am−1α
m−1(bn) + amfm

m−1(bn) ∈ nil(R), (2.8)

Ωm+n−2 = amαm(bn−2) +
m∑

i=m−1

f i
m−1(bn−1) +

m∑
i=m−2

f i
m−2(bn) ∈ nil(R), (2.9)

...

Ωk =
∑

s+t=k

( m∑
i=s

aif
i
s(bt)

)
∈ nil(R). (2.10)

From Proposition 2.1 and (2.7), we have ambn ∈ nil(R). Next we show that aibn ∈ nil(R)

for all 0 ≤ i ≤ m. If we multiply (2.8) on the left side by bn, then bnam−1α
m−1(bn) ∈ nil(R)

since nil(R) is an ideal of R. Thus, by Proposition 2.1, bnam−1bn ∈ nil(R), and so bnam−1 ∈
nil(R), am−1bn ∈ nil(R). Multiplying (2.9) on the left side by bn, since nil(R) is an ideal of

R, we obtain

bnam−2α
m−2(bn) = bnΩm+n−2 − bnamαm(bn−2)− bnam−1α

m−1(bn−1)− bnamfm
m−1(bn−1)

− bnam−1f
m−1
m−2 (bn)− bnamfm

m−2(bn) ∈ nil(R).

Thus bnam−2 ∈ nil(R) and am−2bn ∈ nil(R). Continuing this procedure yields that aibn ∈
nil(R) for all 0 ≤ i ≤ m, and so aif

t
s(bn) ∈ nil(R) for any 0 ≤ s ≤ t and 0 ≤ i ≤ m by

Proposition 2.3. Thus it is easy to verify that( m∑
i=0

aix
i

)( n−1∑
j=0

bjx
j

)
∈ nil(R[x; α, δ]).

Applying the preceding method repeatedly, we obtain that aibj ∈ nil(R) for all 0 ≤ i ≤ m

and 0 ≤ j ≤ n.
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⇐. Let aibj ∈ nil(R) for all i, j. Then aif
i
s ∈ nil(R) for all i, j and all positive integers

0 ≤ s ≤ i by Proposition 2.3. Thus∑
s+t=k

( m∑
i=s

aif
i
s(bt)

)
∈ nil(R), k = 0, 1, 2, · · · ,m+ n.

Hence, by Proposition 2.5,

fg =
m∑

k=0

( ∑
s+t=k

( m∑
i=s

aif
i
s(bt)

))
xk ∈ nil(R[x; α, δ]).

(2) ⇒.

g(x)c =

( n∑
j=0

bjx
j

)
c

=
n∑

j=0

bjf
j
0 (c) +

( n∑
j=1

bjf
j
1 (c)

)
x+ · · ·+

( n∑
j=s

bjf
j
s (c)

)
xs + · · ·+ bnα

n(c)xn

= ∆0 +∆1x+ · · ·+∆sx
s + · · ·+∆nx

n,

where ∆s =
n∑

j=s

bjf
j
s (c), 0 ≤ s ≤ n. By (1), we have

ai∆s = ai

( n∑
j=s

bjf
j
s (c)

)
∈ nil(R), 0 ≤ i ≤ m, 0 ≤ s ≤ n.

For s = n, we have

ai∆n = aibnα
n(c) ∈ nil(R), 0 ≤ i ≤ m.

Then, by Proposition 2.1, aibnc ∈ nil(R) for all 0 ≤ i ≤ m.

For s = n− 1, we have

ai∆n−1 = aibn−1α
n−1(c) + aibnf

n
n−1(c) ∈ nil(R), 0 ≤ i ≤ m.

Since aibnc ∈ nil(R), by Proposition 2.3, we have aibnf
n
n−1(c) ∈ nil(R). Hence

aibn−1α
n−1(c) = ai∆n−1 − aibnf

n
n−1(c) ∈ nil(R),

and so aibnc ∈ nil(R) for all 0 ≤ i ≤ m.

Now suppose that k is a positive integer such that aibjc ∈ nil(R) for all 0 ≤ i ≤ m when

j > k. We show that aibkc ∈ nil(R) for all 0 ≤ i ≤ m.

If s = k, for all 0 ≤ i ≤ m, we have

ai∆k = aibkα
k(c) + aibk+1f

k+1
k (c) + · · ·+ aibnf

n
k (c) ∈ nil(R).

Since aibjc ∈ nil(R) for 0 ≤ i ≤ m and k < j ≤ n, by Proposition 2.3, we have

aibjf
j
k(c) ∈ nil(R), 0 ≤ i ≤ m, k < j ≤ n.

It follows that aibkα
k(c) ∈ nil(R), and hence aibkc ∈ nil(R) for all 0 ≤ i ≤ m. By induction,

we obtain that aibjc ∈ nil(R) for all 0 ≤ i ≤ m and 0 ≤ j ≤ n.

⇐. Suppose that aibjc ∈ nil(R) for all 0 ≤ i ≤ m and 0 ≤ j ≤ n. Then aibjf
j
s (c) ∈

nil(R), and so ai
n∑

j=s

(bjf
j
s (c)) ∈ nil(R) for all 0 ≤ i ≤ m and 0 ≤ j ≤ n. By (1), we obtain

fgc ∈ nil(R[x; α, δ]).

(3)

fg =
m+n∑
l=0

( ∑
s+t=l

( m∑
i=s

aif
i
s(bt)

))
xl =

m+n∑
l=0

∆lx
l.
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⇒. First we show that fgh ∈ nil(R[x; α, δ]) implies fgck ∈ nil(R[x; α, δ]) for all

0 ≤ k ≤ p. For any 0 ≤ k ≤ p, since fgh ∈ nil(R[x; α, δ]), by (1), we have

∆lck =
∑

s+t=l

( m∑
i=s

aif
i
s(bt)

)
ck ∈ nil(R), 0 ≤ l ≤ m+ n,

and so fgck ∈ nil(R[x; α, δ]) with k ∈ 0, 1, · · · , p. Now (2) implies that aibjck ∈ nil(R) for

all 0 ≤ i ≤ m, 0 ≤ j ≤ n and 0 ≤ k ≤ p.

⇐. Suppose that aibjck ∈ nil(R) for all 0 ≤ i ≤ m, 0 ≤ j ≤ n and 0 ≤ k ≤ p. Then we

have fgck ∈ nil(R[x; α, δ]) for all 0 ≤ k ≤ p, and so ∆lck ∈ nil(R) for all 0 ≤ l ≤ m+n and

0 ≤ k ≤ p by (2). Therefore, (1) implies fgh ∈ nil(R[x; α, δ]).

Theorem 2.1 Let R be a weakly 2-primal ring. If R is (α, δ)-compatible, then R[x; α, δ]

is weakly semicommutative.

Proof. Assume f(x) =
m∑
i=0

aix
i, g(x) =

n∑
j=0

bjx
j ∈ R[x; α, δ] such that f(x)g(x) = 0. By

Proposition 2.4, we have aibj ∈ nil(R) for all i, j, and hence bjai ∈ nil(R). Since nil(R) is an

ideal of weakly 2-primal ring R, we know rbjai ∈ nil(R), and hence airbj ∈ nil(R) for each

r ∈ R. It follows that fhg ∈ nil(R[x; α, δ]) by Proposition 2.6 for any h(x) =
p∑

k=0

ckx
k ∈

R[x; α, δ].

Corollary 2.4 If R is a weakly 2-primal ring, then R[x] is weakly semicommutative.

Corollary 2.5 If R is an α-compatible and weakly 2-primal ring, then R[x; α] is a weakly

semicommutative ring.

Corollary 2.6 If R is a δ-compatible and weakly 2-primal ring, then R[x; δ] is a weakly

semicommutative ring.

Chen ([2], Theorem 2.6) has shown that there exists a nil-semicommutative ring R over

which the polynomial ring R[x] is not nil-semicommutative. Nevertheless, we obtain that

if R is semicommutative, then R[x] is nil-semicommutative. For the more general case, we

have the following theorem.

Theorem 2.2 Let R be a weakly 2-primal ring. If R is (α, δ)-compatible, then R[x; α, δ]

is nil-semicommutative.

Proof. Assume f(x) =
m∑
i=0

aix
i, g(x) =

n∑
j=0

bjx
j ∈ R[x; α, δ] such that f(x)g(x) = 0.

By Proposition 2.4 we have aibj ∈ nil(R) for all i, j. Since nil(R) is an ideal of weakly

2-primal ring R, rbjai ∈ nil(R), and so airbj ∈ nil(R) for each r ∈ R. It follows that

fhg ∈ nil(R[x; α, δ]) for any h(x) =
p∑

k=0

ckx
k ∈ R[x; α, δ] by Proposition 2.6.

Corollary 2.7 If R is a weakly 2-primal ring, then R[x] is nil-semicommutative.
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Corollary 2.8 [2] Let R be a weakly 2-primal ring. If R is an α-compatible ring, then

R[x; α] is nil-semicommutative.

Corollary 2.9 Let R be a weakly 2-primal ring. If R is a δ-compatible ring, then R[x; δ]

is nil-semicommutative.

3 Weakly 2-primal Property of R[x; α, δ]

In this section, we consider the relationship between the properties of being the weakly

2-primal of a ring R and that of the Ore extension R[x; α, δ].

Lemma 3.1 [3] Let R be an (α, δ)-compatible ring. If k1, k2, · · · , kn are arbitrary nonneg-

ative integers and a1, a2, · · · , an are arbitrary elements in R, then

a1a2 · · · an = 0 ⇔ αk1(a1)α
k2(a2) · · ·αkn(an) = 0.

Proposition 3.1 Let R be an (α, δ)-compatible ring. Then

(1) If a1a2 · · · an = 0, then δk1(a1)δ
k2(a2) · · · δkn(an) = 0, where k1, k2, · · · , kn are

arbitrary nonnegative integers and a1, a2, · · · , an are arbitrary elements in R;

(2) If a1a2 · · · an = 0, then f t1
s1 (a1)f

t2
s2 (a2) · · · f

tn
sn (an) = 0 for all ai ∈ R and 0 ≤ si ≤ ti,

i = 1, 2, · · · , n.

Proof. (1) Let abc = 0 for all a, b, c ∈ R. We have aδ(b)c = 0 by Proposition 2.2. According

to Lemma 2.1 and δ-compatibility, we have δ(a)δ(b)δ(c) = 0. Thus a1a2 · · · an = 0 implies

δk1(a1)δ
k2(a2) · · · δkn(an) = 0.

(2) It is an immediate consequence of (1) and Lemma 3.1.

Theorem 3.1 Let R be (α, δ)-compatible. Then R is weakly 2-primal if and only if

R[x; α, δ] is weakly 2-primal.

Proof. By Proposition 3.1 in [3], each subring of weakly 2-primal rings is weakly 2-primal.

So we just to prove the necessity.

Since R is weakly 2-primal, L-rad(R)=nil(R), and so R/nil(R) is reduced. The endo-

morphism α of R induces an endomorphism ᾱ of R/nil(R) via ᾱ(a+nil(R)) = α(a)+nil(R)

since α(nil(R)) ⊆ nil(R). And the α-derivation δ of R also induces an ᾱ-derivation δ̄ of

R/nil(R) via δ̄(a+ nil(R)) = δ(a) + nil(R) since δ(nil(R)) ⊆ nil(R).

We claim that R/nil(R) is (ᾱ, δ̄)-compatible. In fact, for any a, b ∈ R, if āb̄ = 0̄ in

R/nil(R), then ab ∈ nil(R). This implies aα(b) ∈ nil(R) by Proposition 2.1. Hence āᾱ(b̄) =

0̄. If āᾱ(b̄) = 0̄ in R/nil(R), then aα(b) ∈ nil(R). This implies ab ∈ nil(R) by Proposition

2.1. Hence āb̄ = 0̄. Thus R/nil(R) is ᾱ-compatible. On the other hand, if āb̄ = 0̄ in R/nil(R),

then ab ∈ nil(R). This implies aδ(b) ∈ nil(R) by Proposition 2.2. Hence āδ̄(b̄) = 0̄. Thus

R/nil(R) is δ̄-compatible. So R/nil(R) is (ᾱ, δ̄)-compatible.
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We need to prove that nil(R[x; α, δ]) = L-rad(R[x; α, δ]). It is enough to show that

nil(R[x; α, δ]) ⊆ L-rad(R[x; α, δ]) since the reverse inclusion is obvious. It is a routine task

to check that there exists an onto ring homomorphism

β : R[x; α, δ] → R/nil(R)[x; ᾱ, δ̄] with β(a0 + a1x+ · · ·+ anx
n) = ā0 + ā1x+ · · ·+ ānx

n,

where āi = a + nil(R), 0 6 i 6 n, and the meaning of ᾱ, δ̄ is the same as in the first

paragraph.

First we show that nil(R[x; α, δ]) ⊆ nil(R)[x; α, δ] = L-rad(R)[x; α, δ]. Suppose that

f(x) =
n∑

i=0

aix
i is nilpotent with the nilpotent index k in R[x;α, δ]. Then in R/nil(R)[x; ᾱ, δ̄],

f̄(x) =
n∑

i=0

āix
i satisfies f̄(x)k = 0̄. Because R/nil(R) is reduced and (ᾱ, δ̄)-compatible, we

can obtain āi ∈ nil(R/nil(R)) for all 0 ≤ i ≤ n by Proposition 2.5. Hence ai ∈ nil(R) for all

0 ≤ i ≤ n. Thus nil(R[x; α, δ]) ⊆ nil(R)[x; α, δ] = L-rad(R)[x; α, δ].

Next we prove that L-rad(R)[x;α, δ] is locally nilpotent. Suppose that

f1(x), f2(x), · · · , fk(x) ∈ L-rad(R)[x;α, δ].

We prove that the finitely generated subring (without 1) W = ⟨f1(x), f2(x), · · · , fk(x)⟩ of

L-rad(R)[x; α, δ] is nilpotent. Write fi(x) = ai0+ai1x+· · ·+ainx
n, where aij is in L-rad(R)

for all i = 1, 2, · · · , k; j = 0, 1, 2, · · · , n. Let M = {ai0, ai1, · · · , ain | i = 1, 2, · · · , k}.
Then M is a finite subset of L-rad(R). So the subring ⟨M⟩ (without 1) generated by

M is nilpotent. There exists a positive integer p such that ⟨M⟩p = 0. Hence for any

b1, b2, · · · , bp ∈ ⟨M⟩, we have b1b2 · · · bp = 0. Now we prove that W p = 0. In fact, for any

g1(x), g2(x), · · · , gp(x) ∈ W , we may write gj(x) = bj0 + bj1x+ · · ·+ bjmxm, j = 1, 2, · · · , p.
It is easy to see that bjt ∈ M for all j and t = 0, 1, 2, · · · ,m. Note that

g1(x)g2(x) =

( m∑
i=0

b1ix
i

)( m∑
j=0

b2jx
j

)

=

( m∑
i=0

b1ix
i

)
b20 +

( m∑
i=0

b1ix
i

)
b21x+ · · ·+

( m∑
i=0

b1ix
i

)
b2mxm

=
m∑
i=0

b1if
i
0(b20) + · · ·+

( m∑
i=s

b1if
i
s(b20)

)
xs + · · ·+ b1mαm(b20)x

m

+

( m∑
i=0

b1if
i
0(b21) +

( m∑
i=1

b1if
i
1(b21)

)
x+ · · ·+ b1mαm(b21)x

m

)
x

+ · · ·+
( m∑

i=0

b1if
i
0(b2m) +

( m∑
i=1

b1if
i
1(b2m)

)
x+ · · ·+ b1mαm(b2m)xm

)
xm

=
m∑
i=0

b1if
i
0(b20) +

( m∑
i=1

b1if
i
1(b20) +

m∑
i=0

b1if
i
0(b21)

)
x

+ · · ·+
( ∑

s+t=k

( m∑
i=s

b1if
i
s(b2t)

))
xk + · · ·+ b1mαm(b2m)x2m.

It is easy to check that the coefficients of g1(x)g2(x) · · · gp(x) can be written as sums of

monomials of length p in bji and fv
u(bjt), where bji, bjt ∈ {bj0 , bj1, · · · , bjm | j = 1, 2, · · · , p}



82 COMM. MATH. RES. VOL. 32

and 0 ≤ u ≤ v are positive integers. Consider each monomial b1i1f
t2
s2 (b2i2) · · · f

tp
sp (bpip), where

b1i1 , b2i2 , · · · , bpip ∈ {bj0 , bj1, · · · , bjm | j = 1, 2, · · · , p} and tj , sj (0 ≤ sj ≤ tj , 1 ≤ j ≤ p−1)

are nonnegative integers. Since b1i1 , b2i2 , · · · , bpip ∈ M , we have b1i1b2i2 · · · bpip = 0. Hence

b1i1f
t2
s2 (b2i2) · · · f

tp
sp (bpip) = 0 by Proposition 3.1. It follows that g1(x)g2(x) · · · gp(x) = 0,

and so L-rad(R)[x; α, δ] is locally nilpotent. Since nil(R) = L-rad(R) is an ideal of R and

α(nil(R)) ⊆ nil(R) and δ(nil(R)) ⊆ nil(R), L-rad(R)[x; α, δ] is an ideal of R[x; α, δ]. Noting

that L-rad(R)[x; α, δ] is locally nilpotent, we have L-rad(R)[x; α, δ] ⊆ L-rad(R[x; α, δ]).

From the above argument, we have

nil(R[x; α, δ]) ⊆ nil(R)[x; α, δ] = L-rad(R)[x; α, δ] ⊆ L-rad(R[x; α, δ]).

Corollary 3.1 Let R be a weakly 2-primal ring. If R is (α, δ)-compatible, then R[x; α, δ]

is NI and weakly semicommutative.

Corollary 3.2 [3] Let R be α-compatible. Then R is weakly 2-primal if and only if R[x; α]

is weakly 2-primal.

Corollary 3.3 Let R be δ-compatible. Then R is weakly 2-primal if and only if R[x; δ]

is weakly 2-primal.
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