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Bifurcations and Exact Solutions of the Raman
Soliton Model in Nanoscale Optical Waveguides

with Metamaterials∗

Yan Zhou1,† and Jinsen Zhuang1

Abstract In this paper, we study Raman soliton model in nanoscale opti-
cal waveguides with metamaterials, having polynomial law non-linearity. By
using the bifurcation theory method of dynamic systems to the equations of
φ(ξ), under 24 different parameter conditions, we obtain bifurcations of phase
portraits and different traveling wave solutions including periodic solutions,
homoclinic and heteroclinic solutions for planar dynamic systems of the Ra-
man soliton model. Under different parameter conditions, 24 exact explicit
parametric representations of the traveling wave solutions are derived. The
dynamic behaviors of these traveling wave solutions are meaningful and help-
ful for us to understand the physical structures of the model.

Keywords Raman soliton model, Planar dynamic systems, Bifurcations of
phase portraits, Traveling wave solutions.
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1. Introduction

With the development of communication technology, optical communication is con-
sidered to be the most promising communication method that transmits signals
by using optical waves in optical waveguides. As early as 1973, A. Hasegawa and
F. Tappert proposed the concept of “optical soliton”, which is an optical pulse
wave maintaining its amplitude, shape and speed after colliding with other similar
solitons [5]. Meanwhile, it was proved theoretically that the optical soliton can
be propagated, when the dispersion effect and the nonlinear self-phase modulation
effect reach a balance in the fiber. Therefore, the propagation of stable optical
solitons has become the focus of current research in nonlinear optics [5].

In practical applications, we need to consider the loss of optical pulse wave ener-
gy during signal transmission. Many optical metamaterials (MMS) with abundant
optical properties are used as optical fibers, which have linear or nonlinear elec-
tromagnetic properties [14, 15]. Some MMS with the negative dielectric constant
and magnetic permeability properties are called double negative material (DNG).
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Raman scattering can occur when the optical pulse signal transmits in these nega-
tive exponential DNG materials, which results in some modulation instability and
affects the propagation of soliton. Raman soliton is the optical soliton pulse wave
obtained by modulating Raman scattering effect and nonlinear effect in the trans-
mission [13,18].

Xiang [18] derived the propagation equation of Raman solitons in MMS by
Maxwell equation, which is the dimensionless and nonlinear Schrodinger equation:

iqt + aqxx + (c1|q|2 + c2|q|4 + c3|q|6)q

= iαqx + iλ(|q|2q)x + iν(|q|2)xq + θ1(|q|2q)xx + θ2|q|2qxx + θ3q
2q∗xx, (1.1)

where a 6= 0, q(x, t) is the complex-valued wave function with the independent vari-
ables x and t(where x is the spatial variable, and t is the temporal variable). The
first term represents the temporal evolution of nonlinear wave, while the coefficient
a is the group velocity dispersion (GVD). The coefficients cj for j = 1, 2, 3 corre-
spond to the nonlinear terms. Meanwhile, they form polynomial law nonlinearity.
It must be noted here that when c2 = c3 = 0 and c1 6= 0, the equation (1.1) col-
lapses to the Kerr-law nonlinearity. However, if c3 = 0, c1 6= 0 and c2 6= 0, one
arrives at parabolic-law nonlinearity. Thus, polynomial law stands as an extension
to Kerr-law and parabolic-law. On the right-hand side of (1.1), α represents the
coefficient of inter-modal dispersion. This arises when the group velocity of light
propagating through a metamaterial is dependent on the propagation mode in addi-
tion to chromatic dispersion. The factors λ and ν are accounted for self-steepening
for preventing shock-waves and nonlinear dispersion. Finally, the terms with θj for
j = 1, 2, 3 arise in the context of optical metamaterials.

A large class of solitons and ultrashort pulse propagation can be obtained by
modulating the linear and nonlinear term coefficients in the propagation equation
(1.1) [13, 18]. In 2014, By using the function variable method and first integral
method, A. Biswas et al. [3] gave a small number of periodic wave solutions and
soliton solutions including light and dark solitons when equation (1.1) has Kerr-law
nonlinearity. Subsequently, in the paper [1] published in the same year, A. Biswas
et al. used the experimental method to demonstrate the propagation of solitons in
MMS, and found that the soliton energy dissipation was caused by the high loss
of this double negative material. In addition, by the aid of ansatz method, they
obtained some light and dark solitons of equation (1.1). Furthermore, by employing
the simple equation method, they found some exact wave solutions of the equation
(1.1) including some solitons and period solutions for the Kerr-law nonlinearity [2].
After years, E. V. Krishnan et al. used the mapping function method to drive
some periodic wave solutions and solitary wave solutions of the equation (1.1) with
Kerr-law nonlinearity and parabolic-law nonlinearity [6] respectively. These solu-
tions obtained in [6] are richer than the solutions obtained by A. Biswas et al. in
2014. Later, M. Veljkovic et al. [17] gave the parameter conditions of ultrashort
pulses and numerical simulations of solitons by using set variables. In 2015, Y.
Xu and A. Biswas et al. [20] applied the traveling wave hypothesis to model (1.1)
for the first time. They set that equation (1.1) has traveling wave solutions with
Kerr-law and parabolic-law. Then, in 2016, by using the same method, Y. Xu et
al. [19] gave the exact implicit solutions of equation (1.1) with the third kind of
elliptic integral form, and made some numerical simulations. In [16], by employing
the improved modified extended tanh-function method, the extended trial equation
method, the extended Jacobi elliptic function expansion method and the exp (η)-
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expansion method respectively, they discussed traveling wave solutions of equation
(1.1) with the parabolic law nonlinear and obtain some exact solutions. Howev-
er, these studies have not found all possible bifurcations of system, exact explicit
parametric representations and dynamic behaviors of all traveling wave solutions
for equation (1.1).

In this paper, the dynamic systems method developed in [7–12] is employed to s-
tudy the propagation equation (1.1). First, we transform the nonlinear Schrodinger
PDE equation into an ODE system through traveling wave hypothesis, and obtain
equivalent planar dynamic systems. Secondly, we use the bifurcation theory of non-
linear dynamic systems to study bifurcations of the planar dynamic systems, and
obtain physical phase portraits of the system. Lastly, we give all possible exact
solutions according to the phase protraits and give the exact parametric represen-
tations of solutions. Compared with previous results in [1–3, 6, 17, 19, 20], by using
the dynamic systems method, we obtain not only the all possible bifurcations of the
equation (1.1), but also traveling wave solutions as much as possible under various
parameters conditons.

Recently, in paper [22], we considered the case of c1 6= 0, c2 = c3 = 0 when
θ1 6= 0, 3θ1 + θ2 + θ3 6= 0 in equation (1.1) and obtained possible bifurcations and
exact solutions for the equation (1.1) with Kerr-law nonlinearity by using the bi-
furcation theory of dynamic systems. When θ1 6= 0, 3θ1 + θ2 + θ3 6= 0, we discussed
further the case c1 6= 0, c2 6= 0, c3 = 0 in [21] for equation (1.1) which has the
parabolic-law nonlinearity and obtained possible bifurcations, exact explicit para-
metric representations and dynamic behaviors of solutions for equation (1.1). Here,
we discuss the case θ1 = 0, θ2 + θ3 = 0 in equation (1.1) with polynomial-law non-
linearity. We derive the corresponding planar dynamic systems of equation (1.1) in
Section 2, discuss the bifurcations of phase portraits of equation (1.1) in Section 3
and give the different exact solutions of equation (1.1) in Section 4 under different
parameter conditions.

2. Planar dynamic systems

Consider the solutions of equation (1.1) having the form

q(x, t) = φ(η) exp(i(−kx+ ωt)), η = x− vt. (2.1)

When θ1 = 0, θ2 + θ3 = 0, substituting (2.1) into (1.1) and separating the real
and imaginary parts, we have

aφ′′ − a1φ+ a3φ
3 + c2φ

5 + c3φ
7 = 0, (2.2)

(v + α+ 2ak) + [3λ+ 2ν − 4θ2k]φ2 = 0, (2.3)

where a1 = ω + αk + ak2, a3 = c1 − kλ, the notation φ′ = dφ
dη . From the imaginary

part equation (2.3), upon setting the coefficients of linearly independent functions
to zero, it gives the relations:

v = −(α+ 2ak), 3λ+ 2ν = 2k(θ2 − θ3). (2.4)
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Making the parameter transformation: α0 = a1
a , α2 = −a3

a , α4 = −c2
a , α6 = −c3

a ,
then the equation (2.2) is equivalent to the following planar dynamic system:

dφ

dη
= z,

dz

dη
= φ(α0 + α2φ

2 + α4φ
4 + α6φ

6). (2.5)

System (2.5) is a four-parameter integrable planar dynamic system depending on
the parameter group (α0, α2, α4, α6). We make the transformation: η = ξ√

|α6|
, z =√

|α6|y, then, system (2.5) becomes system (2.6) for α6 > 0 and system (2.7) for
α6 < 0 as follows:

dφ

dξ
= y,

dy

dξ
= φ(b0 + b2φ

2 + b4φ
4 + φ6). (2.6)

dφ

dξ
= y,

dy

dξ
= −φ(b0 + b2φ

2 + b4φ
4 + φ6). (2.7)

where b0 = α0

α6
, b2 = α2

α6
, b4 = α4

α6
. We can see that systems (2.6) and (2.7) are

two three-parameter integrable planar dynamic systems depending on the same
parameter group (b0, b2, b4).

Systems (2.6) and (2.7) have the following first integrals:

H1(φ, y) = y2 − b0φ2 −
b2
2
φ4 − b4

3
φ6 − 1

4
φ8j = h, (2.8)

H2(φ, y) = y2 + b0φ
2 +

b2
2
φ4 +

b4
3
φ6 +

1

4
φ8j = h. (2.9)

We use the method of dynamic systems to investigate the dynamic behaviors
of systems (2.6) and (2.7), and find all possible bifurcations and exact explicit
parametric representations for the traveling wave solutions of systems (2.6) and
(2.7). We will see that the solutions have very abounded dynamic behaviors.

3. Bifurcations of phase portraits of systems (2.6)
and (2.7)

In this section, we consider the bifurcations of phase portraits of systems (2.6) and
(2.7) depending on the parameter group (b0, b2, b4).

Clearly, systems (2.6) and (2.7) have the same equilibrium points. They always
have the equilibrium point E0(0, 0). Write f6(φ) = b0 + b2φ

2 + b4φ
4 + φ6. The

other equilibrium points (φj , 0) of them depend on the number of zeros φj of the
six-degree algebraic equation f6(φ) = 0. Make g3(p) = b0 + b2p + b4p

2 + p3. We
notice that if pj is positive zero of the cubic algebraic equation g3(p) = 0 , then
±√pj are two symmetrical zeros of the six-degree algebraic equation f6(φ) = 0. Let

q = 1
3b2 −

1
9b

2
4, r = 1

6 (b2b4 − 3b0)− 1
27b

3
4. Then, when

S = q3 + r2 =
1

27
b32 −

1

108
b22b

2
4 −

1

6
b0b2b4 +

1

4
b20 +

1

27
b0b

3
4 < 0,



Bifurcations and Exact Solutions of the Raman Soliton Model 149

g3(p) = 0 has three simple real zeros. When S = 0, g3(p) = 0 has a simple real zero
and a double real zero. When S > 0, g3(p) = 0 has only one real zero.

For a given fixed b0 6= 0, in the (b2, b4) parametric plane, the function S(b2, b4) =
0 defines a curve shown in Figures 1(a) and 1(b), which has three branches and
partitions the (b2, b4)−parameter plane into three regions. It is easy to prove that

the curve defined by S(b2, b4) = 0 has a cusp point at (3b
2
3
0 , 3b

1
3
0 ). In regions (I2)

and (I3), when b0 > 0, regions (Î2) and (Î3) when b0 < 0, we have S(b2, b4) < 0. In
region (I1) for b0 > 0, region (Î1) for b0 < 0, S(b2, b4) > 0.

(a) b0 > 0 (b) b0 < 0

Figure 1 The partition of the (b2, b4)−parametric plane

Let Mi(φj , 0), (i = 1, 2) be the coefficient matrices of the linearized systems of
systems (2.6) and (2.7) at positive equilibrium point Ej(φj , 0), we have

J1(0, 0) = detM1(0, 0) = −b0, J2(0, 0) = detM2(0, 0) = b0,

J1(φj , 0) = detM1(φj , 0) = −(b0 + 3b2φ
2
j + 5b4φ

4
j + 7φ6j ),

J2(φj , 0) = detM2(φj , 0) = b0 + 3b2φ
2
j + 5b4φ

4
j + 7φ6j .

Where J1(0, 0) = −b0 and J2(0, 0) = b0 imply that for b0 < 0, equilibrium point
E0(0, 0) is a center point of system (2.6) and a saddle point of system (2.7). While
when b0 > 0, equilibrium point E0(0, 0) is a saddle point of system (2.6) and a center
point of system (2.7). Equilibrium points E±j(φ±j , 0) are either two symmetrical
center points or two symmetrical saddle points.

We write that h10 = H1(0, 0) = 0, h20 = H2(0, 0) = 0, h1j = H1(φj , 0) =
−b0φ2j − b2

2 φ
4
j − b4

3 φ
6
j − 1

4φ
8
j , h2j = H2(φj , 0) = b0φ

2
j + b2

2 φ
4
j + b4

3 φ
6
j + 1

4φ
8
j .

By the above information, we obtain the following lemma and bifurcations of
the phase portraits of systems (2.6) and (2.7) shown in Figure 2–Figure 5.

Lemma 3.1. When b0 > 0, the origin E0(0, 0) is a saddle point of system (2.6).
When (b2, b4) ∈ I1 or (b2, b4) ∈ L1 or (b2, b4) ∈ L2 or (b2, b4) ∈ I2 or (b2, b4) =

(3b
2/3
0 , 3b

1/3
0 ), we have phase portrait Figure 2(a). When (b2, b4) ∈ L3, we have

phase portrait Figure 2(b). When (b2, b4) ∈ I3, h11 > 0, we have phase portrait
Figure 2(c). When (b2, b4) ∈ I3, h11 = 0, we have phase portrait Figure 2(d). When
(b2, b4) ∈ I3, h11 < 0 , we have phase portrait Figure 2(e).
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Figure 2 The bifurcations of phase portraits of system (2.6) for b0 > 0

(a) (b2, b4) ∈ I1 or (b2, b4) ∈ L1 or (b2, b4) ∈ L2 or (b2, b4) ∈ I2 or (b2, b4) =

(3b
2/3
0 , 3b

1/3
0 ). (b) (b2, b4) ∈ L3. (c) (b2, b4) ∈ I3, h11 > 0. (d) (b2, b4) ∈ I3, h11 = 0.

(e) (b2, b4) ∈ I3, h11 < 0.

Lemma 3.2. When b0 < 0, the origin E0(0, 0) is a center point of system (2.6).
When (b2, b4) ∈ Î1 or (b2, b4) ∈ L̂1 or (b2, b4) ∈ Î2, we have phase portrait Figure

3(a). When (b2, b4) = (3b
2/3
0 , 3b

1/3
0 ), we have phase portrait Figure 3(b). When

(b2, b4) ∈ L̂2, we have phase portrait Figure 3(c). When (b2, b4) ∈ Î3, h11 > h13,
we have phase portrait Figure 3(d). When (b2, b4) ∈ Î3, h11 = h13, we have phase
portrait Figure 3(e). When (b2, b4) ∈ Î3, h11 < h13 , we have phase portrait Figure
3(f). When (b2, b4) ∈ L̂3 , we have phase portrait Figure 3(g).

Figure 3 The bifurcations of phase portraits of system (2.6) for b0 < 0

(a) (b2, b4) ∈ Î1 or (b2, b4) ∈ L̂1 or (b2, b4) ∈ Î2. (b) (b2, b4) = (3b
2/3
0 , 3b

1/3
0 ).

(c) (b2, b4) ∈ L̂2. (d) (b2, b4) ∈ Î3, h11 > h13. (e) (b2, b4) ∈ Î3, h11 = h13. (f)
(b2, b4) ∈ Î3, h11 < h13. (g) (b2, b4) ∈ L̂3.

Lemma 3.3. When b0 > 0, the origin E0(0, 0) is a center point of system (2.7).
When (b2, b4) ∈ I1 or (b2, b4) ∈ L1 or (b2, b4) ∈ L2 or (b2, b4) ∈ I2 or (b2, b4) =

(3b
2/3
0 , 3b

1/3
0 ), we have phase portrait Figure 4(a). When (b2, b4) ∈ L3, we have

phase portrait Figure 4(b). When (b2, b4) ∈ I3, h21 < 0, we have phase portrait
Figure 4(c). When (b2, b4) ∈ I3, h21 = 0, we have phase portrait Figure 4(d). When
(b2, b4) ∈ I3, h21 > 0, we have phase portrait Figure 4(e).
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Figure 4 The bifurcations of phase portraits of system (2.7) for b0 > 0

(a) (b2, b4) ∈ I1 or (b2, b4) ∈ L1 or (b2, b4) ∈ L2 or (b2, b4) ∈ I2 or (b2, b4) =

(3b
2/3
0 , 3b

1/3
0 ). (b) (b2, b4) ∈ L3. (c) (b2, b4) ∈ I3, h21 < 0. (d) (b2, b4) ∈ I3, h21 = 0.

(e) (b2, b4) ∈ I3, h21 > 0.

Lemma 3.4. When b0 < 0, the origin E0(0, 0) is a saddle point of system (2.7).
When (b2, b4) ∈ Î1 or (b2, b4) ∈ L̂1 or (b2, b4) ∈ Î2, we have phase portrait Figure

5(a). When (b2, b4) = (3b
2/3
0 , 3b

1/3
0 ), we have phase portrait Figure 5(b). When

(b2, b4) ∈ L̂2, we have phase portrait Figure 5(c). When (b2, b4) ∈ Î3, h21 < h23,
we have phase portrait Figure 5(d). (b2, b4) ∈ Î3, h21 = h23, we have phase portrait
Figure 5(e). When (b2, b4) ∈ Î3, h21 > h23, we have phase portrait Figure 5(f).
When (b2, b4) ∈ L̂3, we have phase portrait Figure 5(g).

Figure 5 The bifurcations of phase portraits of system (2.7) for b0 < 0

(a) (b2, b4) ∈ Î1 or (b2, b4) ∈ L̂1 or (b2, b4) ∈ Î2. (b) (b2, b4) = (3b
2/3
0 , 3b

1/3
0 ).

(c) (b2, b4) ∈ L̂2. (d) (b2, b4) ∈ Î3, h21 < h23. (e) (b2, b4) ∈ Î3, h21 = h23. (f)
(b2, b4) ∈ Î3, h21 > h23. (g) (b2, b4) ∈ L̂3.

4. Exact parametric representations of solutions of
systems (2.6) and (2.7)

In this section, we analyze the level curves defined by Hi(φ, y) = h, (i = 1, 2) in
(2.8) and (2.9), and obtain all possible exact solutions of equation (1.1) for different
cases in Section 2.
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Notice that Hi(φ, y) = h, (i = 1, 2) give rise to

y2 = ±(b0φ
2 +

b2
2
φ4 +

b4
3
φ6 +

1

4
φ8) + h ≡ F8(φ). (4.1)

Obviously, if and only if polynomial F8(φ) can be decomposed into a product of

quadratic factors, the integral
∫ φ
φ0

1√
F8(φ)

can be solved (see [4]).

4.1. Exact parametric representations of solutions of system (2.6).

Theorem 4.1. System (2.6) has the following traveling wave solutions for b0 > 0:
(i) When b0 > 0, (b2, b4) ∈ I3, h11 > 0, system (2.6) has homoclinic solutions

φ(χ) = ±φM
√

1−α2
1sn

2(χ,k)

dn(χ,k) , χ ∈
(
−sn−1

√
φ2
M (r21+r

2
2)

r21(φ
2
M+r22)

, sn−1
√

φ2
M (r21+r

2
2)

r21(φ
2
M+r22)

)
,

ξ(χ) = 2

r21

√
(r21+r

2
2)

[
χ+

r21−φ
2
M

φ2
M

Π(arcsin(sn(χ, k), α2
1, k))

]
,

(4.2)

where α2
1 =

r21(φ
2
M+r22)

φ2
M (r21+r

2
2)
, k2 =

φ2
M+r22
r21+r

2
2
.

In this case, system (2.6) also has heteroclinic solutions

φ(χ) = ±ρρ(1−cn(χ,k))sn(χ,k) , χ ∈
(
−cn−1(

A1−φ2
1

A1+φ2
1
), cn−1(

A1−φ2
1

A1+φ2
1
)
)
,

ξ(χ) = 1
(φ2

1+A1)
√
A1

{
χ+ 2A1

(1−α2
2)(φ

2
1−A1)

[Π(arccos(cn(χ, k),
α2

2

α2
2−1

, k))− α2f1]
}
,

(4.3)

where a21 = − (ρ2−ρ2)
4 , b1 = ρ2+ρ2

2 , A2
1 = b21 + a21 = ρ2ρ2, α2 =

φ2
1+A1

φ2
1−A1

, k2 = A1+b1
2A1

.

(ii) When b0 > 0, (b2, b4) ∈ I3, h11 = 0, system (2.6) has heteroclinic solutions

φ(χ) = ±r1cschχ, χ ∈
(

csch−1(φ1

r1
),+∞

)
,

ξ(χ) = 2
φ2
1

[
1√
φ2
1+r

2
1

tanh−1(
√

r21+φ
2

φ2
1+r

2
1
)− 1√

φ2
1+r

2
1

tanh−1(
√

r21+φ
2
2

φ2
1+r

2
1
)

− 1
r1

tanh−1( r1√
φ2+r21

) + 1
r1

tanh−1( r1√
φ2
2+r

2
1

)

]
.

(4.4)

(iii) When b0 > 0, (b2, b4) ∈ I3, h11 < 0, system (2.6) has homoclinic solutions

φ(χ) = ± φM
cn(χ,k) , χ ∈

(
−cn−1(φMφ1

), cn−1(φMφ1
)
)
,

ξ(χ) = 2

φ2
1

√
(r21+φ

2
1)

[
χ+

φ2
M

φ2
1−φ2

M
Π(arcsin(sn(χ, k), α2

3, k))
]
,

(4.5)

where α2
3 =

φ2
1

φ2
1−φ2

M
, k2 =

r21
r21+φ

2
M
.

Remark 4.1. The functions cn(·, k), sn(·, k),dn(·, k) are Jacobin elliptic functions,
Π(·, ·, k) is the elliptic integral of the third kind and the function f1(χ) can be seen
in [4] (361.54).

Proof. (i) When b0 > 0, (b2, b4) ∈ I3, h11 > 0, system (2.6) has phase portrait
Figure 2(c). The changes of the level curves defined by H1(φ, y) = h in Figure 2(c)
are shown as follows:
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(a) h11 < h < h10 (b) h = h10 (c) h10 < h < h12 (d) h = h12 (e) h > h12

Figure 6 The changes of the level curves when b0 > 0, (b2, b4) ∈ I3, h11 > 0

When h = 0, the level curves defined by H1(φ, y) = h are two homoclinic orbit
loops to the origin and contacting φ−axis in the points (±φM , 0) and two open
curves which pass through φ−axis at the points (±r1, 0) (Figure 6(b)). Now, for the
two homoclinic orbits, we have y2 = 1

4 (r21 − φ2)(φ2M − φ2)φ2(φ2 + r22). Substituting
it into the first equation of system (2.6) and integrating along the homoclinic orbits,
it follows that

ξ =

∫ φ2
M

u

du

u
√

(r21 − u)(φ2M − u)(u+ r22)
.

Therefore, we obtain the parametric representations (4.2) of the homoclinic solu-
tions of system (2.6). The homoclinic solutions have the following wave portrait:

(a) Solitary wave of valley type (b) Solitary wave of peak type

Figure 7 The solitary wave of system (2.6)

When h = h12, the level curves defined by H1(φ, y) = h are two heteroclinic
orbits connecting to the points (±φ1, 0) and four stable and unstable manifolds to
the points (±φ1, 0) (Figure 6(d)). Corresponding to the two heteroclinic orbits, we
have y2 = 1

4 (φ21−φ2)(φ2− ρ2)(φ2− ρ2), where ρ and ρ are two conjugated complex
zeros of (4.1). Substituting it into the first equation of system (2.6) and integrating
along the heteroclinic orbits, it follows that

ξ =

∫ u

0

du

(φ21 − u)
√
u(φ2 − ρ2)(φ2 − ρ2)

.

Then, we obtain the parametric representations (4.3) of the heteroclinic solutions
of system (2.6).

(ii) When b0 > 0, (b2, b4) ∈ I3, h11 = 0, system (2.6) has phase portrait Fig-
ure 2(d). The level curves defined by H1(φ, y) = h11 are four heteroclinic orbits
connecting to the origin and points (±φ1, 0) and enclosing the equilibrium points
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(±φ2, 0) as well as four stable and unstable manifolds of the points (±φ1, 0). For
the four heteroclinic orbits, we have y2 = 1

4 (φ21 − φ2)2φ2(φ2 + r21). Substituting it
into the first equation of system (2.6) and integrating along the heteroclinic orbits,
it follows that

1

2
ξ =

∫ φ

φ2

dφ

(φ21 − φ2)φ
√
φ2 + r21

.

Hence, the four heteroclinic orbits have the parametric representation (4.4) (kink
and anti-kink wave solutions).

(iii) When b0 > 0, (b2, b4) ∈ I3, h11 < 0, system (2.6) has phase portrait Figure
2(e). The level curves defined by H1(φ, y) = h11 are two homoclinic orbits to the
points (±φ1, 0) and passing through φ−axis at the points (±φM , 0), and the stable
and unstable manifolds of the equilibrium points (±φ1, 0). Corresponding to the
homoclinic orbits, we have y2 = 1

4 (φ21 − φ2)2(φ2 − φ2M )(φ2 + r21). Substituting it
into the first equation of system (2.6) and integrating along the homoclinic orbits,
it follows that

ξ =

∫ u

φ2
M

du

(φ21 − u)
√

(u− φ2M )u(u+ r21)
.

Therefore, we obtain the parametric representation (4.5) of the solitary wave solu-
tions of system (2.6).

Theorem 4.2. System (2.6) has the following traveling wave solutions for b0 < 0:

(i) When b0 < 0, (b2, b4) = (3b
2/3
0 , 3b

1/3
0 ), system (2.6) has heteroclinic solutions

φ(χ) = ±φ1 tanh(χ), χ ∈ [0,+∞) ,

ξ(χ) = 1
4φ3

1
(sinh(2χ) + 2χ) .

(4.6)

(ii) When b0 < 0, (b2, b4) ∈ L̂2, system (2.6) has heteroclinic solutions

φ(χ) = ±φ2sn(χ, k), χ ∈ (−K,K) ,

ξ(χ) = 2
r1φ2

2
Π(arcsin(sn(χ, k), 1, k),

(4.7)

where k2 =
φ2
2

r21
.

(iii) When b0 < 0, (b2, b4) ∈ Î3, h11 > h13, system (2.6) has periodic wave
solution

φ(χ) = ±r2sn(χ, k),

ξ(χ) = 2
r1φ2

2
Π(arcsin(sn(χ, k), α̂2

1, k)),
(4.8)

where α̂2
1 =

r22
φ2
2
, k2 =

r22
r21
.

In this case, system (2.6) also has heteroclinic solutions

φ(χ) = ±φM sn(χ, k), χ ∈
(
−sn−1( φ3

φM
), sn−1( φ3

φM
)
)
,

ξ(χ) = 2
r1φ2

3
Π(arcsin(sn(χ, k), α̂2

2, k)),
(4.9)
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where α̂2
2 =

φ2
M

φ2
3
, k2 =

φ2
M

r21
, and homoclinic solutions

φ(χ) = ±cd(χ, k), χ ∈
(
−sn−1

√
r21(φ

2
M−φ2

3)

φ2
M (r21−φ2

3)
, sn−1

√
r21(φ

2
M−φ2

3)

φ2
M (r21−φ2

3)

)
,

ξ(χ) = 2
r1(r21−φ2

3)

[
χ+

φ2
M−r

2
1

φ2
3−φ2

M
Π(arcsin(sn(χ, k), α̂2

3, k)),

(4.10)

where α̂2
3 =

k2(φ2
3−r

2
1)

φ2
3−φ2

M
, k2 =

φ2
M

r21
.

(iv) When b0 < 0, (b2, b4) ∈ Î3, h11 = h13, system (2.6) has heteroclinic solutions

φ(χ) = ± (eχ−1)φ3

1+eχ , χ ∈ [0,+∞) ,

ξ(χ) = 2
(φ2

1−φ2
3)

[
χ

2φ3
− 1

2φ1
ln (φ1+φ3)e

χ+φ1−φ3

(φ1−φ3)eχ+φ1+φ3

]
,

(4.11)

and

φ(χ) = ± (eχ−1)φ1

1+eχ , χ ∈
(

ln φ1+φ3

φ1−φ3
,+∞

)
,

ξ(χ) = 2
(φ2

1−φ2
3)

[
χ

2φ1
− 1

2φ1
ln φ2+φ1

φ1−φ2
− 1

2φ3
ln φ2−φ3

φ2+φ3
+ 1

2φ3
ln (φ1−φ3)e

χ−φ1−φ3

(φ1+φ3)eχ−φ1+φ3

]
.

(4.12)

(v) When b0 < 0, (b2, b4) ∈ Î3, h11 < h13, system (2.6) has periodic wave solution

φ(χ) = ±r1sn(χ, k),

ξ(χ) = 2
φMφ2

1
Π(arcsin(sn(χ, k), α̂2

4, k)),
(4.13)

where α̂2
4 =

r21
φ2
1
, k2 =

r21
φ2
M
, and homoclinic solutions

φ(χ) = ±φMdn(χ,k)
cn(χ,k) , χ ∈

(
−sn−1

√
φ2
1−φ2

M

φ2
1−r21

, sn−1
√

φ2
1−φ2

M

φ2
1−r21

)
,

ξ(χ) = 2
φM (φ2

1−r21)

[
χ+

r21−φ
2
M

φ2
M−φ2

1
Π(arcsin(sn(χ, k), α̂2

5, k))
]
,

(4.14)

where α̂2
5 =

r21−φ
2
1

φ2
M−φ2

1
, k2 =

r21
φ2
M
.

Proof. (i) When b0 < 0, (b2, b4) = (3b
2/3
0 , 3b

1/3
0 ), system (2.6) has phase portrait

Figure 3(b). When h = h11, the level curves defined by H1(φ, y) = h are two
heteroclinic orbits connecting to the cusps (±φ1, 0) and enclosing the origin as well
as four stable and unstable manifolds of the equilibrium points (±φ1, 0). Now, for
the heteroclinic orbits, we have y2 = 1

4 (φ2 − φ21)4. Substituting it into the first
equation of system (2.6) and integrating along the heteroclinic orbits, it follows
that

ξ =

∫ φ

0

dφ

(φ21 − φ2)2
.

Thus, we have the parametric representations (4.6) of heteroclinic solutions.
(ii) When b0 < 0, (b2, b4) ∈ L̂2, system (2.6) has phase portrait Figure 3(c).

When h = h12 = h13, the level curves defined by H1(φ, y) = h are two heteroclinic
orbits connecting to the cusps (±φ2, 0) and enclosing the origin, and two open curves
passing through φ−axis at the points (±r1, 0). Corresponding to the heteroclinic
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orbits, we have y2 = 1
4 (φ22− φ2)3(r21 − φ2). Substituting it into the first equation of

system (2.6) and integrating along the heteroclinic orbits, it follows that

1

2
ξ =

∫ φ

0

dφ

(φ22 − φ2)
√

(φ22 − φ2)(r21 − φ2)
.

Then, we obtain the parametric representations (4.7) of the heteroclinic solutions.

(iii) When b0 < 0, (b2, b4) ∈ Î3, h11 > h13, system (2.6) has phase portrait Figure
3(d). The changes of the level curves defined by H1(φ, y) = h in Figure 3(d) are
shown as follows:

(a) h = h12 (b) h12 < h < h13 (c) h = h13 (d) h13 < h < h11

(e) h = h11 (f) h > h11

Figure 8 The changes of the level curves when b0 < 0, (b2, b4) ∈ Î3, h11 > h13

When h = h12, the level curves defined by H1(φ, y) = h enclose two points
(±φ2, 0), a periodic orbit passing through φ−axis at the points (±r2, 0) and enclos-
ing the origin, and two open curves passing through φ−axis at the points (±r1, 0)
(Figure 8(a)). For the periodic orbit, we have y2 = 1

4 (r21 − φ2)(φ22 − φ2)2(r22 − φ2).
Substituting it into the first equation of system (2.6) and integrating along the
periodic orbit, it follows that

ξ =

∫ u

0

du

(φ22 − u)
√

(r21 − u)(r22 − u)u
.

Therefore, we have the parametric representation (4.8) of the periodic wave solution.
The periodic solution has the following wave portrait Figure 9:
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Figure 9 The periodic wave solution of system (2.6)

When h = h13, the level curves defined by H1(φ, y) = h are two heteroclinic
orbits connecting to the equilibrium points (±φ3, 0) and enclosing the origin, two
homoclinic orbits to the points (±φ3, 0) and passing through φ−axis at the points
(±φM , 0), and two open curves passing through φ−axis at the points (±r1, 0) (Fig-
ure 8(c)). For the heteroclinic orbits, we have y2 = 1

4 (r21 −φ2)(φ2M −φ2)(φ23−φ2)2.
Substituting it into the first equation of system (2.6) and integrating along the
heteroclinic orbits, it follows that

ξ =

∫ u

0

du

(φ23 − u)
√

(r21 − u)(φ2M − u)u
.

Then, we have the parametric representations (4.9) of the kink and anti-kink solu-
tions of system (2.6). Corresponding to the two homoclinic orbit loops, we have

ξ =

∫ φ2
M

u

du

(u− φ23)
√

(r21 − u)(φ2M − u)u
.

Therefore, the solitary wave solutions (4.10) are obtained.
(iv) When b0 < 0, (b2, b4) ∈ Î3, h11 = h13 , system (2.6) has phase portrait

Figure 3(e). When h = h11 = h13, the level curves defined by H1(φ, y) = h
are six heteroclinic orbits connecting to the points (±φ1, 0) and (±φ3, 0) and four
stable and unstable manifolds of the equilibrium points (±φ1, 0). Now, for the
heteroclinic orbits which enclose the origin point, we have y2 = 1

4 (φ2−φ21)2(φ2−φ23)2.
Substituting it into the first equation of system (2.6) and integrating along the
heteroclinic orbits, it follows that

1

2
ξ =

∫ φ

0

dφ

(φ21 − φ2)(φ23 − φ2)
.

Thus, we have the parametric representations (4.11) of heteroclinic solutions. For
four heteroclinic orbits which enclose the equilibrium points (±φ2, 0), we have

1

2
ξ =

∫ φ

φ2

dφ

(φ21 − φ2)(φ2 − φ23)
.

In this case, we obtain the parametric representations (4.12) of heteroclinic solu-
tions.
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(v) When b0 < 0, (b2, b4) ∈ Î3, h11 < h13 , system (2.6) has phase portrait Figure
3(f). When h = h11, the level curves defined by H1(φ, y) = h contain a periodic
orbit enclosing the origin and passing through φ−axis at the points (±r1, 0), two
homoclinic orbits to the saddle points (±φ1, 0) and passing through φ−axis at the
points (±φM , 0), and four stable and unstable manifolds of the equilibrium points
(±φ1, 0). Corresponding to the periodic orbit, we have y2 = 1

4 (φ21 − φ2)2(φ2M −
φ2)(r21 − φ2). Substituting it into the first equation of system (2.6) and integrating
along the periodic orbit, it follows that

ξ =

∫ u

0

du

(φ21 − u)
√

(φ2M − u)(r21 − u)u
.

Then, we have the parametric representation (4.13) of the periodic solution. Cor-
responding to the two homoclinic orbits, we have

ξ =

∫ u

φ2
M

du

(φ21 − u)
√

(u− φ2M )(u− r21)u
.

Thus, we obtain the parametric representations (4.14) of the homoclinic orbits.
4.2. Exact parametric representations of solutions of system (2.7).

Theorem 4.3. When b0 > 0 (see Figure 4), system (2.7) has following traveling
wave solutions:

(i) When b0 > 0, (b2, b4) ∈ L3, system (2.7) has heteroclinic solutions

φ(χ) = ± r1ksn(χ,k)dn(χ,k) , χ ∈ (−K,K) ,

ξ(χ) = 2
φ2
1(φ

2
1+r

2
1)

3

[
φ21χ+ r21Π(arcsin(sn(χ, k), 1, k))

]
,

(4.15)

where k2 =
φ2
1

φ2
1+r

2
1
.

(ii) When b0 > 0, (b2, b4) ∈ I3, h21 < 0, system (2.7) has periodic wave solutions

φ(χ) = ±
(
r23k

2sn2(χ,k)+r22
dn2(χ,k)

) 1
2

,

ξ(χ) = 2
r23(r

2
1+r

2
3)

3

[
−χ+

r22+r
2
3

r22
Π(arcsin(sn(χ, k)), α̌2

1, k)
]
,

(4.16)

where α̌2
1 =

r23(r
2
2−r

2
1)

r22(r
2
1+r

2
3)
, k2 =

r21−r
2
2

r21+r
2
3
.

In this case, system (2.7) also has heteroclinic solutions

φ(χ) = ± r1ksn(χ,k)dn(χ,k) , χ ∈
(
−sn−1

√
φ2
2(φ

2
M+r21)

φ2
M (r21+φ

2
2)
, sn−1

√
φ2
2(φ

2
M+r21)

φ2
M (r21+φ

2
2)

)
,

ξ(χ) = 2
(r21+φ

2
2)(φ

2
M+r21)

[
χ+

r21
φ2
2
Π(arcsin(sn(χ, k)), α̌2

2, k)
]
,

(4.17)

where α̌2
2 =

φ2
M (r21+φ

2
2)

φ2
2(r

2
1+φ

2
M )
, k2 =

φ2
M

φ2
M+r21

, and homoclinic solutions

φ(χ) = ±φMcn(χ, k), χ ∈
(
−cn−1( φ2

φM
), cn−1( φ2

φM
)
)
,

ξ(χ) = 2
(φ2
M−φ2

2)(φ
2
M+r21)

Π(arcsin(sn(χ, k), α̌2
3, k)),

(4.18)
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where α̌2
3 =

φ2
M

φ2
M−φ2

2
, k2 =

φ2
M

φ2
M+r21

.

(iii) When b0 > 0, (b2, b4) ∈ I3, h21 > 0, system (2.7) has periodic orbit solution

φ(χ) = ±
(
kr2sn(χ,k)
dn(χ,k)

)
,

ξ(χ) = 2
(r22+φ

2
1)(r

2
1+r

2
2)

[
χ+

r22
φ2
1
Π(arcsin(sn(χ, k)), α̌2

4, k)
]
,

(4.19)

where α̌2
4 =

r21(r
2
2+φ

2
1)

φ2
1(r

2
1+r

2
2)
, k2 =

r21
r21+r

2
2
.

Proof. (i) When b0 > 0, (b2, b4) ∈ L3, system (2.7) has phase portrait Figure
4(b). When h = h21 = h22, the level curves defined by H2(φ, y) = h are two
heteroclinic orbits connecting to the cusps (±φ1, 0) and enclosing the origin. Now,
for the heteroclinic orbits, we have y2 = 1

4 (φ21 − φ2)3(φ2 + r21). Substituting it into
the first equation of system (2.7) and integrating along the heteroclinic orbits, it
follows that

1

2
ξ =

∫ φ

0

dφ

(φ21 − φ2)
√

(φ21 − φ2)(φ2 + r21)
.

Therefore, we have the parametric representations (4.15) of kink and anti-kink so-
lutions.

(ii) When b0 > 0, (b2, b4) ∈ I3, h21 < 0, system (2.7) has portrait Figure 4(c).
The changes of the level curves defined by H2(φ, y) = h are shown as follows:

(a) h21 < h < 0 (b) h = 0 (c) 0 < h < h22 (d) h = h22 (e) h > h22

Figure 10 The changes of the level curves when b0 > 0, (b2, b4) ∈ I3, h21 < 0

When h = 0, the level curves defined by H2(φ, y) = h contain the origin and two
periodic orbits which enclose the center points (±φ1, 0) and pass through φ−axis
at the points (±r1, 0) and (±r2, 0) (Figure 10(b)). Corresponding to the above
periodic orbits, we have y2 = 1

4 (r21 − φ2)(φ2 − r21)φ2(φ2 + r23), Substituting it into
the first equation of system (2.7) and integrating along the periodic orbits, it follows
that

ξ =

∫ u

r22

du

u
√

(r21 − u)(u− r22)(u+ r23)
.

Therefore, the two periodic orbits have the parametric representations (4.16). The
two periodic wave solutions have the following wave portrait Figure 11:
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(a) periodic solution-1 (b) periodic solution-2

Figure 11 The periodic wave solutions

When h = h22, the level curves defined by H2(φ, y) = h are two heteroclinic
orbits connecting to the equilibrium points (±φ2, 0) and two homoclinic orbits to
the saddle points (±φ2, 0) which pass through φ−axis at the points (±φM , 0) and
enclose the the center points (±φ1, 0). Now, for the heteroclinic orbits, we have
y2 = 1

4 (φ2M −φ2)(φ22−φ2)(φ2 +r21). Substituting it into the first equation of system
(2.7) and integrating along the heteroclinic orbits, it follows that

ξ =

∫ u

0

du

(φ22 − u)
√

(φ2M − u)u(u+ r21)
.

Thus, we have the parametric representations (4.17) of kink and anti-kink solutions.
For the homoclinic orbit loops, we have

ξ =

∫ φ2
M

u

du

(u− φ22)
√

(φ2M − u)u(u+ r21)
.

Therefore, we obtain the parametric representations (4.18) of solitary wave solu-
tions.

(iii) When b0 > 0, (b2, b4) ∈ I3, h21 > 0, system (2.7) has portrait Figure 4(e).
When h = h21, the level curves defined by H2(φ, y) = h contain two equilibrium
points (±φ1, 0) and a periodic orbit enclosing the origin and passing through φ−axis
at the points (±r1, 0). Corresponding to the above periodic orbit, we have y2 =
1
4 (φ2−φ21)2(r21−φ2)(φ2 + r22), Substituting it into the first equation of system (2.7)
and integrating along the periodic orbit, it follows that

ξ =

∫ u

0

du

(φ21 − u)
√

(r21 − u)u(u+ r22)
.

Thus, the periodic orbit has the parametric representation (4.19).

Theorem 4.4. When b0 < 0 (see Figure 5), system (2.7) has the following traveling
wave solutions:

(i) When b0 < 0, (b2, b4) ∈ Î1 or (b2, b4) ∈ L̂1 or (b2, b4) ∈ Î2, system (2.7) has
homoclinic solutions

φ(χ) = ±
(

(A2+φ
2
M )cn(χ,k)+α2

M−A2

1+cn(χ,k)

) 1
2

, χ ∈
(
−cn−1(

A2−φ2
M

A2+φ2
M

), cn−1(
A2−φ2

M

A2+φ2
M

)
)
,

ξ(χ) = 1
(φ2
M+A2)A2

{
χ+

φ2
M−A2

2φ2
M

[Π(arccos(cn(χ, k),
α̃2

1

α̃2
1−1

, k)) +
φ2
M+A2

2φ2
M

f1]
}
.

(4.20)
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where a22 = − (ρ2−ρ2)
4 , b2 = ρ2+ρ2

2 , A2
2 = b22 + a22 = ρ2ρ2, α̃1 =

φ2
M+A2

φ2
M−A2

, k2 =

A2−b2+φ2
M

2A2
.

(ii) When b0 < 0, (b2, b4) ∈ L̂2, system (2.7) has homoclinic solutions

φ(χ) = ±φMdn(χ, k), χ ∈
(
−dn−1( φ2

φM
), dn−1( φ2

φM
)
)
,

ξ(χ) = 2
φM (φ2

M−φ2
2)

Π(arcsin(sn(χ, k)), 1, k).
(4.21)

where k2 =
φ2
M−φ

2
2

φ2
M

.

(iii) When b0 < 0, (b2, b4) ∈ Î3, h21 < h23, system (2.7) has periodic wave
solutions

φ(χ) = ± r2
dn(χ,k) ,

ξ(χ) = 2
r1φ2

1

[
−χ+

r22
r22−φ2

3
Π(arcsin(sn(χ, k)), α̃2

2, k)
]
.

(4.22)

where α̃2
2 =

φ2
3(r

2
2−r

2
1)

r21(r
2
2−φ2

3)
, k2 =

r21−r
2
2

r21
, and homoclinic solutions

φ(χ) = ±φMdn(χ, k), χ ∈
(
−dn−1( φ2

φM
), dn−1( φ2

φM
)
)

ξ(χ) = 2
φM (φ2

M−φ2
2)

Π(arcsin(sn(χ, k)), α̃2
3, k).

(4.23)

where α̃2
3 =

φ2
M−φ

2
m

φ2
M−φ2

2
, k2 =

φ2
M−φ

2
m

φ2
M

.

φ(χ) = ± φm
dn(χ,k) , χ ∈

(
−dn−1( φmφM ), dn−1( φmφM )

)
ξ(χ) = 2

φMφ2
2

[
χ− φ2

m

φ2
m−φ2

2
Π(arcsin(sn(χ, k)), α̃2

4, k)
]
.

(4.24)

where α̃2
4 =

φ2
2(φ

2
M−φ

2
m)

φ2
M (φ2

2−φ2
m)
, k2 =

φ2
M−φ

2
m

φ2
M

.

(iv) When b0 < 0, (b2, b4) ∈ L̂3, system (2.7) has heteroclinic solutions

φ(χ) = ± r1ksn(χ,k)dn(χ,k) , χ ∈ (−K,K)

ξ(χ) = 2
φ2
1(φ

2
1+r

2
1)

[
φ21χ+ r21Π(arcsin(sn(χ, k)), 1, k)

]
,

(4.25)

where k2 =
φ2
1

φ2
1+r

2
1
.

Proof. (i) When b0 < 0, (b2, b4) ∈ Î1 or (b2, b4) ∈ L̂1 or (b2, b4) ∈ Î2, system
(2.7) has phase portrait Figure 5(a). When h = 0, the level curves defined by
H2(φ, y) = h are two homoclinic orbits to the origin which pass through φ−axis
at the points (±φM , 0) and enclose the the center points (±φ1, 0). Now, for the
homoclinic orbits, we have y2 = 1

4φ
2(φ2M − φ2)(φ2 − ρ2)(φ2 − ρ2), where ρ and ρ

are two conjugated complex zeros of (4.1). Substituting it into the first equation of
system (2.7) and integrating along the homoclinic orbits, it follows that

ξ =

∫ φ2
M

u

du

u
√

(φ2M − u)(φ2 − ρ2)(φ2 − ρ2)
.
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Then, we obtain the parametric representations (4.20) of the homoclinic solutions.
(ii) When b0 < 0, (b2, b4) ∈ L̂2, system (2.7) has phase portrait Figure 5(c).

When h = h22 = h23, the level curves defined by H2(φ, y) = h are two homoclinic
orbits to the cusps (±φ2, 0) which pass through φ−axis at the points (±φM , 0) and
enclose the the center points (±φ1, 0). Corresponding to the homoclinic orbits, we
have y2 = 1

4 (φ2 − φ22)3(φ2M − φ2), Substituting it into the first equation of system
(2.7) and integrating along the homoclinic orbits, it follows that

1

2
ξ =

∫ φM

φ

dφ

(φ2 − φ22)
√

(φ2 − φ22)(φ2M − φ2)
.

Therefore, the above homoclinic orbits have the parametric representations (4.21)
(iii) When b0 < 0, (b2, b4) ∈ Î3, h21 < h23, system (2.7) has phase portrait Figure

5(d). The changes of the level curves H2(φ, y) = h are shown as follows in Figure
12:

(a) h21 < h < h23 (b) h = h23 (c) h23 < h < h22 (d) h = h22

(e) h22 < h < 0 (f) h = 0 (g) h > 0

Figure 12 The changes of the level curves when b0 < 0, (b2, b4) ∈ Î3, h21 < h23

When h = h23, the level curves defined by H2(φ, y) = h contain two equilibrium
points (±φ3, 0), two periodic orbits which enclose the center points (±φ1, 0) and
pass through φ−axis at the points (±r1, 0) and (±r2, 0) (Figure 12(b)). For the
periodic orbits, we have y2 = 1

4 (φ2−φ23)2(r21−φ2)(φ2− r22), Substituting it into the
first equation of system (2.7) and integrating along the periodic orbits, it follows
that

ξ =

∫ u

r22

du

(u− φ21)
√

(r21 − φ2)(φ2 − r22)
.

Thus, we have the parametric representations (4.22) of the two periodic orbits.
When h = h22, the level curves defined by H2(φ, y) = h are four homoclinic or-

bits to the saddle points (±φ2, 0) which pass through φ−axis at the points (±φM , 0)
and (±φm, 0) (Figure 12(d)). Corresponding to the homoclinic orbits enclosing the
the center points (±φ1, 0), we have y2 = 1

4 (φ2M −φ2)(φ2−φ22)2(φ2−φ2m), Substitut-
ing it into the first equation of system (2.7) and integrating along the homoclinic
orbits, it follows that

ξ =

∫ φ2
M

u

du

(u− φ22)
√

(φ2M − u)(u− φ2m)u
.
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Thus, the parametric representations (4.23) of the two homoclinic are obtained.
Corresponding to the homoclinic orbits enclosing the the center points (±φ3, 0), we
have

ξ =

∫ u

φ2
m

du

(φ22 − u)
√

(φ2M − u)(u− φ2m)u
.

Then, we obtain the parametric representations (4.24) of the two homoclinic solu-
tions.

(iv) When b0 < 0, (b2, b4) ∈ L̂3, system (2.7) has phase portrait Figure 5(g).
When h = h21 = h22, the level curves defined by H2(φ, y) = h are two heteroclinic
orbits to the cusps (±φ1, 0). For the above heteroclinic orbits, we have y2 = 1

4 (φ21−
φ2)3(φ2 + r21). Substituting it into the first equation of system (2.7) and integrating
along the heteroclinic orbits, it follows that

1

2
ξ =

∫ φ

0

dφ

(φ21 − φ2)
√

(φ21 − φ2)(φ2 + r21)
.

Therefore, we have the kink and anti-kink solutions (4.25).

5. Conclusion

In this paper, by employing the dynamic systems approach, we study all possible
bifurcations of system (2.6) and system (2.7), and prove that the two systems have
24 different exact explicit solutions. These solutions give rise to 24 different exact
traveling wave solutions for equation (1.1). Our results are very helpful for the phys-
ical applications of the equation, which governs the propagation of Raman solitons
through optical metamaterials. In our future work, we will consider the solitons
propagation equations with other perturbation terms, study their bifurcations and
traveling wave solutions, and obtain more abundant dynamic behaviors of these
solutions for governing equations.
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