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Bifurcations of Double Homoclinic Loops with
Inclination Flip and Nonresonant Eigenvalues

Qianqian Jia1, Weipeng Zhang1,†, Qiuying Lu2 and Xiaodong Li1

Abstract In this work, bifurcation analysis near double homoclinic loops
with W s inclination flip of Γ1 and nonresonant eigenvalues is presented in a
four-dimensional system. We establish a Poincaré map by constructing local
active coordinates approach in some tubular neighborhood of unperturbed
double homoclinic loops. Through studying the bifurcation equations, we
obtain the condition that the original double homoclinic loops are persistent,
and get the existence or the nonexistence regions of the large 1-homoclinic
orbit and the large 1-periodic orbit. At last, an analytical example is given to
illustrate our main results.
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1. Introduction

During the last few decades, bifurcations of homoclinic or heteroclinic orbits
are always widely met in applications, and they have been investigated extensively
(see [1–36] and the further references therein). Notably, to the best of the authors’
knowledge, only a few concerned the bifurcation of double homoclinic loops. Han
and Bi [7] investigated the existence of homoclinic bifurcation curves and small and
large limit cycles bifurcated from a double homoclinic loop under multiple parameter
perturbations for general planar systems. Han and Chen [8] gave the number of limit
cycles near double homoclinic loops under perturbations in planar Hamiltonian
systems. Lu [18] obtained codimension 2 bifurcations of twisted double homoclinic
loops in higher dimensional systems. Ragazzo [23] investigated the stability of sets
that were generalizations of the simple pendulum double homoclinic loop. In our
recent work [33, 34], codimension 2 bifurcations of double homoclinic loops and
codimension 3 bifurcations of nontwisted double homoclinic loops with resonant
eigenvalues were studied.

Bifurcations on inclination flips have been developed in homoclinic or heterclinic
loops. Homburg et al. [11] studied three parameter unfolding of resonant homoclinic
orbits with orbit flip or inclination flip. Oldeman et al. [22] presented a numerical
investigation of the unfolding for a specific three-dimensional vector field, which was
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constructed by Sandstede [24] to explicitly obtain the homoclinic loop with inclina-
tion flip and orbit flip. Shui et al. [26] studied codimension 3 nonresonant homoclinic
orbit bifurcation with two inclination flips. However, there is no attention to the
problem of double homoclinic loops with inclination flips. Motivated by this fact,
we will study the problems of homoclinic and periodic orbits bifurcated from double
homoclinic loops with W s inclination flip of Γ1 and nonresonant eigenvalues in four
dimensional systems. Generally speaking, the bifurcation is more complicated as
Γ is inclination flip and double homoclinic loops have higher codimension than a
single homoclinic loop under the same conditions. Therefore, our work will be more
difficult and challenging.

The rest of this paper is organized as follows. In Section 2, some hypotheses
are given for our discussion and the normal form is established. In Section 3, the
Poincaré map is set up and the bifurcation equations are given. In Section 4, by
analysing bifurcation equations, the rich results of inclination flip bifurcations are
obtained under different conditions. In Section 5, we give an analytical example to
clarify our main results. A brief conclusion ends the paper in Section 6.

2. Hypotheses and Normal form

Consider the following Cr system and its unperturbed system

ż = f(z) + g(z, ν), (2.1)

ż = f(z), (2.2)

where r is large enough, z ∈ R4, ν ∈ Rl, l ≥ 3, 0 < |ν| � 1, f(0) = 0, g(0, ν) =
g(z, 0) = 0.

We make the following assumptions, which are shown in Figure 1.

(H1) The linearization Df(0) has simple real eigenvalues at the equilibrium 0:
−ρ2,−ρ1, λ1, λ2 satisfying

−ρ2 < −ρ1 < 0 < λ1 < λ2 and ρ1 > λ1.

(H2) System (1.2) has double homoclinic loops Γ = Γ1 ∪ Γ2,Γi = {z = ri(t) : t ∈
R, ri(±∞) = 0} and dim(Tri(t)W

s ∩ Tri(t)Wu) = 1, i = 1, 2, where W s and
Wu are the stable and unstable manifolds of 0, respectively.

(H3) Let e±i = limt→∓∞
ṙi(t)

|ṙi(t)|
, and e+

i ∈ T0W
u, e−i ∈ T0W

s be unit eigenvectors

corresponding to λ1 and −ρ1, respectively, and satisfying e+
1 = −e+

2 , e−1 =
−e−2 .

(H4) Span{Tri(t)Wu, Tri(t)W
s, e+

i } = R4 as t� 1,

Span{Tr1(t)W
u, Tr1(t)W

s, e−1 } = R4 as t� −1,
Span{Tr2(t)W

u, Tr2(t)W
s, Tr1(t)W

ss} = R4 as t� −1.

The hypotheses (H4) implies that W s of Γ1 is inclination flip. Furthermore,
both W s and Wu of Γ2 as well as Wu of Γ1 have the strong inclination property.
That is to say, a general vector in Tr2(t)W

s (resp. Tri(t)W
u) not belonging to

span{ṙ(t)} should go to the strong stable (resp. unstable) direction as t → +∞
(resp. t→ −∞).
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Figure 1. Double homoclinic loops Γ = Γ1 ∪ Γ2

As shown in Figure 1, under the hypotheses (H1) − (H4), we can see that the
double homoclinic loops Γ are codimension 3.

The single homoclinic loop in high-dimensional systems has been investigated
by many authors (see [1,2,4–6,9,11,17,22,24,26,32,35] and the references therein).
In this paper, we only focus on bifurcations of the large loop, that is, the double
loops Γ = Γ1 ∪ Γ2.

We assume that r ≥ 3Q and DNf(0) = 0 for N = 0, 1. It satisfies the Sternberg
condition of order Q and K is the Q-smootheness of Df(0) = 0, where Q = K([λ2

λ1
]+

[ρ2ρ1 ] + 2), so system (2.1) is uniformly CK linearizable according to [12]. Therefore,

there exits U, a small neighborhood of 0 in R4, such that, for ν ∈ Rl, 0 < |ν| � 1
and ∀(x, y, u, v) ∈ U , system (2.1) has the following CK−1(K ≥ 4) normal form

ẋ =λ1(ν)x,

ẏ =− ρ1(ν)y,

u̇ =λ2(ν)u,

v̇ =− ρ2(ν)v.

(2.3)

3. Poincaré map and bifurcation equations

Now we consider the linear variational system of (2.2) and its adjoint system

ż = Df(ri(t))z, (3.1)

ż = −(Df(ri(t)))
∗z. (3.2)

Denote ri(t) = (rxi (t), ryi (t), rui (t), rvi (t)). Under the coordinates corresponding to
system (2.3), one can take T 0

i and T 1
i large enough such that ri(−T 1

i ) = {(−1)(i−1)δ, 0,
0, 0}, ri(T 0

i ) = {0, (−1)(i−1)δ, 0, 0}, where δ is small enough such that {(x, y, u, v) :
|x|, |y|, |u|, |v|
< 2δ} ⊂ U .

Lemma 3.1. System (3.1) has a fundamental solution matrix

Zi(t) = (z1
i (t), z2

i (t), z3
i (t), z4

i (t))
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satisfying

z1
i (t) ∈ (Tri(t)W

u)c ∩ (Tri(t)W
s)c,

z2
i (t) = (−1)iṙi(t)/|ṙyi (T 0

i )| ∈ Tri(t)Wu ∩ Tri(t)W s,

z3
i (t) ∈ Tri(t)Wuu,

z4
i (t) ∈ Tri(t)W s,

Z1(−T 1
1 ) =


w11

1 w21
1 0 w41

1

0 0 0 w42
1

w13
1 0 1 w43

1

w̄14
1 0 0 w44

1

 , Z1(T 0
1 ) =


1 0 w31

1 0

0 1 w32
1 0

0 0 w33
1 0

w14
1 0 w34

1 1

 ,

Z2(−T 1
2 ) =


w11

2 w21
2 0 w41

2

w12
2 0 0 w42

2

w13
2 0 1 w43

2

0 0 0 w44
2

 , Z2(T 0
2 ) =


1 0 w31

2 0

0 1 w32
2 0

0 0 w33
2 0

w14
2 0 w34

2 1

 ,

where w̄14
1 w12

2 w42
1 w44

2 w33
i 6= 0, w21

i < 0, |w14
i | � 1, |(w̄14

1 )−1w1j
1 | � 1, j = 1, 3,

|(w12
2 )−1w1j

2 | � 1, j = 1, 3, |(w42
1 )−1w4j

1 | � 1, j 6= 4, |(w44
2 )−1w4j

2 | � 1, j 6= 4,

|(w33
i )−1(w3j

i )| � 1, j 6= 3, as T ji � 1 for i = 1, 2, j = 0, 1.

Proof. Due to the definition of z2
1(t) = −ṙ1(t)/|ṙy1(T 0

1 )|, we obtain the expression of

z2
1(−T 1

1 ), z2
1(T 0

1 ) and w21
1 < 0. Owing to ṙ1(t)

|ṙ1(t)| → e+
1 ∈ T0W

u (as t→ −∞) and the

hypotheses (H4), we know that z4
1(t) with z4

1(T 0
1 ) = (0, 0, 0, 1)∗ approaches T0W

ss

asymptotically. Because W s of Γ1 is inclination flip, and therefore, w42
1 6= 0. Simi-

larly, we have w33
1 6= 0. Take z̄1

1(t) ∈ (Tr1(t)W
u)c ∩ (Tr1(t)W

s)c such that z̄1
1(T 0

1 ) =
(1, 0, 0, 0)∗, z̄1

1(−T 1
1 ) = (w11

0 , w12
0 , w13

0 , w14
0 )∗. If w12

0 =0, then we set z1
1(t) = z̄1

1(t).
Otherwise, due to w42

1 6= 0, we denote z1
1(t) ≡ z̄1

1(t) − w12
0 (w42

1 )−1z4
1(t), then z1

1(t)
satisfies the desired conditions at moments T 0

1 and −T 1
1 . Based on detZ1(−T 1

1 ) 6= 0,
w̄14

1 6= 0 is clear.

By the expressions of the local invariant manifolds in U, the values of z2
2(t),

z3
2(t), z4

2(t) at t = −T 1
2 , T

0
2 and w21

2 < 0 are clear. Owing to ṙ2(t)
|ṙ2(t)| → e−2 ∈ T0W

s

(as t → +∞) and the hypotheses (H4), W s of Γ2 has the strong inclination prop-
erty. We know that z4

2(t) with z4
2(T 0

2 ) = (0, 0, 0, 1)∗ approaches T0W
ss asymp-

totically (as t → +∞), and therefore, w44
2 6= 0. Similarly, we have w33

2 6= 0.
Take z̄1

2(t) ∈ (Tr2(t)W
u)c ∩ (Tr2(t)W

s)c such that z̄1
2(T 0

2 ) = (1, 0, 0, 0)∗, z̄1
2(−T 1

2 ) =
(w̄11

0 , w̄12
0 , w̄13

0 , w̄14
0 )∗. If w̄14

0 =0, then we set z1
2(t) = z̄1

2(t). Otherwise, due to
w44

2 6= 0, we denote w14
2 = −(w44

2 )−1w̄14
0 , and z1

2(t) ≡ z̄1
2(t) + w14

2 z4
2(t). Then z1

2(t)
satisfies the desired conditions at moments T 0

2 and −T 1
2 . Note that w12

2 = 0 means
z1

2(t) ∈ Tr2(t)W
u
2 , whereas, by definition, z1

2(t) should belong to (Tr2(t)W
u
2 )c. So we

have w12
2 6= 0. The remainer is easy to check, we omit the detail. �

Let Ψi(t) = (Z−1
i (t))∗ = (ψ1

i (t), ψ2
i (t), ψ3

i (t), ψ4
i (t)). Obviously, Ψi(t) is a funda-
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Figure 2. The Poincaré map

mental solution matrix of the adjoint system (3.2). Introduce the transformation

z = ri(t) + (z1
i (t), z2

i (t), z3
i (t), z4

i (t)) · (n1
i , 0, n

3
i , n

4
i )

def
= Si(t) (3.3)

in the neighborhood of Γi, and choose the cross sections (see Figure 2)

S0
i = {z = Si(T

0
i ) : |x|, |y|, |u|, |v| < 2δ} ⊂ U,

S1
i = {z = Si(−T 1

i ) : |x|, |y|, |u|, |v| < 2δ} ⊂ U
for i = 1, 2, then system (2.1) takes the following normal form

ṅji = (ψji (t))
∗gν(ri(t), 0)ν + h.o.t., −T 1

i ≤ t ≤ T 0
i , i = 1, 2; j = 1, 3, 4.

(3.4)

By integrating both sides from −T 1
i to T 0

i , equation (3.4) produces a map P 1
i :

S1
i → S0

i as follows.

nji (T
0
i ) = nji (−T

1
i ) +M j

i ν + h.o.t., i = 1, 2; j = 1, 3, 4, (3.5)

where M j
i =

∫ T 0
i

−T 1
i

(ψji (t))
∗gν(ri(t), 0) dt, i = 1, 2; j = 1, 3, 4 are Melnikov vectors.

Lemma 3.2. M1
i =

∫ T 0
i

−T 1
i

(ψ1
i (t))∗gν(ri(t), 0) dt=

∫ +∞

−∞
(ψ1
i (t))∗gν(ri(t), 0) dt, i =

1, 2.

Proof. Without loss of generality, it is sufficient to verify that (ψ1
1(t))∗gν(r1(t), 0) =

0 for t ≥ T 0
1 and t ≤ −T 1

1 . We have r1(t) = (0, ry1(t), 0, 0) with |ry1(t)| = O(δe−ρ1(t−T 0
1 ))

< δ for t ≥ T 0
1 and r1(t) = (rx1 (t), 0, 0, 0) with |rx1 (t)| = O(δeλ1(t+T 1

1 )) < δ for
t ≤ −T 1

1 . According to the normal form (2.3), we have

gν(r1(t), 0) = (0, O(δ), 0, 0), for t ≥ T 0
1 , gν(r1(t), 0) = (O(δ), 0, 0, 0), for t ≤ −T 1

1 .

Since (Ψ1(t))∗Z1(t) = I, we have (ψj1(t))∗z1
1(t) = 0, j=2, 3, 4. Denote

(ψj1(t))∗ = (ψj11 (t), ψj21 (t), ψj31 (t), ψj41 (t)),
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then z1
1(T 0

1 ) = (1, 0, 0, w14
1 )∗ implies that ψj11 (T 0

1 ) = 0, j = 2, 3, 4. Thereafter, we

have ψj11 (t) = 0, for t > T 0
1 , j = 2, 3, 4, since Df(r1(t)) and its adjoint matrix are

both diagonal. Likewise, we can also obtain ψj41 (−T 1
1 ) = 0, j = 2, 3, 4. Consequently,

ψj41 (t) = 0, for t < −T 1
1 , j = 2, 3, 4. Thus, we have (ψ1

1(t))∗gν(r1(t), 0) = 0 for t ≥ T 0
1

and t ≤ −T 1
1 . �

Next we consider the maps P 0
1 : S0

2 → S1
1 ; q0

2 7−→ q1
1 and P 0

2 : S0
1 → S1

2 ; q0
1 7−→ q1

2

induced by the flow of (2.3) in the neighborhood U of z = 0. Set the flying time
from q0

2 to q1
1 as τ1, q

0
1 to q1

2 as τ2, and the Silnikov time sk = e−λ1(ν)τk , k = 1, 2.
Then we have

P 0
1 : q0

2(x0
2, y

0
2 , u

0
2, v

0
2) 7→ q1

1(x1
1, y

1
1 , u

1
1, v

1
1)

x0
2 = s1x

1
1,

y1
1 = s

ρ1/λ1

1 y0
2 ,

u0
2 = s

λ2/λ1

1 u1
1,

v1
1 = s

ρ2/λ1

1 v0
2 ,

(3.6)

P 0
2 : q0

1(x0
1, y

0
1 , u

0
1, v

0
1) 7→ q1

2(x1
2, y

1
2 , u

1
2, v

1
2)

x0
1 = s2x

1
2,

y1
2 = s

ρ1/λ1

2 y0
1 ,

u0
1 = s

λ2/λ1

2 u1
2,

v1
2 = s

ρ2/λ1

2 v0
1 .

(3.7)

Then, we seek the relations between q2j
i (x2j

i , y2j
i , u2j

i , v2j
i ) ∈ S0

i , q2j+1
i (x2j+1

i ,

y2j+1
i , u2j+1

i , v2j+1
i ) ∈ S1

i , P 0
i (q2j

i+1) = q2j+1
i and their new coordinates N2j

i =

(n2j,1
i , 0, n2j,3

i , n2j,4
i ), N2j+1

i = (n2j+1,1
i , 0, n2j+1,3

i , n2j+1,4
i ) for i = 1, 2, where q0

3 =
q0
1 . Using (3.3) and the expression of Zi(−T 1

i ) and Zi(T
0
i ), we achieve

n2j,1
1 = x2j

1 − w31
1 (w33

1 )−1u2j
1 ,

n2j,3
1 = (w33

1 )−1u2j
1 ,

n2j,4
1 = v2j1 − w14

1 x2j
1 + (w14

1 w31
1 − w34

1 )(w33
1 )−1u2j

1 ,

(3.8)

n2j+1,1
1 = (w̄14

1 )−1v2j+1
1 − (w̄14

i )−1w44
i (w42

i )−1y2j+1
1 ,

n2j+1,3
1 = u2j+1

1 − w43
1 (w42

1 )−1y2j+1
1 + w13

1 (w̄14
1 )−1(w42

1 )−1w44
1 y2j+1

1 − w13
1 (w̄14

1 )−1v2j+1
1 ,

n2j+1,4
1 = (w42

1 )−1y2j+1
1 ,

(3.9)

n2j,1
2 = x2j

2 − w31
2 (w33

2 )−1u2j
2 ,

n2j,3
2 = (w33

2 )−1u2j
2 ,

n2j,4
2 = v2j2 − w14

2 x2j
2 + (w14

2 w31
2 − w34

2 )(w33
2 )−1u2j

2 ,

(3.10)

n2j+1,1
2 = (w12

2 )−1y2j+1
2 − (w12

2 )−1w42
2 (w44

2 )−1v2j+1
2 ,

n2j+1,3
2 = u2j+1

2 − w13
2 (w12

2 )−1y2j+1
2 + (w13

2 (w12
2 )−1w42

2 − w43
2 )(w44

2 )−1v2j+1
2 ,

n2j+1,4
2 = (w44

2 )−1v2j+1
i ,

(3.11)
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and

x2j+1
i ≈ (−1)i−1δ, y2j

i ≈ (−1)i−1δ. (3.12)

Notice that nji (T
0
i ) = n2,j

i , nji (−T 1
i ) = n1,j

i , now we are ready to give the Poincaré
maps from (3.5)-(3.12):

F1 =P 1
1 ◦ P 0

1 : S0
2 → S0

1 ,

n2,1
1 = (w̄14

1 )−1s
ρ2/λ1

1 v0
2 + (w̄14

i )−1w44
i (w42

i )−1δs
ρ1/λ1

1 +M1
1 ν + h.o.t.,

n2,3
1 = u1

1 + w43
1 (w42

1 )−1δs
ρ1/λ1

1 + w13
1 (w̄14

1 )−1(w42
1 )−1w44

1 δs
ρ1/λ1

1

− w13
1 (w̄14

1 )−1s
ρ2/λ1

1 v0
2 +M3

1 ν + h.o.t.,

n2,4
1 = (w42

1 )−1δs
ρ1/λ1

1 +M4
1 ν + h.o.t.,

(3.13)

F2 =P 1
2 ◦ P 0

2 : S0
1 → S0

2 ,

n2,1
2 = (w12

2 )−1δs
ρ1/λ1

2 − (w12
2 )−1w42

2 (w44
2 )−1s

ρ2/λ1

2 v0
1 +M1

2 ν + h.o.t.,

n2,3
2 = u1

2 − w13
2 (w12

2 )−1δs
ρ1/λ1

2 + [w13
2 (w12

2 )−1w42
2 − w43

2 ](w44
2 )−1s

ρ2/λ1

2 v0
1

+M3
2 ν + h.o.t.,

n2,4
2 = (w44

2 )−1s
ρ2/λ1

2 v0
1 +M4

2 ν + h.o.t..

(3.14)

Finally, equalities (3.6)-(3.11), (3.13) and (3.14) yield the successor function

G(s1, s2, u
1
1, u

1
2, v

0
1 , v

0
2) = (G1

1, G
3
1, G

4
1, G

1
2, G

3
2, G

4
2) = (F1(q0

2)− q0
1 , F2(q0

1)− q0
2)

as follows.

G1
1 =(w̄14

1 )−1s
ρ2/λ1

1 v0
2 + (w̄14

1 )−1w44
1 (w42

1 )−1δs
ρ1/λ1

1 + δs2

+ w31
1 (w33

1 )−1s
λ2/λ1

2 u1
2 +M1

1 ν + h.o.t.,

G3
1 =u1

1 − w13
1 (w̄14

1 )−1s
ρ2/λ1

1 v0
2 − [w13

1 (w̄14
1 )−1w44

1 − w43
1 ](w42

1 )−1δs
ρ1/λ1

1

− (w33
1 )−1s

λ2/λ1

2 u1
2 +M3

1 ν + h.o.t.,

G4
1 =− v0

1 − (w42
1 )−1δs

ρ1/λ1

1 − w14
1 δs2

− [w14
1 w31

1 − w34
1 ](w33

1 )−1s
λ2/λ1

2 u1
2 +M4

1 ν + h.o.t.,

G1
2 =(w12

2 )−1δs
ρ1/λ1

2 − (w12
2 )−1w42

2 (w44
2 )−1s

ρ2/λ1

2 v0
1 − δs1

+ w31
2 (w33

2 )−1s
λ2/λ1

1 u1
1 +M1

2 ν + h.o.t.,

G3
2 =u1

2 − w13
2 (w12

2 )−1δs
ρ1/λ1

2 + [w13
2 (w12

2 )−1w42
2 − w43

2 ](w44
2 )−1s

ρ2/λ1

2 v0
1

− (w33
2 )−1s

λ2/λ1

1 u1
1 +M3

2 ν + h.o.t.,

G4
2 =− v0

2 + (w44
2 )−1s

ρ2/λ1

2 v0
1 + w14

2 δs1

− [w14
2 w31

2 − w34
2 ](w33

2 )−1s
λ2/λ1

1 u1
1 +M4

2 ν + h.o.t..

Clearly, there is an 1 − 1 correspondence between the large 1-periodic, large
1-homoclinic and large loop consisting of double homoclinic orbits of system (2.1)
and the solution Q = (s1, s2, u

1
1, u

1
2, v

0
1 , v

0
2) of

(G1
1, G

3
1, G

4
1, G

1
2, G

3
2, G

4
2) = 0 (3.15)
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with s1 ≥ 0, s2 ≥ 0.
For G4

1 = 0 we get

v0
1 = −(w42

1 )−1δs
ρ1/λ1

1 − w14
1 δs2 +M4

1 ν +O(s2), (3.16)

substituting v0
1 into G4

2 = 0 we have

v0
2 = (w44

2 )−1M4
1 νs

ρ2/λ1

2 + w14
2 δs1 +M4

2 ν +O(s
ρ1/λ1

1 ) +O(s
ρ2/λ1+1
2 ),

by substituting it into (G1
1, G

1
2) = 0, we obtain the bifurcation equations

s2 =− (w̄14
1 )−1M4

2 νδ
−1s

ρ2/λ1

1 − (w̄14
1 )−1w14

2 s
ρ2/λ1+1
1 − δ−1M1

1 ν + h.o.t.,

s1 =(w12
2 )−1s

ρ1/λ1

2 + δ−1M1
2 ν + h.o.t..

(3.17)

4. Main results and their proofs

In this section, we study the existence, uniqueness and incoexistence of the double
homoclinic loops, large 1-homoclinic orbit and large 1-periodic orbit.

Theorem 4.1. Suppose that (H1)− (H4) hold. Then, for |ν| small enough, system
(2.1) has at most one large loop consisting of two homoclinic orbits, one large 1-
homoclinic orbit or one large 1-periodic orbit in a small neighborhood of Γ, and
these orbits can not coexist.

Proof. We have

W =
∂(G1

1, G
3
1, G

4
1, G

1
2, G

3
2, G

4
2)

∂Q

∣∣∣
Q=0,ν=0

=



0 0 0 δ 0 0

0 1 0 0 0 0

0 0 −1 −w14
1 δ 0 0

−δ 0 0 0 0 0

0 0 0 0 1 0

w14
2 δ 0 0 0 0 −1


,

where Q = Q(s1, u
1
1, v

0
1 , s2, u

1
2, v

0
2) and detW = −δ2 6= 0. So the implicit function

theorem says that, in the neighborhood of (Q, ν) = (0, 0), there exists a unique
group of functions

si = si(ν), u1
i = u1

i (ν), v0
i = v0

i (ν), i = 1, 2,

satisfying si(ν) = u1
i (ν) = v0

i (ν) = 0 as ν = 0. Then if s1(ν) = s2(ν) = 0, system
(2.1) has a unique large loop, that is, the loop Γ is persistent. If s1(ν) > 0, s2(ν) = 0
(or s1(ν) = 0, s2(ν) > 0), system (2.1) has a unique large 1-homoclinic orbit. If
s1(ν) > 0, s2(ν) > 0, system (2.1) has a unique large 1-periodic orbit. �

Theorem 4.2. Suppose that (H1)− (H4) hold, then the following conclusions are
true.

(1) If M1
i 6= 0, then there exists a unique surface Σi

def
= {ν : M1

i ν + h.o.t. = 0}
with codimension 1 and normal vectors M1

i at ν = 0, such that system (2.1)
has a homoclinic loop near Γi if and only if ν ∈ Σi and |ν| � 1, that is, Γi is
persistent.
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(2) If rank (M1
1 ,M

1
2 ) = 2, then Σ12 = Σ1 ∩ Σ2 is a codimension 2 surface and

0 ∈ Σ12 such that system (2.1) has a large loop consisting of two homoclinic
orbits near Γ as ν ∈ Σ12 and |ν| � 1, that is, Γ is persistent.

Proof. If (3.17) has solution s1 = s2 = 0, then we have

M1
i ν + h.o.t. = 0, i = 1, 2. (4.1)

If M1
i 6= 0, then there exists a codimension 1 surface Σi with normal vector M1

i

at ν = 0, such that (3.17) has solution s1 = s2 = 0 as ν ∈ Σi and |ν| � 1.
If rank(M1

1 ,M
1
2 ) = 2, then Σ12 = Σ1 ∩ Σ2 is a codimension 2 surface with

normal plane span{M1
1 ,M

1
2 } such that (3.17) has solution s1 = s2 = 0 as ν ∈ Σ12

and |ν| � 1, equivalently, the large loop Γ = Γ1 ∪ Γ2 is persistent. �
Next, we discuss if (3.17) has solution s1 ≥ 0, s2 ≥ 0, then we have the following

theorem.

Theorem 4.3. Suppose that (H1) − (H4) hold, |ν| � 1, and rank(M1
1 ,M

1
2 ) = 2,

then the following results are true.

(1) In case M1
2 ν < 0 and w12

2 < 0, system (2.1) has no large 1-periodic orbit near
Γ.

(2) In case M1
2 ν > 0 and w12

2 > 0, system (2.1) has a unique large 1-periodic
orbit near Γ as δ−1M1

1 ν < g(ν), a unique large 1-homoclinic orbit near Γ
as δ−1M1

1 ν = g(ν), and no large 1-periodic orbit as δ−1M1
1 ν > g(ν), where

g(ν) = −(w̄14
1 )−1M4

2 νδ
−1(δ−1M1

2 ν)ρ2/λ1

− (w̄14
1 )−1w14

2 (δ−1M1
2 ν)ρ2/λ1+1 + h.o.t..

(3) In case M1
2 ν < 0 and w12

2 > 0, system (2.1) has a unique large 1-periodic
orbit near Γ as δ−1M1

2 ν > −(w12
2 )−1(−δ−1M1

1 ν)ρ1/λ1 + h.o.t., a unique large
1-homoclinic orbit near Γ as δ−1M1

2 ν = −(w12
2 )−1(−δ−1M1

1 ν)ρ1/λ1 + h.o.t.,
and no large 1-periodic orbit as δ−1M1

2 ν < −(w12
2 )−1(−δ−1M1

1 ν)ρ1/λ1 +h.o.t..

(4) In case M1
2 ν > 0 and w12

2 < 0, we have

(I) If M1
1 ν > 0, (w̄14

1 )−1M4
2 ν > 0 and (w̄14

1 )−1w14
2 > 0, then system (2.1)

has no large 1-periodic orbit.

(II) If M1
1 ν < 0, (w̄14

1 )−1M4
2 ν < 0 and (w̄14

1 )−1w14
2 < 0, then system (2.1) has

a unique large 1-periodic orbit as −(w12
2 )−1(−δ−1M1

1 ν)ρ1/λ1 + h.o.t. >
δ−1M1

2 ν, a unique large 1-homoclinic orbit as−(w12
2 )−1(−δ−1M1

1 ν)ρ1/λ1+
h.o.t. = δ−1M1

2 ν, and no large 1-periodic orbit as−(w12
2 )−1(−δ−1M1

1 ν)ρ1/λ1

+h.o.t. < δ−1M1
2 ν.

(III) If M1
1 ν < 0, (w̄14

1 )−1M4
2 ν > 0, (w̄14

1 )−1w14
2 > 0 and |M1

1 ν|
α−1
α �

|M4
2 ν| (as ν → 0), then system (2.1) has a unique large 1-periodic

orbit as δ−1M1
2 ν > −(w12

2 )−1(−δ−1M1
1 ν)ρ1/λ1 + h.o.t. or δ−1M1

2 ν ≤
(−w̄14

1 M1
1 ν/M

4
2 ν)λ1/ρ2+h.o.t., a unique large 1-homoclinic orbit as δ−1M1

2 ν
= −(w12

2 )−1(−δ−1M1
1 ν)ρ1/λ1 + h.o.t., and no large 1-periodic orbit as

δ−1M1
2 ν<−(w12

2 )−1(−δ−1M1
1 ν)ρ1/λ1+h.o.t. or δ−1M1

2 ν>(−w̄14
1 M1

1 ν/M
4
2 ν)λ1/ρ2

+h.o.t..

(IV) If M1
1 ν > 0, (w̄14

1 )−1M4
2 ν < 0 and (w̄14

1 )−1w14
2 < 0, then system (2.1)

has a unique large 1-periodic orbit as δ−1M1
1 ν < h(ν), a unique large

1-homoclinic orbit as δ−1M1
1 ν = h(ν), and no large 1-periodic orbit

as δ−1M1
1 ν > h(ν), where h(ν) = −(w̄14

1 )−1M4
2 νδ

−1(δ−1M1
2 ν)ρ2/λ1 −

(w̄14
1 )−1w14

2 (δ−1M1
2 ν)ρ2/λ1+1 + h.o.t..
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(V) If w14
2 M4

2 ν < 0, then we can get the following results.

(i) If D(ν) > 0 and F (ν) < 0, then system (2.1) has a unique large
1-periodic orbit as s1k+(ν) < δ−1M1

2 ν + h.o.t., a unique large 1-
homoclinic orbit as s1k+(ν) = δ−1M1

2 ν + h.o.t., and no large 1-
periodic orbit as s1k+(ν) > δ−1M1

2 ν + h.o.t.

(ii) If D(ν) > 0 and ∆(ν) < 0, then system (2.1) has no large 1-
periodic orbit as F (ν) > (−δ−1w12

2 M1
2 ν)λ1/ρ1 +h.o.t., a unique large

1-homoclinic orbit as F (ν) = (−δ−1w12
2 M1

2 ν)λ1/ρ1 + h.o.t., and a
unique large 1-periodic orbit as F (ν) < (−δ−1w12

2 M1
2 ν)λ1/ρ1 +h.o.t..

(iii) If D(ν) > 0, F (ν) > 0 and ∆(ν) > 0, then system (2.1) has no large
1-periodic orbit as F (ν) > (−δ−1w12

2 M1
2 ν)λ1/ρ1 + h.o.t., a unique

large 1-homoclinic orbit as F (ν) = (−δ−1w12
2 M1

2 ν)λ1/ρ1 + h.o.t., a
unique large 1-periodic orbit as 0 < F (ν) < (−δ−1w12

2 M1
2 ν)λ1/ρ1 +

h.o.t. and s1k−(ν) > δ−1M1
2 ν + h.o.t. ( s1k+(ν) < δ−1M1

2 ν + h.o.t.),
no large 1-periodic orbit as s1k−(ν) < δ−1M1

2 ν + h.o.t. < s1k+(ν),
and a large 1-homoclinic orbit as s1k−(ν) = δ−1M1

2 ν+h.o.t. (s1k+(ν)
= δ−1M1

2 ν + h.o.t.).

(iv) If D(ν) < 0 and ∆(ν) < 0, then system (2.1) has no large 1-periodic
orbit.

(v) If D(ν) < 0, F (ν) < 0 and ∆(ν) > 0, then system (2.1) has no
large 1-periodic orbit as s1k−(ν) > δ−1M1

2 ν + h.o.t. or s1k+(ν) <
δ−1M1

2 ν + h.o.t., a unique large 1-homoclinic orbit as s1k−(ν) =
δ−1M1

2 ν + h.o.t. or s1k+(ν) = δ−1M1
2 ν + h.o.t., and a unique large

1-periodic orbit as s1k−(ν) < δ−1M1
2 ν + h.o.t. < s1k+(ν).

(vi) If D(ν) < 0 and F (ν) > 0, then system (2.1) has no large 1-
periodic orbit as F (ν) > (−δ−1w12

2 M1
2 ν)λ1/ρ1 +h.o.t., a unique large

1-homoclinic orbit as F (ν) = (−δ−1w12
2 M1

2 ν)λ1/ρ1 + h.o.t., a unique
large 1-periodic orbit as 0 < F (ν) < (−δ−1w12

2 M1
2 ν)λ1/ρ1 + h.o.t.

and s1k+(ν) > δ−1M1
2 ν + h.o.t., a unique large 1-homoclinic or-

bit as s1k+(ν) = δ−1M1
2 ν + h.o.t., and no large 1-periodic orbit as

s1k+(ν) < δ−1M1
2 ν + h.o.t..

Where

D(ν) =
ρ2M

4
2 ν

2λ1δw̄14
1

(− ρ2M
4
2 ν

(ρ2 + λ1)δw14
2

)ρ2/λ1−2 + h.o.t.,

E(ν) = −ρ2M
4
2 ν

λ1δw̄14
1

(− ρ2M
4
2 ν

(ρ2 + λ1)δw14
2

)ρ2/λ1−1 + h.o.t.,

F (ν) = −δ−1M1
1 ν −

(2λ2
1 − ρ2

2 − λ1ρ2)M4
2 ν

2λ1(ρ2 + λ1)δw̄14
1

(− ρ2M
4
2 ν

(ρ2 + λ1)δw14
2

)ρ2/λ1 + h.o.t.,

s1k±(ν) =
−E(ν)±

√
E2(ν)− 4D(ν)F (ν)

2D(ν)
+ h.o.t.,

∆(ν) = E2(ν)− 4D(ν)F (ν).

Proof.

(1) We can obtain it easily from the second equation of (3.17).
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(2) In case M1
2 ν > 0, w12

2 > 0, we have s1 > 0 as s2 > 0. Eliminating s1, (3.17)
is reduced to

F (s2) ,s2 + (w̄14
1 )−1M4

2 νδ
−1(δ−1M1

2 ν + (w12
2 )−1s

ρ2/λ1

2 )ρ2/λ1

+ (w̄14
1 )−1w14

2 (δ−1M1
2 ν + (w12

2 )−1s
ρ2/λ1

2 )ρ2/λ1+1 + δ−1M1
1 ν + h.o.t.

=0,

For (ρ2/λ1) > (ρ1/λ1) > 1, we get F
′
(s2) ≈ 1 > 0,

F (0) =(w̄14
1 )−1M4

2 νδ
−1(δ−1M1

2 ν)ρ2/λ1

+ (w̄14
1 )−1w14

2 (δ−1M1
2 ν)ρ2/λ1+1 + δ−1M1

1 ν + h.o.t.

,δ−1M1
1 ν − g(ν).

If δ−1M1
1 ν < g(ν), then F (s2) = 0 has a unique small positive solution. If

δ−1M1
1 ν = g(ν), then F (s2) = 0 has a unique solution s2 = 0. If δ−1M1

1 ν >
g(ν), then F (s2) = 0 has no positive solution.

(3) In case M1
2 ν < 0, w12

2 > 0, we get s2 > 0 as s1 > 0. Eliminating s2, (3.17) is
reduce to

F (s1) ,s1 − (w12
2 )−1(−(w̄14

1 )−1M4
2 νδ

−1s
ρ2/λ1

1 − (w̄14
1 )−1w14

2 s
ρ2/λ1+1
1

− δ−1M1
1 ν)ρ1/λ1 − δ−1M1

2 ν + h.o.t.

=0,

For (ρ2/λ1) > (ρ1/λ1) > 1, we get F
′
(s1) ≈ 1 > 0,

F (0) =− (w12
2 )−1(−δ−1M1

1 ν)ρ1/λ1 − δ−1M1
2 ν + h.o.t..

If δ−1M1
2 ν > −(w12

2 )−1(−δ−1M1
1 ν)ρ1/λ1 +h.o.t., then F (s1) = 0 has a unique

small positive solution. If δ−1M1
1 ν = −(w12

2 )−1(−δ−1M1
1 ν)ρ1/λ1 +h.o.t., then

F (s1) = 0 has a unique solution s1 = 0. If δ−1M1
1 ν < −(w12

2 )−1(−δ−1M1
1 ν)ρ1/λ1

+h.o.t., then F (s1) = 0 has no positive solution.

(4) (I) For M1
1 ν > 0, (w̄14

1 )−1M4
2 ν > 0 and (w̄14

1 )−1w14
2 > 0, it is easy to get

the result from the first equation of (3.17).

(II) For M1
1 ν < 0, (w̄14

1 )−1M4
2 ν < 0 and (w̄14

1 )−1w14
2 < 0, the first equation

of (3.17) shows that s2 > 0 as s1 ≥ 0, so we can eliminate s2 and reduce
(3.17) to L1(s1) = K1(s1), where

L1(s1) = [w12
2 (s1 − δ−1M1

2 ν)]λ1/ρ1 + h.o.t.,

K1(s1) = −(w̄14
1 )−1M4

2 νδ
−1s

ρ2/λ1

1 − (w̄14
1 )−1w14

2 s
ρ2/λ1+1
1 − δ−1M1

1 ν + h.o.t.,

L1(0) = [w12
2 (−δ−1M1

2 ν)]λ1/ρ1 + h.o.t.,

K1(0) = −δ−1M1
1 ν + h.o.t..

Because of L
′

1(s1) < 0 < K
′

1(s1), if L1(0) > K1(0), we can see that
L1(s1) = K1(s1) has a unique small positive solution. If L1(0) = K1(0),
then L1(s1) = K1(s1) has a unique solution s1 = 0. If L1(0) < K1(0),
then L1(s1) = K1(s1) has no positive solution.
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(III) For M1
1 ν < 0, (w̄14

1 )−1M4
2 ν > 0 and (w̄14

1 )−1w14
2 > 0, to guarantee

s2 > 0, (3.17) must have 0 < s1 < min{s1L, s1K}, where s1L = δ−1M1
2 ν+

h.o.t. satisfying L1(s1L) = 0, and s1K = (−w̄14
1 M1

1 ν/M
4
2 ν)λ1/ρ2 + h.o.t.

satisfyingK1(s1K) = 0. Now we verify that s1K = (−w̄14
1 M1

1 ν/M
4
2 ν)λ1/ρ2

+h.o.t. is the small positive solution of K1(s1) = 0. Denote t = s
ρ2/λ1

1 ,
and α = λ1/ρ2 + 1, then it gives rise to

(w̄14
1 )−1M4

2 νδ
−1t+ (w̄14

1 )−1w14
2 tα + δ−1M1

1 ν + h.o.t. = 0.

As (w̄14
1 )−1M4

2 ν > 0 and |M1
1 ν|

α−1
α � |M4

2 ν|, it has a unique small
positive solution t̄ = −w̄14

1 M1
1 ν/M

4
2 ν + h.o.t., because |(w̄14

1 )−1w14
2 tα| =

|(w̄14
1 )α−1w14

2 | × |M1
1 ν/M

4
2 ν|α � δ−1M1

1 ν. Thus, K1(s1) = 0 has a
unique small positive solution s1K = (−w̄14

1 M1
1 ν/M

4
2 ν)λ1/ρ2 + h.o.t..

Next we want to find a positive solution s1 of L1(s1) = K1(s1) satisfying
0 < s1 < min{s1L, s1K} � 1. Because of L

′

1(s1) < 0,K
′

1(s1) < 0 and
|L′1(s1)| � |K ′1(s1)| (as ν → 0), when L1(0) < K1(0), L1(s1) = K1(s1)
has no positive solution; when L1(0) = K1(0), L1(s1) = K1(s1) has a so-
lution s1 = 0; when L1(0) > K1(0), L1(s1) = K1(s1) has a unique small
positive solution as s1L ≤ s1K , and no positive solution as s1L > s1K .

(IV) For M1
1 ν > 0, (w̄14

1 )−1M4
2 ν < 0 and (w̄14

1 )−1w14
2 < 0, the first equation

of (3.17) shows that s1 > 0 as s2 > 0, so we can eliminate s1 and reduce
(3.17) to L2(s2) = K2(s2), where

L2(s2) =s2 + δ−1M1
1 ν + h.o.t.,

K2(s2) =− (w̄14
1 )−1M4

2 νδ
−1((w12

2 )−1s
ρ1/λ1

2 + δ−1M1
2 ν)ρ2/λ1

− (w̄14
1 )−1w14

2 ((w12
2 )−1s

ρ1/λ1

2 + δ−1M1
2 ν)ρ2/λ1+1 + h.o.t.,

L2(0) =δ−1M1
1 ν + h.o.t.,

K2(0) =h(ν).

The proof of the remaining conclusion is similar to case (II).

(V) For w14
2 M4

2 ν < 0, K
′

1(s1) = 0 has a solution s1 = − ρ2M
4
2 ν

(ρ2+λ1)δw14
2

+h.o.t. ,
s̄1. Note

K1(s̄1) = −δ−1M1
1 ν −

λ1M
4
2 ν

(ρ2 + λ1)δw̄14
1

(− ρ2M
4
2 ν

(ρ2 + λ1)δw14
2

)ρ2/λ1 + h.o.t.,

K
′′

1 (s̄1) =
ρ2M

4
2 ν

λ1δw̄14
1

(− ρ2M
4
2 ν

(ρ2 + λ1)δw14
2

)ρ2/λ1−2 + h.o.t..

We can rewrite K1(s1) as

K1(s1) = K1(s̄1) +
1

2
K
′′

1 (s̄1)(s1 − s̄1)2 + h.o.t.,

i.e.,

K1(s1) = D(ν)s2
1 + E(ν)s1 + F (ν) + h.o.t..

Equation K1(s1) = 0 has two roots s1k±(ν) given by

s1k±(ν) =
−E(ν)±

√
E2(ν)− 4D(ν)F (ν)

2D(ν)
+ h.o.t.,
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as ∆(ν) > 0. And L1(s1) = 0 has a positive root s1L = δ−1M1
2 ν+h.o.t..

(i) If D(ν) > 0 and F (ν) < 0, then K1(s1) = 0 has a unique positive
root s1K+

(ν). If s1K+
(ν) < s1L, there is exactly a small positive

root of K1(s1) = L1(s1) on (s1K+
(ν), s1L) and no positive root on

(0, s1K+(ν)). If s1K+(ν) = s1L, we have s2 = 0. If s1K+(ν) > s1L,
then K1(s1) = L1(s1) has no positive root (see Figure 3).

✲

✻
s2

s1

L1(s1)

s1L

s1K+

K1(s1)

0

F(ν) r♣
Figure 3. D(ν) > 0 and F (ν) < 0

✲

✻
s2

s1

L1(s1)

s1L

F(ν)

K1(s1)

0

♣r

Figure 4. D(ν) > 0 and ∆(ν) < 0

(ii) If D(ν) > 0 and ∆(ν) < 0, then K1(s1) = 0 has no positive root.
If F (ν) < (−δ−1w12

2 M1
2 ν)λ1/ρ1 + h.o.t., then K1(s1) = L1(s1) has a

unique small positive root. If F (ν) = (−δ−1w12
2 M1

2 ν)λ1/ρ1 + h.o.t.,
we have s1 = 0. If F (ν) > (−δ−1w12

2 M1
2 ν)λ1/ρ1 + h.o.t., then

K1(s1) = L1(s1) has no positive root (see Figure 4).

(iii) If D(ν) > 0, F (ν) > 0 and ∆(ν) > 0, then K1(s1) = 0 has two small
positive roots s1K−(ν) and s1K+

(ν). If F (ν) > (−δ−1w12
2 M1

2 ν)λ1/ρ1+
h.o.t., thenK1(s1) = L1(s1) has no positive root. If F (ν) = (−δ−1w12

2

M1
2 ν)λ1/ρ1+h.o.t., we have s1 = 0. When 0<F (ν)<(−δ−1w12

2 M1
2 ν)λ1/ρ1

+h.o.t., if s1k−(ν) > δ−1M1
2 ν + h.o.t. ( s1k+(ν) < δ−1M1

2 ν + h.o.t.),
then K1(s1) = L1(s1) has a unique small positive root; if s1k−(ν) <
δ−1M1

2 ν + h.o.t. < s1k+(ν), then K1(s1) = L1(s1) has no positive
root; if s1k−(ν) = δ−1M1

2 ν + h.o.t. (s1k+(ν) = δ−1M1
2 ν + h.o.t.), we

have s2 = 0 (see Figure 5).

(iv) If D(ν) < 0 and ∆(ν) < 0, then K1(s1) = L1(s1) has no positive
root (see Figure 6).

(v) If D(ν) < 0, F (ν) < 0 and ∆(ν) > 0, then K1(s1) = 0 has two small
positive roots s1K−(ν) and s1K+

(ν). If s1k−(ν) > δ−1M1
2 ν + h.o.t.

(s1k+(ν) < δ−1M1
2 ν + h.o.t.), then K1(s1) = L1(s1) has no positive

root. If s1k−(ν) = δ−1M1
2 ν + h.o.t. (s1k+(ν) = δ−1M1

2 ν + h.o.t.),
we have s2 = 0. If s1k−(ν) < δ−1M1

2 ν + h.o.t. < s1k+(ν), then
K1(s1) = L1(s1) has a unique small positive root (see Figure 7).

(vi) If D(ν) < 0 and F (ν) > 0, then K1(s1) = 0 has a unique positive
root s1K+

(ν). If F (ν) > (−δ−1w12
2 M1

2 ν)λ1/ρ1 +h.o.t., then K1(s1) =

L1(s1) has no positive root. If F (ν) = (−δ−1w12
2 M1

2 ν)λ1/ρ1 + h.o.t.,
we have s1 = 0. When 0 < F (ν) < (−δ−1w12

2 M1
2 ν)λ1/ρ1 + h.o.t.,

if s1k+(ν) > δ−1M1
2 ν + h.o.t., then K1(s1) = L1(s1) has a unique
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✲

✻
s2

s1

L1(s1)

s1L0

q♣♣F(ν)
s1K− s1K+

K1(s1)

Figure 5. D(ν) > 0, F (ν) > 0 and ∆(ν) > 0

✲

✻
s2

s1

L1(s1)

s1L

0

qrF(ν) K1(s1)

Figure 6. D(ν) < 0 and ∆(ν) < 0

✲
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♣r0

s2

F(ν)

L1(s1)

s1

K1(s1)

s1L

s1K+

s1K−

Figure 7. D(ν) < 0, F (ν) < 0 and ∆(ν) > 0

✲

✻

rF(ν)

0
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s1K+

K1(s1)
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Figure 8. D(ν) < 0 and F (ν) > 0
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small positive root; if s1k+(ν) = δ−1M1
2 ν + h.o.t., we have s2 = 0;

if s1k+(ν) < δ−1M1
2 ν + h.o.t., then K1(s1) = L1(s1) has no positive

root (see Figure 8).

5. Application

Take into account the Cr system

ż = f(z) + g(z, ν), (5.1)

with its unperturbed system

ż = f(z), (5.2)

where z = (z1, z2, z3, z4), ν = (ν1, ν2, ν3), g(z, 0) = 0,

f(z) =


3z2

1 + 2z2
2 + 4z1

(z1 − 3)z2

z3(1− z1)

z4(z1 − 6)

 , g(z, ν) =


z2

1ν1

z
1/2
1 z1ν2

z1ν1

z
1/2
1 ν3

 .

When ν = 0, system (5.1) has a equilibrium P = (0, 0, 0, 0) and a double ho-
moclinic cycle Γ = Γ1 ∪ Γ2, which is expressed by Γi = {z = ri(t), t ∈ R}, i = 1, 2.
Here

r1(t) = (
1

et + Ce−t
, 0, 0, 0), r2(t) = (

1

e2t + Ce−2t
, 0, 0, 0) (5.3)

satisfying r1(+∞) = r1(−∞) = r2(+∞) = r2(−∞) = P .
Set

1

et + Ce−t
= δ, t→ ±∞,

where δ > 0 sufficiently small, then we have C = 1. Choose 2σ = 1/δ+(1/δ2−4)1/2,
therefore, T = lnσ.

Due to

Df(z) =


6z1 + 4 4z2 0 0

z2 z1 − 3 0 0

−z3 0 1− z1 0

z4 0 0 z1 − 6

 ,

we have Df(P ) = diag(4,−3, 1,−6).
Now, we consider the linear variational system of unperturbed system (5.2) and

its adjoint system

ż = Df(ri(t))z, (5.4)i
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ż = −(Df(ri(t)))
∗z, (5.5)i

where i = 1, 2,

Df(r1(t)) = diag(
6

et + e−t
+ 4,

1

et + e−t
− 3, 1− 1

et + e−t
,

1

et + e−t
− 6).

One fundamental solution matrix for (5.4)1 is

Ẑ1(t) = diag(C1e
∫ t
0

( 6

es+e−s
+4)ds

, C2e
∫ t
0

( 1

es+e−s
−3)ds

, C3e
∫ t
0

(1− 1

es+e−s
)ds
, C4e

∫ t
0

( 1

es+e−s
−6)ds

).

Correspondingly, one has

Ψ̂1(t) = (Ẑ−1
1 (t))∗ = diag(C−1

1 e
−

∫ t
0

( 6

es+e−s
+4)ds

, C−1
2 e

−
∫ t
0

( 1

es+e−s
−3)ds

,

C−1
3 e

−
∫ t
0

(1− 1

es+e−s
)ds
, C−1

4 e
−

∫ t
0

( 1

es+e−s
−6)ds

),

where Cj , j = 1, ..., 4 are constant to be determined.
Furthermore, we should perform the coordinates transformation by

z1 → u, z2 → y, z3 → x, z4 → v

in the small neighborhood of P , so as to match well with the local moving frame.
Thus, we obtain

Z1(t) =


C3e

∫ t
0 (1− 1

es+e−s
)ds

0 0 0

0 C2e
∫ t
0 ( 1
es+e−s

−3)ds
0 0

0 0 C1e
∫ t
0 ( 6
es+e−s

+4)ds
0

0 0 0 C4e
∫ t
0 ( 1
es+e−s

−6)ds

 ,

for t ∈ [T1,+∞),
and

Z1(t) =


0 C3e

∫ t
0 (1− 1

es+e−s
)ds

0 0

0 0 0 C2e
∫ t
0 ( 1
es+e−s

−3)ds

0 0 C1e
∫ t
0 ( 6
es+e−s

+4)ds
0

C4e
∫ t
0 ( 1
es+e−s

−6)ds
0 0 0

 ,

for t ∈ (−∞,−T1].
Since

Z1(−T1) =


w11

1 w21
1 0 w41

1

0 0 0 w42
1

w13
1 0 1 w43

1

w̄14
1 0 0 w44

1

 , Z1(T1) =


1 0 w31

1 0

0 1 w32
1 0

0 0 w33
1 0

w14
1 0 w34

1 1

 ,
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with

C1 =
σ4e6 arctan 1

e6 arctan(1/σ)
, C2 =

σ3earctan 1

earctanσ
,

C3 =
earctanσ

σearctan 1
, C4 =

σ6earctan 1

earctanσ
,

and

w11
1 = w13

1 = w41
1 = w43

1 = w44
1 = w14

1 = w31
1 = w32

1 = w34
1 = 0,

w̄14
1 =

σ12earctan(1/σ)

e6 arctanσ
, w21

1 =
earctanσ

σ2earctan(1/σ)
,

w42
1 =

σ6earctan(1/σ)

e6 arctanσ
, w33

1 =
σ8earctanσ

earctan(1/σ)
,

note that

Ψ1(t) =


0 C−1

3 e
−

∫ t
0 (1− 1

es+e−s
)ds

0 0

0 0 0 C−1
2 e

−
∫ t
0 ( 1
es+e−s

−3)ds

0 0 C−1
1 e

−
∫ t
0 ( 6
es+e−s

+4)ds
0

C−1
4 e

−
∫ t
0 ( 1
es+e−s

−6)ds
0 0 0

 ,

for t ∈ R.
In the following, we can calculate

M1
1 = (0, 0,

1

C4

∫ +∞

−∞
(

1

et + e−t
)1/2 1

earctan et−arctan 1−6t
dt),

M3
1 = (

1

C1

∫ +∞

−∞
(

1

et + e−t
)

1

6earctan et−arctan 1+4t
dt, 0, 0),

M4
1 = (0,

1

C2

∫ +∞

−∞
(

1

et + e−t
)3/2 1

earctan et−arctan 1−3t
dt, 0).

So we verify that this example is consistent with our work.

6. Conclusion

In this paper, we study codimension 3 bifurcations of double homoclinic loops
with W s inclination flip of Γ1 in the case of ρ1 > λ1. We assume that r ≥ 3Q and
DNf(0) = 0 for N = 0, 1. It satisfies the Sternberg condition of order Q, so system
(2.1) is uniformly CK linearizable according to [12]. Then we can reduce system
(2.1) to a simpler normal form without higher order terms. By setting up local
active coordinates approach in some tubular neighborhood of unperturbed double
homoclinic loops and using the fundamental solution matrix of the linear variational
system in regard to the elementary cycle, we construct Poincaré return map and
the successor functions and obtain bifurcation equations.

In the forementioned bifurcation analysis, we prove the possible bifurcations
of the double homoclinic loops connected with a hyperbolic critical points in a
four dimensional space. It is interesting to find the existence and incoexistence of
the double homoclinic loops, large 1-homoclinic orbit and large 1-periodic orbit in
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Theorem 4.1 and the sufficient conditions for Γi or Γ being persistent in Theorem
4.2. We also discuss the existence or nonexistence of large 1-periodic orbits and
large 1-homoclinic orbits near Γ in Theorem 4.3. It is worthy to be mentioned
that the restriction on the dimension is not essential, and the method used in this
paper can be extended to higher dimensional systems without any difficulty under
the same hypotheses. But the difficulty of these problems will increase with adding
codimension of the double homoclinic loops. Finally, we will be interesting to study
some biological and epidemiological models by applying the results obtained in this
work. We leave these for future research.
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