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Homoclinic Cycle and Homoclinic Bifurcations of
a Predator-prey Model with Impulsive State

Feedback Control
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Abstract In this paper, the homoclinic bifurcation of a predator-prey system
with impulsive state feedback control is investigated. By using the geometry
theory of semi-continuous dynamic systems, the existences of order-1 homo-
clinic cycle and order-1 periodic solution are obtained. Then the stability
of order-1 periodic solution is studied. At last, an example is presented to
illustrate the main results.

Keywords Semi-continuous dynamic system, Successor function, Order-1
homoclinic cycle, Homoclinic bifurcation, Order-1 periodic solution.

MSC(2010) 34C23, 34C37, 34D15.

1. Introduction and model formulation
Since the mid 1920s, Vito Volterra and Alfred James Lotka proposed a ground-
breaking model of the interaction between predators and prey [8, 17], researchers
have conducted extensive research on predation, reciprocity, and competition mech-
anisms in recent years. A common research method is to study the evolutionary
relationship between predators and prey by establishing suitable mathematical mod-
els. Then many mathematical models consisting of differential equations have been
established and studied [3,9,15,19,20,24,26]. Some of them are represented by im-
pulsive differential equations [11, 12, 21, 23]. Impulsive differential equations are a
basic model for studying the process of a sudden change in the state of a system vari-
able [1,6,27]. This sudden change is called a pulse. Systems with pulses that depend
on the value of a variable in the systems are called the state-dependent impulsive
system, which has become an important topic of impulsive differential equations
and has been widely concerned by researchers [4, 5, 7, 13,14,16,18,22,28–30].

Cui and Chen [2] proposed a mathematical model with functional response and
undercrowding effect as follows,

dx

dt
=
a

k
x(x− L)(k − x)− bxy

1 + hx
,

dy

dt
= −cy + dxy

1 + hx
,

(1.1)
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where x, y represent the population density of prey and predator, respectively.
a, L, k, b, h, c, d are positive constants and L < k.

Yuan [25] considered the crowding effect in predator and a simple functional
response based on system (1.1) as follows,

dx

dt
= ax(x− L)(k − x)− bxy,

dy

dt
= −cy + dxy − αy2,

(1.2)

where x, y represent the population density of prey and predator. b represents the
predation rate, c is the natural mortality rate of predators, d is the rate at which
predator takes prey and then converts it to its own growth. α is death rate due to
crowding effect. We nondimensionalize the system (1.2) with the following scaling,

t =
τ

ak2
, x = ku, y =

ak2

b
v, p =

L

k
,m =

kd

c
, n =

aαk2

bc
, r =

c

ak2
.

For the sake of convenience, we still use t to denote the change of time, then the
system (1.2) will be transferred to

du

dt
= u(u− p)(1− u)− uv,

dv

dt
= −rv(1−mu+ nv),

(1.3)

In this paper, we consider the pulse state feedback control system based on
model (1.3) as follows,

du

dt
= u(u− p)(1− u)− uv,

dv

dt
= −rv(1−mu+ nv),

 v ̸= h,

∆u = −q1u,
∆v = −q2v,

}
v = h.

(1.4)

It is obvious that 0 < p < 1. ∆u = u(t+)− u(t),∆v = v(t+)− v(t). Considering
the biological meaning, we will consider the solution of system (1.3) in region R2

+ =
{(x, y)|x ≥ 0, y ≥ 0}.

The organization of this paper is as follows. Some definitions and lemmas are
presented in the section 2. We qualitatively analyze the system (1.3) in section 3.
In section 4, we consider the existence and stability of order one periodic solution
of system (1.4). In section 5, numerical simulations are carried out to illustrate the
analytical results. We give a brief conclusion in section 6.

2. Preliminaries
In this section, we will introduce some notations, definitions and lemmas of the
geometric theory of semi-continuous dynamic system, which will be useful for the
following discussions. The following definitions and lemmas of semi-continuous dy-
namic system come from Chen et al. [1], Wei and Chen [22] and Pang and Chen [10].
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Definition 2.1. Consider the following state dependent impulsive differential sys-
tem


dx

dt
= P (x, y),

dy

dt
= Q(x, y), (x, y) ̸∈M{x, y},

∆x = α(x, y), ∆y = β(x, y), (x, y) ∈M{x, y}.
(2.1)

The solution mapping of system (2.1) is called as the semi-continuous dynamical
system denoted by (Ω, f, φ,M), where (x, y) ∈ Ω ⊂ R2

+, f = f(w; t) is the semi-
continuous dynamical system mapping with initial point w = (x0, y0) /∈M, the sets
M and N are called the impulse set and phase set, which are lines or curves on R2

+.
The continuous function φ :M → N is called impulse mapping.

Remark 2.1. System (2.1) constitutes a semi-continuous dynamic system (Ω, f, φ,M),
where Ω = R2

+ = {(u, v)|u ≥ 0, v ≥ 0},M = {(u, v) ∈ R2
+|u ≥ 0, v = h2}, φ :

(u, v) ∈ M → ((1 − q1)u, (1 − q2)h2) ∈ R2
+, N = φ(M) = {(u, v) ∈ R2

+|u ≥ 0, v =
(1− q2)h2}.

Definition 2.2. If there exists a point P ∈ N and T > 0 such that f(P, T ) = Q ∈
M and φ(Q) = φ(f(P, T )) = P ∈ N , then f(P, t) is called order-1 periodic solution.

Definition 2.3. The trajectory f(P, t) combining with impulse line QP is called
order-1 cycle. If the order-1 cycle has a singularity, then the order-1 cycle is called
order-1 singular cycle. Furthermore, if the order-1 cycle only has a saddle, then the
order-1 singular cycle is called order-1 homoclinic cycle.

Definition 2.4. We assume that G is a bounded closed simple connected region,
which has the following properties:

(i) Impulse set M is a simple connected bounded closed straight line segments
or curve segments which don’t contain closed branch;

(ii) The boundaries AD, BC and AB of region G are non-tangent arcs of semi-
continuous dynamical system (2.1). The boundary CD is the impulse set of system
(2.1), its phase set satisfies φ(CD) ⊆ AB ;

(iii) The orientation of the vector fields of semi-continuous dynamical system
(2.1) on the AD,BC and AB point to the internal of region G. There are no equi-
libriums on the boundaries and also in the internal of region G of semi-continuous
dynamical system (2.1).

Then region G is called Bendixson’s region of semi-continuous dynamical system
(2.1).

Lemma 2.1. (Bendixson theorem of semi-continuous dynamical system) If region
G is Bendixson’s region of semi-continuous dynamical system (2.1), then there exists
at least an order-1 periodic solution in the internal of region G (see Figure 1).
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Figure 1. Bendixion region of semi-continuous dynamical system. Figure 1 is reproduced from C. Wei
and L. Chen [22], [under the Creative Commons Attribution License/public domain].

Next, we will give the definition of successor function of system (2.1).

Definition 2.5. Suppose g : N → N be a map. Let P ∈ N be the initial mapping
point, for any P ∈ N, there exists a t1 > 0 such that F (P ) = f(P, t1) = P1 ∈
M,P+

1 = φ(P1) ∈ N. Then, function g(P ) = l(P+
1 )− l(P ) is the successor function

of point P, and the point P+
1 is called the successor point of P, where l(P ) and

l(P+
1 ) are the abscissas of point P and P+

1 , respectively. (see Figure 2).

P

P1
+

P1
M

N

x

y

O

Figure 2. Successor function. Figure 2 is reproduced from C. Wei and L. Chen [22], [under the Creative
Commons Attribution License/public domain].

Definition 2.6. Suppose Γ = f(P, t) is an order-1 periodic solution of system
(2.1). If for any ε > 0, there must exist δ > 0 and t0 ≥ 0 , such that for any point
P1 ∈ ∪(P, δ)

⋂
N , we have ρ(f(P1, t),Γ) < ε for t > t0, then we call the order-1

periodic solution Γ is orbitally asymptotically stable.
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3. Some basic results about existence and stability
of the equilibria in model (1.3)

In [25], the author has given whole results about existence and stability of the
equilibria in model (1.3), here we summary them in the following theorem in this
section.

Theorem 3.1. (i) System (1.3) always has a trivial equilibrium O(0, 0) and two
semi-trivial equilibria P (p, 0), Q(1, 0).

(ii) System (1.3) has two positive equilibria E0 = (u0, v0) and E1 = (u1, v1) if and
only if 1

m < p < 1, where ui, vi(i = 0, 1) satisfy

nu2i + [m− n(1 + p)]ui + np− 1 = 0, vi = (ui − p)(1− ui). (3.1)

(iii) If ∆ = 0, then system (1.3) has a unique positive equilibrium E2(u2, v2)

(i.e. E1 coincides with E0), where u2 = −(m−n(1+p))+
√
∆

2n , v2 = mu2−1
n and

∆ = [m− n(1 + p)]2 − 4n(np− 1).

(iv) If 1
m = p, then system (1.3) has only one positive equilibrium point E0 (i.e.

E1 coincides with P ), where u0 = 1− 1
np , v0 = 1

np (1− p− 1
np ).

We always suppose nr − 2 < 0, 0 < p < 1, r > 0 hold in the whole paper.
Denote

M = {(m,n, r, p)|nr < 2, np2 < np−1 < n,m < (1−p)n, 1
p
< m < n(1+p)−2

√
n(np− 1)}

and
M1 = {(m,n, r, p) ∈M, 1 < m < m∗},

where

m∗ =
(1 + p)[(nr − 2)(nr − 1)− 2np] + (nr − 2 + 2np)

√
(1− p)2(nr − 1)2 + 4p

2nrp(nr − 2)
,

T = (1 + p)u0 − 2u20 − nrv0.

Theorem 3.2. O(0, 0) is a stable node, P (p, 0) is a unstable node and both Q(1, 0)
and E1(u1, v1) are saddles. If (H) : (m,n, r, p) ∈ M1 and T < 0 hold, then
E0(u0, v0) is a stable focus or node.

Theorem 3.3. The solution of system (1.3) is ultimately bounded.

Proof. Given the initial conditions

u(t0) = u0 > 0, v(t0) = v0 > 0. (3.2)

Let (u(t), v(t)) be a solution of system (1.3) satisfied initial conditions (3.2). We
will build a area Ω with a boundary such that (u(t), v(t)) ∈ Ω for initial point
(u(t0), v(t0)) and t > T, where T > 0 is large (see Figure 3). Since point Q(1, 0) is
a saddle point, for line l1 : u− 1 = 0 passing through Q, we have

dl1
dt

∣∣∣∣
l1=0

=
du

dt

∣∣∣∣
u=1

= −v < 0.
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Figure 3. The solution of system (1.3) is bounded.

Thus the line l1 is a segment without contact and orbit of system (1.3) goes across it
from the right. On the other hand, define in the first quadrant: l2 : mru+v−M = 0,

where M > m(1−p)2

4 +mr, then we have

dl2
dt

|l2=0 =mru[u(u− p)(1− u)− uv]− rv(1−mu+ nv)

=r[mu(u− p)(1− u)− nv2 − v]

<r[m(u− p)(1− u)− v]

=r[m(u− p)(1− u) +mru−M ]

≤r[m(u− p)(1− u) +mr −M ]

<r[
m(1− p)2

4
−M ],

where u < 1.
Denote l3 : v − M−r

rn = 0, easily we get u < M
mr − M−r

mnr2 , then we have u < M
mr .

Therefore we get
dl3
dt

|l3=0 = −rv(1−mu+ nv) = −rvM −mur

r
< 0.

Then there exists a area Ω with a boundary being composed of u = 0, v = 0, l1, l2
and l3 such that (u(t), v(t)) ∈ Ω for initial point (u(t0), v(t0)) and t > T, where
T > 0 is large. This completes the proof.

4. Dynamics analysis of the model with impulsive
state feedback control

In this section, we will investigate the existence of order-1 period solution by using
the method of successor functions, as well as the orbitally asymptotical stability of
periodic solutions by using the monotonicity of the successor function. Obliviously,
L1 : 1−mu+ nv = 0 and v = 0 are Y -nullclines, L2 : v = (u− p)(1− u) and u = 0
are two X-nullclines.
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4.1. Homoclinic cycle and Homoclinic bifurcations of model
(1.4) about parameter q1

In this section, we will discuss the existence of order-1 homoclinic cycle of system
(1.3), and we choose q1 as the control parameter.

Theorem 4.1. When the condition (H) holds, then there exists q∗1 ∈ (0, 1) such
that system (1.4) has an order-1 homoclinic cycle.

Proof. In model (1.4), since E1 is a saddle point, then there must be an unstable
manifold ΓA and a stable manifold ΓB , where ΓA leaves the saddle point E1 and
ΓA enters the saddle point E1. According to the property of the trajectory of
the system (1.3) and Theorem 3.3, we get that the unstable manifold is bound to
intersect with the impulse set M , and the intersection point is denoted as A(uA, vA).
We denote the intersection of isocline L1 : dv

dt = 0 and the pulse set M as C, and its
coordinate is C(uC , vC). The intersection of phase set N and stable manifold ΓB

is denote as B(uB , vB), the intersection of N and L1 is D(uD, vD) (see Figure 4).
Since the property of the trajectory of system (1.3), the unstable manifold ΓA is
above L2, and the stable manifold ΓB is below L1 : dv

dt = 0. Since the pulse function
ψ(u, q1) = (1 − q1)u monotonically increases about u and monotonously decreases
about q, so there must exist q∗1 ∈ (0, 1) such that ψ(uA, p∗) = (1− q∗1)uA = uB , and
AB,BE1, E1A formed a homoclinic cycle. The proof is completed.

ΓAΓB

E1

B

A

N

M

v

uO

Figure 4. The existence of Order-1 homoclinic cycle.

Theorem 4.2. When the conditions (H) and φ(uA, q1) = uD1
≤ uD, φ(uC , q1) =

uB1
≥ uB hold, then the homoclinic cycle of system (1.4) disappears and bifurcates

an order-1 periodic solution and the solution is unique.

Proof. Suppose the impulsive function transfers the point A into the point D,
and transfers the point C into the point B1, that is ψ(uA, q1) = (1− q1)uA = uD1

,
ψ(uC , q1) = (1−q1)uC = uB1

. If q < q∗1 , we have uD1
> uB1

. Since uB ≤ ψ(uC , q1) =
uB1

and uD ≥ ψ(uA, q1) = uD1
, we get uD ≥ uD1

≥ uB1
≥ uB . Thus the Bendixson

region G is formed by AC,CD,DB,BE1, E1A, where CD is a part of isoclinal L1,
D1B1 ⊂ DB, B1E1 is a part of ΓB and E1A is a part of ΓA. By Lemma 2.1 and
Theorem 3.3 ,we know that system (1.4) has an order-1 periodic solution (see Figure
5). Next we will discuss the uniqueness of the order-1 periodic solution. Select two
points I, J in the phase set BD arbitrarily, where uB1

< uJ < uI < uD1
. Let
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F (I) = I1 ∈ M,F (J) = J1 ∈ M, then I1, J1 jump to I+1 , J+
1 ∈ N after the pulse

effect. Due to uJ < uI , then uI1 < uJ1
and uI+

1
= (1 − q1)uI1 , uJ+

1
= (1 − q1)uJ1

,

thus we have uI+
1
< uJ+

1
. Obviously, I+1 is the successor point of J+

1 . Therefore, we
have g(I)− g(J) = (uI∗

1
− uI)− (uJ∗

1
− uJ) = (uJ − uI) + (uI∗

1
− uJ∗

1
) < 0, that is,

g(q1) is monotonically decreasing in B1D1. Hence, there must exist a point H such
that g(H) = 0. That is, the order-1 periodic solution of system (1.4) is unique (see
Figure 6).

D

G

M

N 

F

D1HB1

v

uQP

E0

C A

ΓA

ΓB

E1

B

Figure 5. The existence of order-1 periodic solution of system (1.4).

4.2. Orbitally asymptotical stability of the order-1 periodic
solution

Theorem 4.3. When conditions (H) and φ(uA, q1) = uD1
≤ uD, φ(uC , q1) =

uB1
≥ uB hold, then the order-1 periodic solution of system (1.4) is orbitally asymp-

totically stable.

Proof. From Theorem 4.2, we know that the order-1 periodic solution of system
(1.3) is unique and it passes through the point H ∈ N, where uB1 < uH < uD1 . Let
F (D1) = C1 ∈ M, then the point C1 jumps to C+

1 after the pulse effect. We have
uB1

< uC+
1
< uH such that F (C+

1 ) = C2 ∈ M. Then we can get uH < uC+
2
< uD1

and uC1
< uF < uC2

< uA because trajectories cannot intersect, where H is the
pulse point of the order-1 periodic solution.

Similarly, let F (C+
2 ) = C3 ∈ M, we can easily get uC+

1
< uC+

3
< uH <

uC+
2

and uC1
< uC3

< uF < uC2
. Repeat the above steps, we get a sequence

{Ck}k=1,2,... of pulse set M and a sequence {C+
k }k=1,2,... of phase set N and

F (C+
k ) = Ck+1, uC+

2k−1
< uC+

2k+1
< uH < uC+

2k
< uC+

2k−2
. That is, we get uB1

<

uC+
1
< uC+

3
< . . . < uC+

2k−1
< uC+

2k+1
< uH and uD1

> u+C2
> uC+

4
> . . . > uC+

2k
>

uC+
2(k+1)

> . . . > uH . Therefore, sequence {C+
k }k=1,2,... of phase set N is mono-

tonically decreasing and the sequence {Ck}k=1,2,... of pulse set M is monotonically
increasing. In the same time, we have uC+

2k
→ uH when k → ∞ and uC+

2k−1
→ uH

when k → ∞. Arbitrarily choose a point H0 ∈ C+
1 D1 which is different from H,

let uH < uH0
< uD1

(otherwise, uC+
1
+ < uH0

< uH , the discussion is similar).
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Then there must exist a integer k such that uC+
2k+1

< uH0
< uC+

2k
. The trajectory

starting from H0 will experience the pulse effect indefinitely. We denote the phase
point corresponding to the lth pulse effect as Hl, l = 0, 1, 2 . . . , then for any l, we
have uC+

2(k+l)+1
< uH2l+1

< uC+
2(k+l+1)+1

, therefore {uH2l}l=0,1,2,... is monotonically
decreasing, and {uH2l+1}l=0,1,2,... is monotonically increasing. Thus, after the pulse
effect, the successor point of the phase point is attracted to H, which means that
the order-1 periodic solution of the system (1.4) is orbitally asymptotically stable
(see Figure 7).

N
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+

H

I1
+

J

J1I1

D1
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O

v

uQP

E1

D
B

E0

AC

Figure 6. The monotonicity of the successor function g in the segment B1D1.
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Figure 7. Illustration of orbitally asymptotical stability of the order-1 periodic solution of system (1.4)

5. Numerical simulations
In this section, we give an example with some numerical simulations to illustrate the
theoretical results. First, we consider the system neglecting impulsive state feedback
control, let n = 15, r = 0.3, p = 0.4,m = 3.24, simple calculations show that system
(1.3) have five equilibria, i.e., O(0, 0), P (p, 0), Q(1, 0), E0 = (0.4611, 0.03293) and
E1 = (0.7228, 0.08947) (see Figure 3) and among them, O(0, 0) is a stable node,
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P (p, 0) is a unstable node and both Q(1, 0), E1(u1, v1) are saddles and E0(u0, v0)
is a stable focus or a node.

Figure 8. Phase diagram of system (1.3) with n = 15, r = 0.3, p = 0.4,m = 3.24.

Next we consider the impulsive state feedback control system and let h = 0.08,
we get the system as follows,



du

dt
= u(u− 0.4)(1− u)− uv,

dv

dt
= −0.3v(1− 3.24u+ 15v),

 v ̸= 0.08,

∆u = −q1u,
∆v = −q2v,

}
v = h.

(5.1)

First we take parameter as q1 = 0.311, q2 = 0.25, according to Remark 2.1, {v =
0.08} is the impulse set M, {v = 0.06} is the phase set N. Then system (5.1) has
a homoclinic cycle composed of the unstable manifold ΓA, the stable manifold ΓB

and the pulse straight line (see the red curve in Figure 9, where the initial value is
u0 = 0.465, v0 = 0.0329).
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Figure 9. Order-1 homoclinic cycle of system (5.1) with q1 = 0.311, q2 = 0.25.

If we fix parameter q2 = 0.25 and change parameter q1 from 0.311 to 0.25, numer-
ical simulation shows that the order-1 homoclinic cycle disappears and an order-1
periodic solution is bifurcated out form the order-1 homoclinic cycle, which is shown
in Figure 10(see the purple curve), where the initial value is u0 = 0.465, v0 = 0.0329.

Figure 10. Order-1 homoclinic bifurcation of system (5.1) with q1 = 0.25, q2 = 0.25, u0 = 0.465, v0 =
0.0329.

If we change the initial value, for example, let u0 = 0.55, v0 = 0.07, we can also
get an order-1 periodic solution of system (5.1) (see the red curve in in Figure 11).
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Figure 11. Order-1 periodic solution of system (5.1) with q1 = 0.25, q2 = 0.25, u0 = 0.55, v0 = 0.07.

6. Conclusion
In this paper, a predator-prey system with impulsive state feedback control is pro-
posed and analyzed. The results show that the system under impulsive state feed-
back control can exhibit rich dynamics, for example, the system has a unique order-1
homoclinic cycle, moreover, by choosing q1 as the control parameter, we prove that
the order-1 homoclinic cycle disappears and bifurcates an orbitally asymptotical
stable order-1 periodic solution when q1 changes.
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