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Note on Fractional Green’s Function∗
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Abstract In this paper, we modify some errors on the definition of fractional
Green’s function in monograph [5], and give the solution of the inhomogenous
equation which satisfies the given inhomogenous initial conditions by fractional
Green’s function.
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1. Introduction

In the last few decades, fractional differential equations have gained considerable
importance and attention due to their applications in science and engineering, such
as control, porous media, electrochemistry, viscoelasticity, and electromagnetism
theory [1-3, 5-6], ect. There are a large number of papers dealing with the fractional
differential equations [7-11]. The Fractional Green’s function is a very powerful tool
for investigating linear fractional differential equations [3-6]. In Chapter 5 of the
monograph [5], the fractional Green’s function is defined as follows:

Consider the following equation

0Lty(t) ≡ f(t), (1.1)

[0D
σk−1
t y(t)]t=0 = 0, (k = 1, · · · , n),

where

aLty(t) ≡a Dσn
t y(t) +

n−1∑
k=1

pk(t)aD
σn−k

t y(t) + pn(t)y(t),

aD
σk
t y(t) ≡a D

αk
t aD

αk−1

t · · ·aDα1
t ,

aD
σk−1
t y(t) ≡ (aD

αk−1
t )(aD

αk−1

t )· · · (aDα1
t ),

σk =

k∑
j=1

αj , (k = 1, 2, · · · , n); 0 ≤ αj ≤ 1, (j = 1, 2, · · · , n). (1.2)
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Definition 1.1 (see [5]). The function G(t, τ) satisfying the following conditions
a) τLtG(t, τ) = 0 for every τ ∈ (0, t);
b) lim

τ→t−0
(τD

σk−1
t G(t, τ)) = δk,n, k = 0, 1, · · · , n,

(δk,n is Kronecker’s delta);
c) lim

τ,t→+0
τ<t

(τD
σk
t G(t, τ)) = 0, k = 0, 1, · · · , n− 1

is called the fractional Green’s function of equation (1.1).
The purpose of our paper is to point out that there exist some errors or con-

tradictions in Definition 1.1, and we will provide some examples to illustrate them
and modify them. The paper has been organized as follows. In Section 2, we give
preliminary facts and provide some basic properties which are needed later. In sec-
tion 3, we shall point out some errors in Definition 1.1. In section 4 we give some
examples to illustrate them and modify Definition 1.1, we also give the solution of
the inhomogeneous equation satisfying given inhomogeneous initial conditions by
the Laplace transform method and fractional Green’s function.

2. Preliminaries and Lemmas

In order to establish our main results we need some preliminary facts and basic
lemmas, which we present in this section.

Definition 2.1. Let f(t) be piecewise continuous on (0,∞) and p > 0, then the
fractional integral of order p of f(t) is defined by

aD
−p
t f(t) =

1

Γ(p)

t∫
a

(t− τ)
p−1

f(τ)dτ.

Definition 2.2 (see [1-3, 5-6]). Let f(t) be piecewise continuous on (0,∞) and
0 ≤ m − 1 ≤ v < m ∈ N , then the Riemann-Liouville fractional derivative of f is
defined by

aD
v
t f(t) =

dm

dtm
[aD

v−m
t f(t)].

In Definitions 2.1 and 2.2, if a = 0, then we denote aD
−p
t f(t) and aD

v
t f(t) by

D−pf(t) and Dvf(t), respectively.
Lemma 2.1 (see [1-3, 5-6]). Let α > 0 and β > 0, then

aD
−α
t [(t− a)β−1] =

Γ(β)

Γ(β + α)
(t− a)β+α−1,

aD
α
t [(t− a)β−1] =

Γ(β)

Γ(β − α)
(t− a)β−α−1.

Lemma 2.2. (see [5-6]). If 0 ≤ m − 1 ≤ v < m ∈ N , and σm is defined
as in (1.2), then we have two classical formulas for the Laplaces transform of the
fractional derivative as follows:

L[0Dt
vf(t)] = svF (s)−

m−1∑
k=0

sm−k−1[0D
k−m+v
t f(t)]t=0
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= svF (s)−
m−1∑
k=0

sk[0D
v−k−1
t f(t)]t=0

and

L[0Dt
σmf(t)] = sσmF (s)−

m−1∑
k=0

sσm−σm−k [0D
σm−k−1
t f(t)]t=0,

where L[f(t)] =
∞∫
0

e−stf(t)dt
∆
= F (s).

Lemma 2.3 (Initial Value Theorem). If v > 0 and lim
s→+∞

svL[f(t)] = l, then

Dv−1f(0) = l.

Proof. From Lemma 2.2 we clearly see that

L[Dvf(t)] =

∞∫
0

Dvf(t)e−stdt

= svF (s)− sm−1D−m+vf(0)− · · · −Dv−1f(0).

Let s→ ∞, then e−st → 0 ,
∞∫
0

Dvf(t)e−stdt→ 0

and
lim
s→∞

[svF (s)− sm−1D−m+vf(0)− · · · −Dv−1f(0)] = 0.

If lim
s→∞

svL[f(t)] = lim
s→∞

svF (s) = l, then

D−m+vf(0) = · · · = Dv−2f(0) = 0,

but
Dv−1f(0) = l.

Lemma 2.4 (see [5]). The relationships

aD
p
t (aD

q
t f(t))=aD

q
t (aD

p
t f(t))=aD

p+q
t f(t)

hold if and only if
f (j)(a) = 0, (j = 0, 1, · · · , r − 1),

where
m− 1 ≤ p < m,n− 1 ≤ q < n, r = max(m,n).

3. Some Errors on Definition 1.1

In this section, we point out four errors in Definition 1.1 and related results in
chapter 5 of the monograph [5].

Error 1. In Condition (b) of Definition 1.1, one should delete k = 0; In Con-
dition (c), when k = 0, σ0 has not been defined. Therefore, one should define that

σ0
∆
= 0.
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Error 2. In Condition (c) of Definition 1.1, we indicate that it sometimes
contradicts with Condition (b) for some αj , (j = 1, .., n).

For example, if we take αn = 1, then

τD
σn−1
t = (τD

αn−1
t )(τD

αn−1

t )· · · (τDα1
t )=τD

αn−1

t · · ·τDα1
t =τD

σn−1

t .

According to Condition (c), one has

lim
τ,t→0+
τ<t

[τD
σn−1

t G(t, τ)] = 0.

But it follows from Condition (b) that

lim
τ→t−0

[τD
σn−1
t G(t, τ)] = 1.

This is a contradiction.
Error 3. According to Condition (c) of Definition 1.1, if G(t, τ) = G(t − τ) is

the Green’s function of homogeneous linear equation with constant coefficients

0Lty(t) = 0, (3.1)

then we can prove that DλG(t) is also a solution of the equation for all λ ∈ (0, 1),
where

0Lty(t) = DαnDαn−1 · · ·Dα1y(t) + · · ·+ pn−2D
α2Dα1y(t) + pn−1D

α1y(t) + pny(t).
(3.2)

Proof. It is sufficient to prove

0Lt[D
λG(t)] = Dλ[0LtG(t)] = 0,

for any 0 < λ < 1.
In view of (3.2), we have

L [DλG(t)] = DαnDαn−1 · · ·Dα1(DλG(t)) + · · ·

+pn−2D
α2Dα1(DλG(t)) + pn−1D

α1(DλG(t)) + pnD
λG(t).

From Condition (c) of Definition 1.1 we have lim
τ,t→0+
τ<t

G(t, τ) = 0. It follows from

0 < λ < 1, 0 ≤ α1 ≤ 1 and Lemma 2.4 that

Dα1DλG(t) = DλDα1G(t). (3.3)

From Condition (c) of Definition 1.1 we have lim
τ,t→0+
τ<t

Dα1G(t, τ) = 0, by (3.3)

and then by Lemma 2.4 for function Dα1G(t), we get

Dα2Dα1DλG(t) = Dα2DλDα1G(t) = DλDα2Dα1G(t). (3.4)

Similarly, from Condition (c) of Definition 1.1 we have lim
τ,t→+0
τ<t

(τD
σ2
t G(t, τ)) =

lim
τ,t→0+
τ<t

Dα2Dα1G(t, τ) = 0, by (3.4) and then by Lemma 2.4 for functionDα2Dα1G(t),

we have

Dα3Dα2Dα1DλG(t) = Dα3DλDα2Dα1G(t) = DλDα3Dα2Dα1G(t). (3.5)
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By recurrence method, from Condition (c) and Lemma 2.4, we can obtain

DαnDαn−1 · · ·Dα1(DλG(t)) = Dλ(DαnDαn−1 · · ·Dα1G(t)). (3.6)

Equations (3.3)-(3.6) lead to

0Lt[D
λG(t)] = Dλ[0LtG(t)] = 0.

Therefore, DλG(t) is also a solution of Eq.(3.1) for any λ ∈ (0, 1), it means that
the set of the solutions of Eq.(3.1) is infinite dimension.

But, as we know, even in the simplest case when αj ≡ 1(j = 1, ..., n), Eq.(3.1)
reduces to

(Dn + p1D
n−1 + ...+ pn−1D + pn)y(t) = 0,

that conclusion is not correct.
Using the Laplace transform method, we can see that the number of the linearly

independent solutions for linear fractional differential equation (3.1) with constant
coefficients is finite (For detail see section 4). That is to say, the set of the solutions
of Eq.(3.1) is finite dimension. Apparently, it is a contradiction.

Error 4. According to Definition 1.1, chapter 5 of the monograph [5] states
that for the linear inhomogeneous equation with constant coefficients satisfying
given inhomogeneous initial conditions as follows 0Lty(t) = f(t),

[0D
σk−1
t y(t)]t=0 = bk.(k = 1, ..., n)

(3.7)

where 0Lty(t) is defined as in (3.2). Then the solution of equation (3.7) has the
form

y(t) =

n∑
k=1

bkψk(t) +

t∫
0

G(t− τ)f(τ)dτ, (3.8)

where

ψk(t)=0D
σn−σk
t G(t), 0D

σn−σk
t = (0D

αn
t )(0D

αn−1

t )· · · (0D
αk+1

t ). (3.9)

From (3.8) we clearly see that the number of the linearly independent solutions
of the corresponding homogeneous equation is n. But it seems not correct, we will
show that the number is not n by the use of the Laplace transform method (For
detail see section 4).

4. Some Examples and Main Results

In this section, we shall provide some examples to illustrate our conclusions,
give our main results, in which we will modify Definition 1.1, and prove that the
number of the linearly independent solutions of corresponding homogeneous linear
equation with constant coefficient is no less than n.

For this purpose, we consider some examples at first.
Example 1. Consider 0D

σ2
t y(t) = Dα2Dα1y(t) = f(t), (0 < α1, α2 < 1)

[0Dσk−1y(t)] = 0. (k = 1, 2)
(4.1)
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It is easy to see that the solution of (4.1) is

y(t) = D−α1D−α2f(t) = D−(α1+α2)f(t)

=
1

Γ(α1 + α2)

∫ t

0

(t− τ)α1+α2−1f(τ)dτ,

and the fractional Green’s function of the equation

0D
σ2
t y(t) = Dα2Dα1y(t) = 0

has the form

G(t, τ) = G(t− τ) =
1

Γ(α1 + α2)
(t− τ)α1+α2−1. (4.2)

Evidently, the Green’s function G(t, τ) satisfies Condition (a) and (b) of Defini-
tion 1.1, that is

(a) τL
σ2
t G(t, τ) = (τD

α2
t )(τD

α1
t )[ 1

Γ(α1+α2)
(t − τ)α1+α2−1] = 0 for every τ ∈

(0, t);
(b) lim

τ→t−0
(τD

σk−1
t G(t, τ)) = δk,n, k = 1, 2.

In fact, one has

lim
τ→t−0

(τD
σ1−1
t G(t, τ)) = lim

τ→t−0
Dα1−1[

1

Γ(α1 + α2)
(t− τ)α1+α2−1]

= lim
τ→t−0

[
1

Γ(α2 + 1)
(t− τ)α2 ] = 0

and

lim
τ→t−0

(τD
σ2−1
t G(t, τ)) = lim

τ→t−0
Dα2+α1−1[

1

Γ(α1 + α2)
(t− τ)α1+α2−1]

= lim
τ→t−0

[
1

Γ(1)
(t− τ)0] = 1.

But G(t, τ) may not satisfy Condition (c) of Definition 1.1, that is

lim
τ,t→+0
τ<t

(τD
σk
t G(t, τ)) = 0 (k = 0, 1)

does not hold for every α1, α2 ∈ [0, 1].
In fact, it is easy to see that

lim
τ,t→+0
τ<t

G(t, τ) = lim
τ,t→+0
τ<t

[
1

Γ(α1 + α2)
(t− τ)α1+α2−1] ̸= 0

for α1 + α2 ≤ 1, and

lim
τ,t→+0
τ<t

(τD
σ1
t G(t, τ)) = lim

τ,t→+0
τ<t

Dα1 [
1

Γ(α1 + α2)
(t− τ)α1+α2−1]

= lim
τ,t→+0
τ<t

[
1

Γ(α2)
(t− τ)α2−1] ̸= 0.
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Therefore, we confirm that Condition (c) of Definition is a superfluous condition,
and we modify Definition 1.1 as follows.

Definition 4.1. The function G(t, τ) is called the fractional Green’s function
of equation (1.1) if it satisfies the following conditions

a) τLtG(t, τ) = 0 for every τ ∈ (0, t);
b) lim

τ→t−0
(τD

σk−1
t G(t, τ)) = δk,n, k = 1, · · · , n.

(δk,n is Kronecker’s delta).

Example 2. ConsiderDα2Dα1y(t) + aDα1y(t) + by(t) = f(t), (0 < α1, α2 < 1)

[0Dσk−1y(t)] = bk. (k = 1, 2)
(4.3)

Applying Laplace transform of a sequential fractional derivative to equation
(4.3), by Lemma 2.2, we obtain

sσ2Y (s)− b2 − b1s
α2 + a[sσ1Y (s)− b1] + bY (s) = F (s)

or

Y (s) =
F (s)

P (s)
+
b2 + b1a

P (s)
+
b1s

α2

P (s)
, (4.4)

where Y (s) and F (s) denote the Laplace transforms of y(t) and f(t) respectively,
and

P (s) = sσ2 + asσ1 + b.

Therefore, the fractional Green’s function G(t) can be obtained from the inverse
Laplace transform with the following expression:

P−1(s) =
1

sσ2 + asσ1 + b
,

namely,
G(t) = L−1[P−1(s)].

That is
L[G(t)] = P−1(s).

By Lemma 2.2, we have

L[Dα2G(t)] = sα2P−1(s)−Dα2−1G(0).

Because of

lim
s→∞

sα2L[G(t)] = lim
s→∞

sα2

sσ2 + asσ1 + b
= 0,

therefore, by Lemma 2.3, let v = α2 − 1, we have Dα2−1G(0) = 0. So that

L[Dα2G(t)] = sα2P−1(s),

and then the inverse Laplace transform of (4.4) gives the solutions of Eq.(4.3)

y(t) =

t∫
0

G(t− τ)f(τ)dτ + (b2 + ab1)G(t) + b1D
α2G(t). (4.5)
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Example 3. ConsiderDα3Dα2Dα1y(t) + aDα2Dα1y(t) + bDα1y(t) + cy(t) = f(t), (0 < α1, α2, α3 < 1)

[0Dσk−1y(t)]t=0 = bk. (k = 1, 2, 3)

(4.6)
Applying the Laplace transform of a sequential fractional derivative to equation

(4.6), we get

sσ3Y (s)− b3 − b2s
α3 − b1s

α3+α2 + a[sσ2Y (s)− b2 − b1s
α2 ]+

b[sσ1Y (s)− b1] + cY (s) = F (s).

So

Y (s) =
F (s)

P (s)
+
b3 + ab2 + bb1

P (s)
+
b2s

α3

P (s)
+
b1s

α3+α2

P (s)
+
ab1s

α2

P (s)
, (4.7)

where
P (s) = sσ3 + asσ2 + bsσ1 + c.

Hence the fractional Green’s function G(t) can be obtained from the inverse Laplace
transform of (4.7) with the following expression:

P−1(s) =
1

sσ3 + asσ2 + bsσ1 + c
.

Using the same arguments as in equation (4.3), we can obtain

L[Dα2G(t)] = sα2P−1(s),

L[Dα3G(t)] = sα3P−1(s).

From Lemma 2.2, we have

L[Dα3+α2G(t)] = sα3+α2P−1(s)−Dα3−1Dα2G(0)− sα3Dα2−1G(0).

Because of

lim
s→∞

sα3L[Dα2G(t)] = lim
s→∞

sα3sα2

sσ3 + asσ2 + bsσ1 + c
= 0,

therefore by Lemma 2.3, let v = α3 − 1, for function Dα2G(t), we obtain

Dα3−1Dα2G(0) = 0.

Similarly, by Lemma 2.3, we have

Dα2−1G(0) = 0.

Therefore
L[Dα3+α2G(t)] = sα3+α2P−1(s).

The inverse Laplace transform of equation (4.7) leads to

y(t) =

t∫
0

G(t− τ)f(τ)dτ + (b3 + ab2 + bb1)G(t)
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+b2D
α3G(t) + ab1D

α2G(t) + b1D
α3Dα2G(t). (4.8)

In Eq.(1.1), if let pk(t) = pk (k = 1, · · · , n), namely 0Lty(t) = f(t),

[0D
σk−1
t y(t)]t=0 = bk, (k = 1, · · · , n)

(4.9)

where

aLy(t)≡aD
σn
t y(t) +

n−1∑
k=1

pk[aD
σn−k

t y(t)]] + pny(t).

We conclude that
Theorem 4.1. The solution of the equation (4.9) has the form

y(t) =

t∫
0

G(t− τ)f(τ)dτ+
n∑

k=1

bkD
σn−σkG(t)+

n−1∑
k=1

pk

n−k∑
r=1

brD
σn−k−σrG(t). (4.10)

Proof. Using the same method as above, we can obtain the Laplace transform
of (4.9) is

Y (s) =
F (s)

P (s)
+

n∑
k=1

bks
σn−σk +

n−1∑
k=1

pk
n−k∑
r=1

sσn−k−σrbr

P (s)
, (4.11)

where

P (s) = sσn +

n−1∑
k=1

pks
σn−k + pn.

The inverse Laplace transform of equation (4.11) leads to

y(t) =

t∫
0

G(t− τ)f(τ)dτ +
n∑

k=1

bkD
σn−σkG(t) +

n−1∑
k=1

pk

n−k∑
r=1

brD
σn−k−σrG(t).

Remark. We shall mention that from (4.10), besides the term
t∫
0

G(t− τ)f(τ)dτ ,

Dσn−σkG(t) may be linearly independent of Dσn−k−σrG(t), so the number l of terms
of linearly independent solution of Eq.(3.7) or Eq.(4.9) may not be n, it satisfies

n ≤ l ≤ 1

2
n(n+ 1).

But (3.8) is quite different from (4.10). Hence (3.8) may not be correct for equation
(3.7) or (4.9).

Further, in the equation (1.1), if we take pk(t) = 0(k = 1, ..., n− 1) and pn(t) =
pn, then  0D

σn
t y(t) + pny(t) = f(t),

[0D
σk−1
t y(t)]t=0 = bk (k = 1, · · · , n).

(4.12)

Directly from Theorem 4.1 we have
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Corollary 4.1. The solution of the equation (4.12) has the form

y(t) =

∫ t

0

G(t− τ)f(τ)dτ +

n∑
k=1

bkψk(t), (4.13)

where

ψk(t)=0D
σn−σk
t G(t), 0D

σn−σk
t = (0D

αn
t )(0D

αn−1

t )· · · (0D
αk+1

t ). (4.14)

Let’s consider another special case: In Eq.(1.1), Let α1 = α2 = ... = αn = α
and pk(n) = pk (k = 1, ..., n). If k = j + r, then

0D
σn−σk
t G(t) = 0D

σn−j−σr

t G(t)

for k = 1, ..., n, j = 1, ..., n− 1 and r = 1, ..., n− j. Therefore, Corollary 4.1 is also
valid from (4.10) of Theorem 4.1.
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