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Existence of Periodic Solutions in Impulsive
Differential Equations∗
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Abstract In this paper, we are concerned with the problem of existence of
periodic solutions for a class of second order impulsive differential equations.
By Poincaré-Bohl theorem, we give several criteria to guarantee that the im-
pulsive differential equation has periodic solutions under assumptions that the
nonlinear term satisfies the linear growth conditions. Two specific examples
are presented to illustrate the obtained results.
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1. Introduction

In this paper, we consider the following second order impulsive differential equation

8<
:
x′′ + g(x) = e(t, x, x′), t 6= tk, t ∈ R,
x(t+k ) = akx(tk),

x′(t+k ) = bkx
′(tk), t = tk, k ∈ Z+,

(1.1)

where (x(tk), x′(tk)) = (x(t−k ), x′(t−k )), g : R → R is a locally Lipschitz continuous
function satisfying the linear growth condition

0 < l ≤ lim
|x|→+∞

g(x)

x
≤ L < +∞,

e : R × R × R → R is continuous, bounded and 2π-periodic to the first variable,
0 < tk < tk+1 ↑ +∞, ak > 0, bk > 0 are constants and there exists a positive integer
q such that ak+q = ak, bk+q = bk and tk+q = tk + 2π for k ∈ Z+, Z+ is the set of
positive integers.

Impulsive effects widely exist in many evolution processes, in which their states
are changed abruptly at some moments. Impulsive differential equation has been
developed by many mathematicians. Please see the classical monographs [1, 13],
and [8, 9, 15–19, 21–24] for the existence of periodic solutions. In addition, applica-
tions of the impulsive differential equation with/or without delays occur in biology,
mechanics, engineering etc., see for example [11,25–27] and the references therein.
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The continuous case of (1.1) without impulses is as follows

x′′ + g(x) = e(t, x, x′). (1.2)

This type of second order differential equation is one of the typical models both in
ODE and forced vibrations. Particularly, the Duffing equation (i.e. x′′+g(x) = e(t))
is a class of mathematical and physical equations, it has many important applica-
tions in mechanical and electrical engineering. Recent decades, the existence of
periodic solutions has been extensively studied for the Duffing equation under as-
sumptions that the nonlinear term g satisfies superlinear, sublinear or semilinear
conditions. The methods include fixed point theorem, variational method and topo-
logical degree theory [2–7,10,14].

When e(t, x, x′) = e(t), (1.2) is conservative. The Poincaré mapping is an area-
preserving homeomorphism. By Poincaré-Birkhoff theorem, Jacobowitz [10] gave
the first application to periodic solutions of second order differential equations, and
proved the existence of infinitely many periodic solutions. See for example [4–6,20]
for some related researches and the references therein. Recently, the Poincaré-
Birkhoff theorem has been applied to the impulsive differential equation [12,17,18].
In [12], Jiang et al. gave the first application of the Poincaré-Birkhoff theorem to
the following impulsive Duffing equations at resonance

8<
:
x′′ + g(x) = e(t), t 6= tk,

x(t+k ) = akx(tk),

x′(t+k ) = bkx
′(tk), k ∈ Z+,

(1.3)

under the superlinear condition. By using a method of comparing rotational inertia,
the authors obtained the multiplicity of periodic solutions. In [18], Qian et al. used
a geometric method to study the periodic solutions for a superlinear second order
differential equation with general impulsive effects as follows

8<
:
x′′ + g(x) = e(t, x, x′), t 6= tk,

4x(tk) = Ik(x(tk), x′(tk)),

4x′(tk) = Jk(x(tk), x′(tk)), k = ±1,±2, · · · ,
(1.4)

and obtained the multiplicity when (1.4) is conservative. In [17], Niu and Li studied
a conservative semilinear impulsive Duffing equation, in which their states occur one
jump only in [0, 2π]. Similarly, by the Poincaré-Birkhoff theorem they proved the
existence of infinitely many periodic solutions for autonomous and nonautonomous
equations respectively. On the other hand, when (1.2) is nonconservative, Ding [7]
developed a new twist fixed point theorem used for nonarea-preserving mappings.
In [18], Qian et al. further studied the existence of periodic solutions for (1.4) being
nonconservative.

In this paper, we study the existence of periodic solutions for a class of semilinear
second order impulsive differential equations (1.1). Our aim is to estimate the time
that any solution trajectory of the system rotates one circle on the phase plane. By
using the Poincaré-Bohl theorem to obtain the existence results. As far as I know,
there is no result on the existence of periodic solutions for the semilinear second
order differential equations with the linear impulsive effects.

Now we recall an existence result from the Poincaré-Bohl theorem [4].
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Theorem 1.1. (two-dimension Poincaré-Bohl theorem) Suppose that F : D → R2

is a continuous mapping, where D(⊂ R2) denotes a closed bounded region including
the origin O as an interior point, and the boundary ∂D is a piecewise smooth simple

closed curve. For any p ∈ ∂D, if the image q = F(p) satisfies
−→
Oq 6= λ

−→
Op, λ > 0 is

a constant. Then, F has at least one fixed point in D.

It means that for any solution trajectory which starts from p = (x(0), x′(0)) ∈ ∂D
and moves to q = (x(2π), x′(2π)) ∈ R2, the points p and q are not on the same ray
starting from the origin.

This paper is organized as follows. In Section 2, we present some preliminaries.
By estimating the time that any solution trajectory rotates one circle on the phase
plane, we obtain the existence of periodic solutions via the two-dimension Poincaré-
Bohl theorem (i.e. Theorem 1.1). Several existence criteria are presented by giving
different assumptions to the growth speed of g. In Section 3, two specific exam-
ples with special impulses are given to illustrate the obtained results. Concluding
remarks are outlined in section 4.

2. Preliminaries

Firstly, we recall some basic properties of the impulsive differential equation from [1].
Consider the following initial value problem

¨
u′ = f(t, u), t 6= tk,

∆u(tk) = Ik(u(tk)), k ∈ Z+,
(2.1)

u(0+) = u0, (2.2)

where ∆u(tk) = u(t+k )− u(t−k ) with u(tk) = u(t−k ), k ∈ Z+. Assume that

(i) f : R×Rn → Rn is continuous in (tk, tk+1]×Rn, locally Lipschitz with respect
to the second variable and the limits limt→t+

k
,ν→u f(t, ν), k ∈ Z+ exist;

(ii) Ik : Rn → Rn, k ∈ Z+ are continuous;

(iii) f is 2π-periodic to the first variable, there exists an integer q > 0 satisfying
0 < t1 < · · · < tq < 2π, tk+q = tk + 2π and Ik+q = Ik for k ∈ Z+.

Lemma 2.1. Assume that (i)-(iii) hold. For any u0 ∈ Rn, there exists a unique
solution u(t) = u(t; 0, u0) of (2.1)-(2.2). Further, Pt : u0 → u(t; 0, u0) is continuous
with respect to u0 for t 6= tk, k ∈ Z+.

It is easy to show that solutions of (2.1) exist for t ∈ R provided that solutions of
the corresponding differential equation without impulses exist for t ∈ R. Moreover,
if Φk : uk → u+

k (where uk = u(tk), u+
k = u(t+k ) = uk + Ik(uk)), k = 1, 2, · · · , q

are global homeomorphisms, Pt is a homeomorphism for t 6= tk, k ∈ Z+. Denote by
P0 : u0 → u(t1; 0, u0), Pk : u+

k → u(tk+1; tk, u
+
k ), k = 1, · · · , q − 1 and Pq : u+

q →
u(2π; tq, u

+
q ). Then, the Poincaré mapping P can be expressed by

P : u0 → u(2π; 0, u0), P = Pq ◦ Φq ◦ · · · ◦ P1 ◦ Φ1 ◦ P0.
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For t ∈ [0, 2π], we consider the following equivalent system of (1.1)

8>><
>>:

x′ = y,

y′ = −g(x) + e(t, x, y), t 6= tk, t ∈ [0, 2π],

x(t+k ) = akx(tk),

y(t+k ) = bky(tk), t = tk, k = 1, 2, · · · , q,

(2.3)

and the initial value condition

x(0) = x0, y(0) = y0. (2.4)

If g(x) is assumed to be

(g0) : lim
x→+∞

g(x) = +∞, lim
x→−∞

g(x) = −∞,

solutions of (2.3) are defined on the whole t-axis. Let x(t) = x(t;x0, y0), y(t) =
y(t;x0, y0) be the unique solution pair of (2.3)-(2.4). Then, the Poincaré mapping
P : R2 → R2 is well defined by

P : (x0, y0)→ (x(2π;x0, y0), y(2π;x0, y0)).

Defining the mappings Pi and Φi as follows

P0 : (x0, y0)→ (x(t1;x0, y0), y(t1;x0, y0)) = (x1, y1),

Φ0 : (x1, y1)→ (a1x1, b1y1) = (x∗1, y
∗
1),

Pi : (x∗i , y
∗
i )→ (x(ti+1;x0, y0), y(ti+1;x0, y0)) = (xi+1, yi+1),

Φi : (xi+1, yi+1)→ (ai+1xi+1, bi+1yi+1) = (x∗i+1, y
∗
i+1),

Pq : (x∗q , y
∗
q )→ (x(2π;x0, y0), y(2π;x0, y0)) = (x(2π), y(2π)), i = 1, 2, · · · , q − 1.

Further, the Poincaré mapping P is of the form

P = Pq ◦ Φq−1 ◦ · · · ◦ P1 ◦ Φ0 ◦ P0.

Note that P is continuous to (x0, y0), and its fixed points correspond to the periodic
solutions of (2.3).

Making the polar coordinates transformation

x(t) = r(t) cos θ(t), y(t) = r(t) sin θ(t),

then (2.3) becomes8<
:
r′(t) = r cos θ sin θ + [e(t, r cos θ, r sin θ)− g(r cos θ)] sin θ,

θ′(t) = − sin2 θ +
1

r
[e(t, r cos θ, r sin θ)− g(r cos θ)] cos θ, t 6= tk, t ∈ [0, 2π],

(2.5)
whenever r 6= 0, and for t = tk, k ∈ Z+ one has that

8<
:
r(t+k ) =

È
a2
kx

2(tk) + b2ky
2(tk),

θ(t+k ) = arctan
� bk
ak

tan θ(tk)
�
.

(2.6)
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Let r(t) = r(t; r0, θ0), θ(t) = θ(t; r0, θ0) be the solution of (2.5) satisfying the initial
value (r(0), θ(0)) = (r0, θ0) and x0 = r0 cos θ0, y0 = r0 sin θ0. The Poincaré mapping
is written in the polar coordinates form

r∗ = r(2π; r0, θ0), θ∗ = θ(2π; r0, θ0) + 2lπ, (2.7)

where l is an arbitrary integer. It can be easily seen that if

r(t; r0, θ0) > 0, t ∈ [0, 2π],

then θ(2π; r0, θ0) is well defined and it is continuous to (r0, θ0).
For any given R0 > 0, denote by SR0

= {(r, θ) : r = R0}. Let L(R0) denote
the solution trajectory of (2.5), which starts from SR0 at t = 0. When t ∈ [0, 2π],
L(R0, [0, 2π]) denotes the trajectory arc. Assume that (r(t), θ(t)) is the solution of
(2.5), which passes (r0, θ0) and satisfies r0 = R0, θ0 ∈ [0, 2π]. Under the assumption
(g0), it is easy to prove the following result.

Lemma 2.2. Assume that (g0) holds, then there exists R0 > 0 sufficiently large
such that when r(t) > R0 we have that

θ′(t) < 0, t ∈ [0, 2π] \ {tk}qk=1.

Proof. Denote by

E = max
R3
{|e(t, x, y)|}, E = max

R3
{e(t, x, y)}, E = min

R3
{e(t, x, y)}.

By (g0), there exists N > 0 sufficiently large such that

g(x) > E, x ≥ N, g(x) < E, x ≤ −N.

Let R0 > N and consider r(t) > R0. When |r(t) cos θ(t)| ≥ N, t ∈ [0, 2π], it follows
that

θ′(t) = − sin2 θ − [g(r cos θ)− e(t, r cos θ, r sin θ)] cos2 θ

r cos θ
< 0

for t 6= tk, k = 1, 2, · · · , q. While for |r(t) cos θ(t)| < N, t ∈ [0, 2π] then

θ′(t) < − sin2 θ +
|e(t, r cos θ, r sin θ)− g(r cos θ)|

r
< − sin2 θ +

δ

R0
< −R

2
0 −N2 −R0δ

R2
0

for t 6= tk, k = 1, 2, · · · , q, where δ = E + max|x|≤N |g(x)|.
Therefore, θ′(t) < 0 for t ∈ [0, 2π] \ {tk}qk=1 as long as R0 >

1
2δ +

È
N2 + 1

4δ
2.

In this paper, we assume that the following condition holds.

(H1) There exists A1 > 0 such that

q1 ≤
g(x)

x
≤ p1, x ≤ −A1, q2 ≤

g(x)

x
≤ p2, x ≥ A1, (2.8)

where p1, q1, p2, q2 are positive constants, and there is an integer m > 0 such
that

1
√
q1

+
1
√
q2

=
2

m
,

1
√
p1

+
1
√
p2

=
2

m+ 1
. (2.9)
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It is obvious that (2.8) implies (g0) and lim|x|→+∞| g(x)
x | < +∞.

Lemma 2.3. Assume that lim|x|→+∞| g(x)
x | = b < +∞, then there exist a constant

R1 > 0 and functions d1, d2 : (0,+∞)→ (0,+∞) such that when R0 ≥ R1,

(1) d1(R0) ≤ r(t) ≤ d2(R0), t ∈ [0, 2π], r0 = R0,

(2) limR0→+∞ d1(R0) = limR0→+∞ d2(R0) = +∞,

where d1(R0) =
MR0

e(b+3)π , d2(R0) = MR0e
(b+3)π with M = max1≤k≤q{1, ak, bk},M =

min1≤k≤q{1, ak, bk}.

Proof. For any given ε = 1, there exists A > 0 such that | g(x)
x | < b+1 for |x| ≥ A.

Let r(t) > 2δ with δ = E + max|x|≤A |g(x)|. When t ∈ [0, 2π] \ {tk}, k = 1, 2, · · · , q,
���dr
dt

��� < 1

2
(b+ 3)r(t).

Choosing R1 = 2δe(b+3)π, when R0 ≥ R1 one has that

R0e
−(b+3)π < r(t) < R0e

(b+3)π.

For t = tk, k = 1, 2, · · · , q, it follows from (2.6) that

min{ak, bk}r(tk) ≤ r(t+k ) ≤ max{ak, bk}r(tk).

Let M = maxk=1,··· ,q{1, ak, bk} and M = mink=1,··· ,q{1, ak, bk}. Then

d1(R0) ≤ r(t) ≤ d2(R0), t ∈ [0, 2π],

where d1(R0) = MR0e
−(b+3)π and d2(R0) = MR0e

(b+3)π.

The following result is mainly used to deal with the jumps at the impulsive time.

Lemma 2.4. Let the function

H(x) =

8<
:

arctan(a tanx)

x
, x 6= 0,

a, x = 0,

where a > 0 is a constant. Then there exist α(a) and β(a) such that

0 < α(a) ≤ H(x) ≤ β(a) <∞. (2.10)

In fact, α(a) and β(a) can be of the form

α(a) =

8<
:
a, 0 < a ≤ 1,

1

a
, a ≥ 1,

β(a) =

8<
:

1

a
, 0 < a ≤ 1,

a, a ≥ 1.

Proof. We only prove that H(x) ≤ β(a) for x > 0, other cases are similar and so
omitted. Suppose f(x) = arctan(a tanx)− β(a)x, it follows that

f ′(x) =
a sec2 x

1 + a2 tan2 x
− β(a) =

a

cos2 x+ a2 sin2 x
− β(a).

So f ′(x) ≤ 0 for a > 0. The conclusion holds due to f(0) = 0.
To obtain the desirable results, we further assume the following conditions.
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(H2) There exist positive constants A2 and B such that

(i) g(x)− p1x ≥ B, x ≤ −A2; or g(x)− p2x ≤ −B, x ≥ A2,

(ii) g(x)− q1x ≤ −B, x ≤ −A2; or g(x)− q2x ≥ B, x ≥ A2,

where B >
max(1,p21,p

2
2)d2(R0)

min(1,q21 ,q
2
2)d1(R0)

Eπ, and d1(R0), d2(R0) are from Lemma 2.3.

(H3)
E

min(1, q2
1 , q

2
2)d1(R0)

> max{Mα,Mβ}, where

Mα =
P

0<tk<2π

h
1− α

�
bk
ak

�iQ
0<tj<tk

β
�
bj
aj

�
,

Mβ =
P

0<tk<2π

h
β
�
bk
ak

�
− 1
iQ

0<tj<tk
β
�
bj
aj

�
.

Now we are ready to state and prove our main results.

Theorem 2.1. Assume that (H1)-(H3) hold, then (1.1) has at least one 2π-periodic
solution.

Proof. By (H1), there exists R′1 > 0 such that θ′(t) < 0 for t ∈ [0, 2π] \ {tk}qk=1.
By Lemma 2.3, there exists R1 > 0 such that for any R0 ≥ R1 the trajectory arc

L(R0, [0, 2π]) situates in D = {d1(R0) ≤ r ≤ d2(R0)}. Let R0 > max(
γR′1
M , R1,

γA
M ),

where γ = e(b+3)π and A ≥ max(A1, A2). In the following, we estimate the time of
L(R0) rotating one circle in D.

Choosing M0(R0, θ0) ∈ D, and consider L(R0) which starts from M0 at t = 0,
where θ0 = θ(t = 0) ∈ [0, 2π]. For convenience, we assume that M0 ∈ {(x, y) : x >
A}, L(R0) successively intersects with {x = A}, {x = −A}, {x = −A}, {x = A} and
{θ = θ0} at M1,M2,M3,M4,M5 (see Figure 1 for example), and the corresponding
moments and arguments are denoted by θ1 = θ(t1), θ2 = θ(t2), θ3 = θ(t3), θ4 = θ(t4)
and θ5 = θ(t5). Let

g(x) =

¨
p1x+ f1(x), x < 0,

p2x+ f2(x), x ≥ 0;
g(x) =

¨
q1x+ h1(x), x < 0,

q2x+ h2(x), x ≥ 0.
(2.11)

Then, it follows from (H2) that

(i) f1(x) ≥ B, x ≤ −A; or f2(x) ≤ −B, x ≥ A.

(ii) h1(x) ≤ −B, x ≤ −A; or h2(x) ≥ B, x ≥ A.

Next, we consider

f2(x) ≤ −B, h2(x) ≥ B, x ≥ A. (2.12)

By (2.5), (2.11)-(2.12) and Lemma 2.3, one has that

−θ′ = sin2 θ +
1

r
[g(r cos θ)− e(t, r cos θ, r sin θ)] cos θ

= sin2 θ + p2 cos2 θ +
1

r
[f2(r cos θ)− e(t, r cos θ, r sin θ)] cos θ

≤ sin2 θ + p2 cos2 θ − B

d2(R0)
cos θ +

E

d1(R0)
.

Moreover, when θ(tk) ≥ 0 it follows from Lemma 2.4 that

0 < α
� bk
ak

�
θ(tk) ≤ θ(t+k ) ≤ β

� bk
ak

�
θ(tk) <∞,
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and then by the impulsive integral inequality, one has that

θ(t) ≤ θ0

Y
0<tk<t

β
� bk
ak

�
≤ 2π

Y
0<tk<t

β
� bk
ak

�
.

Further, when t ∈ (0, t1), one has that

t1 =

Z θ1

θ0

dθ

θ′
+

X
0<tk<t1

h
θ(t+k )− θ(tk)

i

≥
Z θ0

θ1

dθ

sin2 θ + p2 cos2 θ − B
d2(R0) cos θ + E

d1(R0)

+
X

0<tk<t1

h
α
� bk
ak

�
− 1
i
θ(tk)

≥
Z θ0

θ1

dθ

sin2 θ + p2 cos2 θ − B
d2(R0) cos θ + E

d1(R0)

−
X

0<tk<t1

h
1− α

� bk
ak

�i
2π

Y
0<tj<tk

β
� bj
aj

�
.

Similarly, when t ∈ (t4, t5),

t5 − t4 ≥
Z θ4

θ5

dθ

sin2 θ + p2 cos2 θ − B
d2(R0) cos θ + E

d1(R0)

−
X

t4<tk<t5

h
1− α

� bk
ak

�i
2π

Y
t4<tj<tk

β
� bj
aj

�
.

Noting that θ5 + 2π = θ0, so we have that

t1 + t5 − t4 ≥
Z θ4+2π

θ1

dθ

sin2 θ + p2 cos2 θ − B
d2(R0) cos θ + E

d1(R0)

−
^

tk∈(0,t1)∪(t4,t5)

� bk
ak

�

=

Z θ4+2π

θ1

h 1

sin2 θ + p2 cos2 θ
+

B cos θ
d2(R0) −

E
d1(R0)

(sin2 θ + p2 cos2 θ)2

i
dθ

+ L(R0)−
^

tk∈(0,t1)∪(t4,t5)

� bk
ak

�

≥
Z θ4+2π

θ1

dθ

sin2 θ + p2 cos2 θ
+

B

max(1, p2
2)d2(R0)

Z π
2−ψ

−π2 +ψ
cos θdθ

− Eπ

min(1, p2
2)d1(R0)

+ L(R0)−
^

tk∈(0,t1)∪(t4,t5)

� bk
ak

�

=

Z θ4+2π

θ1

dθ

sin2 θ + p2 cos2 θ
+

2B

max(1, p2
2)d2(R0)

− Eπ

min(1, p2
2)d1(R0)

+ L(R0) + o
� 1

R0

�
−

^
tk∈(0,t1)∪(t4,t5)

� bk
ak

�
,

where ^
tk∈(0,t1)∪(t4,t5)

� bk
ak

�
=

X
tk∈(0,t1)∪(t4,t5)

h
1− α

� bk
ak

�i
2π

Y
tj∈(0,tk)∪(t4,tk)

β
� bj
aj

�
,
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L(R0) =

Z θ4+2π

θ1

�
B cos θ
d2(R0) −

E
d1(R0)

�2

dθ

(sin2 θ + p2 cos2 θ)2(sin2 θ + p2 cos2 θ − B cos θ
d2(R0) + E

d1(R0) )
,

and ψ is an angle as shown in Figure 1. It is easy to see that

ψ = ψ(R0) = arcsin
A

d1(R0)
=

A

d1(R0)
+ o(

1

R2
0

),

where o() denotes the infinitesimal of higher order. Since

|L(R0)| ≤ π

R2
0

×

�
B

Mγ
+ γE

M

�2

min(1, p2
2)(min(1, p2)− B

d2(R0) )
,

it follows that L(R0) = o
�

1
R0

�
.

Due to g(x) = p1x+ f1(x) and f1(x) ≥ B for x ≤ −A, then

−θ′ ≤ sin2 θ + p1 cos2 θ +
B

d2(R0)
cos θ +

E

d1(R0)
.

Further when t ∈ (t2, t3), one has that

t3 − t2 ≥
Z θ2

θ3

dθ

sin2 θ + p1 cos2 θ
+

2B

max(1, p2
1)d2(R0)

− Eπ

min(1, p2
1)d1(R0)

−
^

tk∈(t2,t3)

� bk
ak

�
+ o
� 1

R0

�
,

where

^
tk∈(t2,t3)

� bk
ak

�
=

X
tk∈(t2,t3)

h
1− α

� bk
ak

�i
2π

Y
t2<tj<tk

β
� bj
aj

�
.

On the other hand, letting f1 = max−A≤x≤0 |f1(x)| and f2 = max0≤x≤A |f2(x)|.
Then,

−θ′ = sin2 θ + p2 cos2 θ +
1

r
[f2(r cos θ)− e(t, r cos θ, r sin θ)] cos θ

≤ sin2 θ + p2 cos2 θ +
f2 + E

d1(R0)
, 0 < x < A,

and

−θ′ ≤ sin2 θ + p1 cos2 θ +
f1 + E

d1(R0)
, −A < x < 0.
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Hence, when t ∈ (t1, t2) ∪ (t3, t4), one has that

t2 − t1 + t4 − t3 =
�Z θ1

−π2
+

Z − 3π
2

θ4

+

Z −π2
θ2

+

Z θ3

− 3π
2

� dθ
−θ′
−

X
tk∈(t1,t2)∪(t3,t4)

h
θ(t+k )− θ(tk)

i

≥
�Z θ1

−π2
+

Z − 3π
2

θ4

� dθ

sin2 θ + p2 cos2 θ + f2+E
d1(R0)

+
�Z −π2

θ2

+

Z θ3

− 3π
2

� dθ

sin2 θ + p1 cos2 θ + f1+E
d1(R0)

−
^

tk∈(t1,t2)∪(t3,t4)

� bk
ak

�

=
�Z θ1

−π2
+

Z − 3π
2

θ4

� dθ

sin2 θ + p2 cos2 θ
+
�Z −π2

θ2

+

Z θ3

− 3π
2

� dθ

sin2 θ + p1 cos2 θ

+ o
� 1

R0

�
−

^
tk∈(t1,t2)∪(t3,t4)

� bk
ak

�
,

where

^
tk∈(t1,t2)∪(t3,t4)

� bk
ak

�
=

X
tk∈(t1,t2)∪(t3,t4)

h
1− α

� bk
ak

�i
2π

Y
tj∈(t1,tk)∪(t3,tk)

β
� bj
aj

�
.

By (2.9) and the above several inequalities, the time T that L(R0) rotates one
circle in D satisfies

T ≥
Z −π2
− 3π

2

dθ

sin2 θ + p1 cos2 θ
+

Z π
2

−π2

dθ

sin2 θ + p2 cos2 θ
−

^
tk∈(0,t5)

� bk
ak

�
+ o
� 1

R0

�

+
2B

max(1, p2
2)d2(R0)

+
2B

max(1, p2
1)d2(R0)

− Eπ

min(1, p2
1)d1(R0)

− Eπ

min(1, p2
2)d1(R0)

=
2π

m+ 1
+

2B

max(1, p2
2)d2(R0)

+
2B

max(1, p2
1)d2(R0)

− Eπ

min(1, p2
1)d1(R0)

− Eπ

min(1, p2
2)d1(R0)

−
^

tk∈(0,t5)

� bk
ak

�
+ o
� 1

R0

�
,

(2.13)

where ^
tk∈(0,t5)

� bk
ak

�
=

X
tk∈(0,t5)

h
1− α

� bk
ak

�i
2π

Y
tj∈(0,tk)

β
� bj
aj

�
.

By using the right-side inequality of (2.10) and the similar arguments, we have
that

T ≤2π

m
−
h 2B

max(1, q2
2)d2(R0)

+
2B

max(1, q2
1)d2(R0)

− Eπ

min(1, q2
1)d1(R0)

− Eπ

min(1, q2
2)d1(R0)

i
+

X
tk∈(0,t5)

h
β
� bk
ak

�
− 1
i
2π

Y
0<tj<tk

β
� bj
aj

�
+ o
� 1

R0

�
.

(2.14)
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Since p1 ≥ q1, p2 ≥ q2 and B >
max(1,p21,p

2
2)d2(R0)

min(1,q21 ,q
2
2)d1(R0)

Eπ, it follows from (H3) that

2B

max(1, p2
2)d2(R0)

+
2B

max(1, p2
1)d2(R0)

− Eπ

min(1, p2
1)d1(R0)

− Eπ

min(1, p2
2)d1(R0)

− 2Mαπ > 0,

2B

max(1, q2
2)d2(R0)

+
2B

max(1, q2
1)d2(R0)

− Eπ

min(1, q2
1)d1(R0)

− Eπ

min(1, q2
2)d1(R0)

− 2Mβπ > 0,

(2.15)

whereMα =
P

0<tk<2π

h
1−α

�
bk
ak

�iQ
0<tj<tk

β
�
bj
aj

�
andMβ =

P
0<tk<2π

h
β
�
bk
ak

�
−

1
iQ

0<tj<tk
β
�
bj
aj

�
.

Combining with (2.13)-(2.15), when R0 > 0 is sufficiently large we have that

2π

m+ 1
< T <

2π

m
. (2.16)

This implies that the number of rotation of L(R0) in [0, 2π] is greater than m but
less than m+1. Hence, by Theorem 1.1, (1.1) has at least one 2π-periodic solution.

 

x

y

O

M5

M4M3

-A

M1M2

A d1(R0) d2(R0)

ψ M0

Figure 1. Schematic diagram

Remark 2.1. In (1.1), when ak = bk, k ∈ Z+, it follows from Lemma 2.4 that
Mα = Mβ = 0. Further, by (H1)-(H2), the time T that any solution trajectory of
(1.1) rotates one circle satisfies

2π

m+ 1
+

2B

max(1, p2
2)d2(R0)

− Eπ

min(1, p2
1)d1(R0)

− Eπ

min(1, p2
2)d1(R0)

+ o
� 1

R0

�

≤ T ≤ 2π

m
−
h 2B

max(1, q2
2)d2(R0)

− Eπ

min(1, q2
1)d1(R0)

− Eπ

min(1, q2
2)d1(R0)

i
+ o
� 1

R0

�
.
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When ak = bk = 1 (i.e. M = M = 1), (1.1) degenerates into a continuous system
without impulsive terms. Hence by (H1)-(H2), it is easy to verify that

2π

m+ 1
+
h 2B

max(1, p2
2)γ
− γEπ

min(1, p2
1)
− γEπ

min(1, p2
2)

i 1

R0
+ o
� 1

R0

�

≤ T ≤ 2π

m
−
h 2B

max(1, q2
2)γ
− γEπ

min(1, q2
1)
− γEπ

min(1, q2
2)

i 1

R0
+ o
� 1

R0

�
,

and (2.16) holds since B >
max(1,p21,p

2
2)

min(1,q21 ,q
2
2)
γ2Eπ and R0 > 0 is large sufficiently. About

the periodic solution problem of the Duffing equations without impulses, there have
been many interesting results, see [3–7,10,20] for example and the references therein.

Corollary 2.1. Assume that (H1), (H3) hold, and

lim
x→−∞

(g(x)− p1x) = +∞; or lim
x→+∞

(g(x)− p2x) = −∞,

lim
x→−∞

(g(x)− q1x) = −∞; or lim
x→+∞

(g(x)− q2x) = +∞.
(2.17)

Then, (1.1) has at least one 2π-periodic solution.

(H1)′ There exists A1 > 0 such that

g(x)

x
≤ p1, x ≤ −A1,

g(x)

x
≤ p2, x ≥ A1,

where p1 > 0, p2 > 0 are constants satisfying 1√
p1

+ 1√
p2

= 2, and

limx→−∞g(x) < E ≤ E < limx→+∞g(x).

(H2)′ There exist A2 > 0 and B >
max(1,p21,p

2
2)d2(R0)

min(1,p21,p
2
2)d1(R0)

Eπ such that

g(x)− p1x ≥ B, x ≤ −A2; or g(x)− p2x ≤ −B, x ≥ A2,

where d1(R0), d2(R0) are from Lemma 2.3.

(H3)′
E

min(1, p2
1, p

2
2)d1(R0)

> Mα, whereMα =
P

0<tk<2π

h
1−α

�
bk
ak

�iQ
0<tj<tk

β
�
bj
aj

�
.

Theorem 2.2. Assume that (H1)′-(H3)′ hold, then (1.1) has at least one 2π-
periodic solution.

Proof. By the similar analysis to Theorem 2.1, it follows from (H1)′-(H3)′ that

T ≥
Z −π2
− 3π

2

dθ

sin2 θ + p1 cos2 θ
+

Z π
2

−π2

dθ

sin2 θ + p2 cos2 θ
− 2πMα + o

� 1

R0

�

+
2B

max(1, p2
2)d2(R0)

+
2B

max(1, p2
1)d2(R0)

− Eπ

min(1, p2
1)d1(R0)

− Eπ

min(1, p2
2)d1(R0)

> 2π.

Then, the number of rotation of any solution trajectory rotating in D for t ∈ [0, 2π]
is less than one. Hence, by Theorem 1.1, the conclusion holds.

Corollary 2.2. Assume that (H1)′, (H3)′ hold, and

lim
x→−∞

(g(x)− p1x) = +∞; or lim
x→+∞

(g(x)− p2x) = −∞.

Then, (1.1) has at least one 2π-periodic solution.
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Theorem 2.3. Assume that (H3) holds, and

(H4) there exists A1 > 0 such that

q1 ≤
g(x)

x
≤ p1, x ≤ −A1, q2 ≤

g(x)

x
≤ p2, x ≥ A1,

where p1, q1, p2, q2 are positive constants, and there is an integer m > 0 such
that

2

m+ 1
<

1
√
p1

+
1
√
p2

<
1
√
q1

+
1
√
q2
<

2

m
. (2.18)

Then, (1.1) has at least one 2π-periodic solution.

Proof. By (H4), there exist positive constants p∗1(> p1), p∗2(> p2), q∗1(< q1) and
q∗2(< q2) such that

1p
q∗1

+
1p
q∗2

=
2

m
,

1p
p∗1

+
1p
p∗2

=
2

m+ 1
,

and then (H1) holds for such p∗1, p
∗
2, q
∗
1 , q
∗
2 and A1,m. Moreover, it follows that

g(x)− p∗2x ≤ (p2 − p∗2)x, g(x)− q∗2x ≥ (q2 − q∗2)x, x ≥ A1.

Hence, (2.17) is satisfied, and by Corollary 2.1 the conclusion holds.

Corollary 2.3. Assume that (H3)′ holds, and

(H4)′ there exists A1 > 0 such that

g(x)

x
≤ p1, x ≤ −A1,

g(x)

x
≤ p2, x ≥ A1,

where p1, p2 are positive constants satisfying 1√
p1

+ 1√
p2
> 2, and

limx→−∞g(x) < E ≤ E < limx→+∞g(x).

Then, (1.1) has at least one 2π-periodic solution.

Proof. By (H4)′, there exist p∗1(> p1) and p∗2(> p2) such that 1√
p∗1

+ 1√
p∗2

= 2.

Moreover, g(x) − p∗2x ≤ (p2 − p∗2)x for x ≥ A1. So all conditions of Corollary 2.2
hold.

Remark 2.2. In (H4), if (2.18) is substituted into the following condition.
For any integer n > 1, there exists an integer m > 0 satisfying (n,m) = 1 such that

2n

m+ 1
<

1
√
p1

+
1
√
p2

<
1
√
q1

+
1
√
q2
<

2n

m
. (2.19)

Then, all conclusions on 2π-periodic solutions can be changed as the existence of
2nπ-periodic solutions which are not 2lπ-periodic for 1 ≤ l < n.

In fact, by the similar arguments to Theorem 2.1, for any integer n > 1 then the
time T that any solution trajectory rotates one circle in D for t ∈ [0, 2nπ] satisfies

2nπ

m+ 1
< T <

2nπ

m
.

Hence, by Theorem 1.1, there exists at least one 2nπ-periodic solution. Moreover, it
follows from (n,m) = 1 that the periodic solution is not 2lπ-periodic for 1 ≤ l < n.
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3. Examples

In this section, we give two special impulses to (1.1).

Example 3.1. Consider the following impulses form¨
∆x(tk) = cx(tk),

∆y(tk) = cy(tk), k ∈ Z+,
(3.1)

where ∆x(tk) = x(t+k )−x(tk), ∆y(tk) = y(t+k )−y(tk) and (x(tk), y(tk)) = (x(t−k ), y(t−k )),
c > 0 is a constant, 0 < t1 < · · · < tq < 2π satisfying tk+q = tk + 2π, k ∈ Z+.

The equivalent system of (1.1) with (3.1) is as follows8>><
>>:

x′ = y,

y′ = −g(x) + e(t, x, y), t 6= tk, t ∈ R,
∆x(tk) = cx(tk),

∆y(tk) = cy(tk), k ∈ Z+.

(3.2)

By the transformation x(t) = r(t) cos θ(t), y(t) = r(t) sin θ(t), when t ∈ [0, 2π]
(3.2) becomes8>>><
>>>:

θ′(t) = − sin2 θ +
1

r
[e(t, r cos θ, r sin θ)− g(r cos θ)] cos θ,

r′(t) = r cos θ sin θ + [e(t, r cos θ, r sin θ)− g(r cos θ)] sin θ, t 6= tk, t ∈ [0, 2π],

∆θ(tk) = θ(t+k )− θ(tk) = 0,

∆r(tk) = r(t+k )− r(tk) = cr(tk), k = 1, · · · , q.
(3.3)

Noting that θ(t) is continuous with respect to t, so Lemma 2.4 is invalid. We give
the following result.

Theorem 3.1. Assume that (H1) holds, and there exist A2 > 0, B >
max(1,p21,p

2
2)(1+c)γ2Eπ

min(1,q21 ,q
2
2)

such that

(i) g(x)− p1x ≥ B, x ≤ −A2; or g(x)− p2x ≤ −B, x ≥ A2,

(ii) g(x)− q1x ≤ −B, x ≤ −A2; or g(x)− q2x ≥ B, x ≥ A2.

Then, (3.2) has at least one 2π-periodic solution.

Proof. With the similar analysis, then the time T that any solution trajectory of
(3.2) rotates one circle during [0, 2π] satisfies

2π

m+ 1
+
h 2B

max(1, p2
2)(1 + c)γ

− Eγπ

min(1, p2
1)
− Eγπ

min(1, p2
2)

i 1

R0
+ o
� 1

R0

�

≤ T ≤ 2π

m
−
h 2B

max(1, q2
2)(1 + c)γ

− Eγπ

min(1, q2
1)
− Eγπ

min(1, q2
2)

i 1

R0
+ o
� 1

R0

�
.

Hence, (2.16) holds when R0 > 0 is sufficiently large.

Example 3.2. Assume that g(x) is given by

g(x) =

¨
µ1x+ ν, x < 0,

µ2x+ ν, x ≥ 0,
(3.4)
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and consider the following impulses¨
∆x(tk) = 0,

∆y(tk) = dy(tk), k ∈ Z+,
(3.5)

where µ1 > 0, µ2 > 0, d > 0 and ν are constants. Then, the equivalent system of
(1.1) with (3.4)-(3.5) is as follows8>><

>>:

x′ = y,

y′ = −g(x) + e(t, x, y), t 6= tk, t ∈ R,
∆x(tk) = 0,

∆y(tk) = dy(tk), k ∈ Z+.

(3.6)

Let (x(t), y(t)) = (x(t;x0, y0), y(t;x0, y0)) be the solution of (3.6) satisfying the
initial value (x(0), y(0)) = (x0, y0), and assume that x(tk) = 0, k ∈ Z+. Denote by

Φk : (0, yk)→ (0, y+
k ),

where yk = y(tk), y+
k = y(t+k ). We choose M0(x0, y0) ∈ {(x, y) : x > 0, y > 0}, and

consider the solution trajectory LM0
of (3.6) which starts from M0 at t = 0 (see

Figure 2 for example). When |(x0, y0)| is sufficiently large, LM0
moves clockwise in

{x > 0} and {x < 0} respectively. Assume that LM0 intersects with {x = 0, y < 0}
at M1(0, y1) and Φ maps it to M+

1 (0, y+
1 ). Later LM0 starting from M+

1 enters into
{x < 0}. It intersects with {x = 0, y > 0} at M2(0, y2), Φ maps M2 to M+

2 (0, y+
2 ),

and next intersects with {θ = θ0} (where θ0 = arctan y0
x0

) at M3(x(t∗), y(t∗)). By
the similar analysis, we estimate the time T = t∗ that LM0

rotates one circle on
(x, y)-plane. Noting that

Pt∗ : (x0, y0)→ (x(t∗;x0, y0), y(t∗;x0, y0)), Pt∗ = P2 ◦ Φ2 ◦ P1 ◦ Φ1 ◦ P0,

where (x0, y0)
P0−−→ (0, y1), (0, y+

1 )
P1−−→ (0, y2), (0, y+

2 )
P2−−→ (x(t∗), y(t∗)) and (0, yi)

Φi−→
(0, y+

i ), i = 1, 2.

Theorem 3.2. Assume that 1√
µ1

+ 1√
µ2
6= 2

m for any positive integer m, and letting

d > 1
2 [−1 +

q
1 + 4Ee(b+3)π

min(1,µ2
1,µ

2
2)R0

], where b = max(µ1, µ2). Then (3.6) has at least

one 2π-periodic solution.

Proof. Choosing p1 = q1 = µ1 and p2 = q2 = µ2, there must be an integer m > 0
such that

2

m+ 1
<

1
√
p1

+
1
√
p2

=
1
√
q1

+
1
√
q2
<

2

m
,

or
1
√
p1

+
1
√
p2

> 2.

Due to ak = 1, bk = d+ 1, it follows from Lemma 2.4 thatX
0<tk<t∗

h
1− α

� bk
ak

�i Y
0<tj<tk

β
� bj
aj

�
= d,

X
0<tk<t∗

h
β
� bk
ak

�
− 1
i Y

0<tj<tk

β
� bj
aj

�
= d(d+ 1).

Let g∗(x) = g(x)−ν and e∗(t, x, y) = e(t, x, y)−ν. When A1 > 0 is large sufficiently,
all conditions of Theorem 2.3 or Corollary 2.3 hold.
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Figure 2. Schematic diagram

4. Concluding remarks

In this paper, we have studied the existence of periodic solutions for a semilinear
second order differential equation with linear impulsive effects. We first analyzed
the properties of solutions, and estimated the time that any solution trajectory
rotates one circle on the phase plane. Then, by the two-dimension Poincaré-Bohl
theorem (i.e. Theorem 1.1), we obtained some existence criteria of periodic solu-
tions. Finally, two examples with special impulses are presented to illustrate the
effectiveness of the obtained results.
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