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Exploring the Planar Circular Restricted
Three-body Problem with Prolate Primaries

Euaggelos E. Zotos1,†

Abstract We numerically investigate the convergence properties of the circu-
lar restricted three-body problem with prolate primaries, by using the Newton-
Raphson iterative scheme. In particular, we examine how the oblateness co-
efficient A influences several aspects of the method, such as its speed and
efficiency. Color-coded diagrams are used for revealing the basins of conver-
gence on the configuration space. Additionally, we compute the degree of
fractality of the convergence basins on the physical plane, as a function of
the oblateness coefficient, by using different computational tools, such as the
uncertainty dimension and the (boundary) basin entropy.
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1. Introduction

According to [1] in the original version of the restricted three-body problem (RTBP)
the shape of the two primary bodies is assumed to be spherically symmetric. Howev-
er, for obtaining a more realistic and complete representation regarding the nature
of the motion of a body acting as a test particle, especially in the Solar System, a
plethora of modifications have been proposed, over the years. All these modifica-
tions aim to include in the effective potential the influence of additional dynamical
parameters, such as the shape or the radiation of the primary bodies.

It is well known that in our Solar System many celestial bodies (e.g., Saturn
and Jupiter, as well many minor natural satellites) have a spheroidal shape [2]. For
incorporating the particular shape of the primaries into the equations explaining
the motion of the test body (e.g., comet, asteroid, or spacecraft) the oblateness
parameter has been introduced and used initially in [3]. From then, a large amount
of research work has been devoted on the study of the influence of the oblateness
(see e.g., [4–16]).

As we know, in the original version of the RTBP there exist five equilibrium
or Lagrange points. Unfortunately, there is the misbelief that the same number of
points of equilibrium also exists in the case where the primary bodies are spheroidals,
thus taking into account the oblateness coefficient. This however is correct only in
the case of oblate primaries, where five equilibrium points are present for every
positive value of the oblateness coefficient [17]. In the case of prolate primaries,
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that is when the parameter of the oblateness has negative values, the number of the
equilibrium points is not constant, but a function of the oblateness. In the present
paper we are going to present in detail the equilibrium points along with their linear
stability, in the case of prolate primaries.

Knowing the coordinates of the points of equilibrium of a system is an issue of
high importance. However, this is not possible for many complicated dynamical
systems for which there are no analytical equations for the positions of the equi-
librium points. This automatically means that only by using numerical methods
we can obtain the locations of the libration points. As we know, in all numer-
ical methods the initial conditions are very important. This is true because for
some starting points the numerical methods may converge relatively fast to a root,
while for other initial points they may require a considerable amount of iterations.
Usually, points with fast convergence belong to the so-called basins of convergence
(BOC), while points with slow convergence are situated in the vicinity of the fractal
basin boundaries. Therefore, it is very important to know the location of the BOC
for a dynamical system, because then we automatically are aware of the optimal
initial conditions for the numerical methods. Here, we would like to point out that
the BOC of a dynamical system strongly depend on the chosen numerical method.
In other words, different numerical methods yield to completely different BOC, for
the same dynamical system.

In Section 2 we provide the mathematical description of the dynamical model,
while in the following section 3 we present the parametric evolution of the coor-
dinates and the stability of the points of equilibrium. Section 4 we illustrate the
geometry along with the basic properties of the Newton-Raphson BOC, while the
Section 5 is devoted on determining the influence of the oblateness on the properties
of the system of three bodies. In the final Section 6 we provide the discussion of
our work.

2. Mathematical description of the dynamical sys-
tem

The restricted three-body system (RTBP) contains two massive bodies P1 and P2

(known as the primaries), while the third body is assumed to act as a test particle [1].
This means that the mass m of the test particle is significantly smaller, comparing
with masses m1 and m2 of the two primary bodies. The two main bodies rotate
in circular orbits around their gravitational center (which is common), while the
motion of the third body does have any dynamical impact on the motion of the
primaries, due to its insignificant mass.

For convenience, we use a units system where the distance R, between the centers
of the two main bodies, and the constant of gravity G are both equal to unity. Using
the mass parameter µ = m2/(m1 + m2) ≤ 1/2 we can express the dimensionless
masses of the two main bodies as m1 = 1 − µ and m2 = µ. Both centers of the
primaries are located at (x1, 0, 0) and (x2, 0, 0) (on the x-axis), where of course
x1 = −µ and x2 = 1 − µ. In our analysis we use a rotating barycentric frame of
reference Oxyz, where the Ox axis is the line containing the centers of the primaries,
while the origin (0, 0) of the system of coordinates coincides with the mass center
of the primaries. Fig. 1 shows a schematic of the configuration of the system of
bodies.
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Figure 1. The planar configuration of the RTBP system, with prolate primaries.

In the case of spheroidal primaries, with oblateness coefficients Ai, i = 1, 2, the
effective potential of the planar system (with z = 0) is, according to [3],
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are the relations of the distances between the test particle and the centers of the
two primaries. The mean motion (n) is given by

n =

√
1 +

3

2
(A1 +A2). (2.3)

In the present study we will focus on the case with prolate spheroidal primaries
(A < 0), where the value of the oblateness lie in the interval [−1, 0]. In order to
have only one free parameter we consider the Copenhagen problem with primaries
of equal masses µ = 1/2. In addition, both prolate bodies will have the same value
of the oblateness, that is when A1 = A2 = A. This fact (the only one variable
parameter) allow us to investigate in detail the effect of the oblateness A on several
properties of the Hamiltonian system.

The planar motion of the third body is governed by the following set of equations

ẍ− 2nẏ =
∂Ω

∂x
, ÿ + 2nẋ =

∂Ω

∂y
, (2.4)

where as usual the time derivatives are denoted using dots.
The Hamiltonian of the dynamical system reads

J(x, y, ẋ, ẏ) = 2Ω(x, y)−
(
ẋ2 + ẏ2

)
= C. (2.5)

The total orbital energy E is related with the Jacobi constat through the equation
C = −2E.
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Figure 2. The intersections of the contours of the equations Ωx = 0 (green) and Ωy = 0 (blue) pinpoint
the locations (red dots) of the equilibrium points (Li, i = 1, 15). (a): A = 0; (b): A = −0.05; (c):
A = −0.12; (d) A = −0.21; (e): A = −0.285; (f): A = −0.5. The centers of the two primaries
(Pi, i = 1, 2) are indicated using black dots. (Color figure online).

3. Location and stability of equilibrium points

In a Hamiltonian system an equilibrium point exists if and only if (necessary and
sufficient conditions)

ẋ = ẏ = ẍ = ÿ = 0. (3.1)

On this basis, for obtaining the coordinates (x0, y0) of the coplanar points of equi-
librium of the RTBP, with prolate primaries, all we have to to do is to solve the
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Figure 3. The evolution on the configuration space (x, y) of the (a-left): coordinates and (b-right): lin-
ear stability (green) or instability (red) of the points of equilibrium in the RTBP with prolate primaries,
when A ∈ [−1, 0). The small arrows indicate how the libration points move, as the value of A reduces.
The two centers of the primaries are pinpointed by big black dots, while points A (small black dots)
correspond to A = A3. (Color figure online).

system {
Ωx(x, y) = 0

Ωy(x, y) = 0
. (3.2)

At this point, it should be emphasized that the above system of equations does not
have analytical solutions in closed form, which automatically means that the coor-
dinates of the libration point of the system can be derived only by using numerical
methods.

Our numerical analysis reveals that the oblateness parameter of the primaries
has a major impact on the total number of points of equilibrium. In particular:

• When A ∈ [−0.08717948, 0) the dynamical system has 13 coplanar points of
equilibrium (see part (b) of Fig. 2).

• When A ∈ [−7/45,−0.08717949] the dynamical system has 11 points of equi-
librium (see part (c) of Fig. 2).

• When A ∈ [−0.27066806,−7/45) the dynamical system has 13 points of equi-
librium (see part (d) of Fig. 2).

• When A ∈ [−1/3,−0.27066807] the dynamical system has 9 points of equilib-
rium (see part (e) of Fig. 2).

• When A < −1/3 the dynamical system has 9 points of equilibrium (see part
(f) of Fig. 2).

The values A1 = −0.08717948, A2 = −7/45, A3 = −0.27066806, and A4 = −1/3
are critical values of the oblateness parameter, which divide the interval [−1, 0] into
five regions, with different total number of equilibrium points.

The positions of the coordinates of the libration points on the configuration
space (x, y) correspond to the intersections of the equations Ωx = 0 and Ωy = 0.
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In Fig. 2 we present the locations of the equilibrium points, for six values of the
oblateness A, including, as a reference, the classical case with A = 0. It should be
noted, that when A < −1/3 (see penal (f) of Fig. 2) the structure of the contours
is very similar to that of the classical RTBP (see panel (a) of Fig. 2).

In panel (a) of Fig. 3 we illustrate the evolution on the configuration space (x, y)
of the points of equilibrium, as the value of the oblateness starts from 0 and continues
up to A = −1. When A = 0 we have the well known five equilibrium points of the
classical RTBP. When A < 0 two sets of four additional libration points emerge
from the centers of the primaries. Each set is composed of two collinear points and
two points with y ̸= 0. As the value of A tends to the first critical value A1 the
collinear points L6 and L11 tend to the origin and when A = A1 both of them
collide with the central equilibrium point L1 and they disappear. At the same time,
the libration points L2, L3, L4 and L5 move away from the origin. Just below the
seconds critical value A2 two new equilibrium points, L14 and L15, emerge from the
origin and they start to move on the vertical y axis. With further decreasing value
of A the four libration points with y = 0 start to converge to the horizontal axis.
When A = A3, L8 and L9 collide with L7, while L12 and L13 collide with L10 and
all four equilibrium points L8, L9, L12, and L13 are annihilated. As we proceed to
even lower values of A the equilibrium points L2, L3, L4 and L5 start to quickly
diverge from the rest of the libration points. Our computations indicate that these
four points tend asymptotically to ±∞ when A → A4 = −1/3. For A < A4 only five
equilibrium points survive, while their positions display very small changes for even
lower values of the oblateness parameter. It should be noted, that the parameter A
has no influence on the centers of the two primaries, which remain unperturbed.

There is no doubt that apart from the positions of the points of equilibrium one
should also be aware of their linear stability. For obtaining the linear stability of the
points of equilibrium we computed the corresponding four roots of the characteristic
equation, by following the numerical method explained in detail in [18]. When
A ∈ [−1, 0) we found that:

• The equilibrium point L1 is linearly stable only when A ∈ (A2, A1) and un-
stable in all other cases.

• The equilibrium points L2, L3, L8, L9, L12, and L13 are always linearly un-
stable.

• The equilibrium points L4 and L5 are linearly unstable whenA ∈ (−0.07249094, 0)
and stable in all other cases.

• The equilibrium points L6, L11, L14, and L15 are always linearly stable.

• The equilibrium points L7 and L10 are linearly stable when A ∈ (A3, 0) and
unstable in all other cases.

4. The Newton-Raphson basins of attraction

In this section, we will present the shapes and features of the BOC on the configu-
ration space (x, y), for several characteristic values of the oblateness A. For numer-
ically solving the system of equations (3.2) we use the following Newton-Raphson
(NR) iterative scheme

xn+1 = xn −
(
ΩxΩyy − ΩyΩxy

ΩyyΩxx − Ω2
xy

)
(xn,yn)

,
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yn+1 = yn +

(
ΩxΩyx − ΩyΩxx

ΩyyΩxx − Ω2
xy

)
(xn,yn)

, (4.1)

while all the details of how the numerical procedure of obtaining the BOC works
are described in Section 4 of [18].

In the following for visualizing the BOC on the configuration space (x, y) we
will deploy two-dimensional diagrams with a color code. In these plots, each point
(initial condition) receives a color which corresponds to the respective numerical
attractor (point of equilibrium), thus following the pioneer graphical approach in-
troduced and used in [19,20].

4.1. Case I: 13 equilibrium points

In the first column of Fig. 4 we depict the BOC for three values of the oblateness in
the first interval [A1, 0), where 13 equilibrium points are present. The diagrams on
the second column of the same figure shows how the number of the required itera-
tions is distributed on the configuration space (x, y), while the last column contains
the probability histograms, corresponding to the required number of iterations.

With decreasing value of the oblateness we see that the area of the BOC grows
rapidly and especially the regions corresponding to the equilibrium points L6 and
L11, the shape of which resembles butterfly wings. When A = −0.08717, that is a
level close to the first critical level of A, an interesting behaviour is observed at the
last column of Fig. 4. More specifically, one can observe that inside the butterfly
wings shaped BOC there exist a chaotic mixture of converging and non-converging
initial conditions. This chaotic (or noisy) mixture is more evident in panel (h) of
Fig. 4 where we see that almost the entire configuration space (x, y) is covered by
starting points for which the numerical method requires arbitrary (chaotic) high
or low number of iterations. Moreover, in panel (i) it is observed that the range
of required number of iterations has been increased, with respect to the previous
two cases (shown in the first two rows). We suspect that the appearance of non-
converging initial conditions is due to the fact that we approach the first critical
level of A, where the dynamics of the system change.

4.2. Case II: 11 equilibrium points

Fig. 5 shows the numerical results of three cases in the second interval (A2, A1),
when the dynamical system has 11 equilibrium points. The first row of Fig. 5
corresponds to A = −0.08718, that is a value of oblateness just below the first
critical level A1. Once more we observe a similar behavior to that discussed earlier,
where non-converging initial conditions appear. In this case however, their present
is more prominent. Panels (b) and (c) of the Fig. 5 reveal that the configuration
space (x, y) is divided into two main areas: (i) the central region, where the BOC lie
and the required iterations are low (N < 15) and (ii) the outer chaotic region, where
the initial conditions cover entirely randomly (or noisy) all the available range of
allowed iterations N ∈ [0, 500]. Again, the reason of this strange behavior should
be related with the fact that the specific value of the oblateness is very close to one
of the critical levels.

As the value of A decreases, thus tending to the second critical level A2, it is
seen in the second and third row of Fig. 5 that the overall area of the BOC grows
significantly. More specifically, one can observe the existence of thin tentacles which
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Figure 4. (First column): Color-coded plots showing the NR BOC on the configuration space (x, y),
when 13 equilibrium points exist. The colors denoting the 13 numerical attractors (libration points)
are as follows: L1 (Darker green); L2 (Crimson); L3 (Teal); L4 (Purple); L5 (Cyan); L6 (Yellow); L7

(Red); L8 (Gray); L9 (Olive); L10 (Blue); L11 (Pink); L12 (Brown); L13 (Green); non-converging points
(white). (Second column): Distributions of the corresponding required numbers of iterations. (Third
column): Histograms with the corresponding probability distributions. (First row): A = −0.03; (Second
row): A = −0.08; (Third row): A = −0.0871. (Color figure online).

emerge from the central region and extend to large distances from the center. Note
that close to the boundaries of these tentacles the required number of iterations is
considerable higher, with respect to that corresponding to the central basins.

4.3. Case III: 13 equilibrium points

The NR BOC in the third interval (A3, A2), when 13 equilibrium points are present
are depicted in Fig. 6. We see that for A = −0.1556, that is just below the second
critical level A2, the configuration space (x, y) is dominated by the BOC corre-
sponding to the points of equilibrium L14 and L15, which appear in this interval.
However as we further reduce the value of the oblateness these area of these BOC
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Figure 5. (First column): Color-coded plots showing the NR BOC on the configuration space (x, y),
when 11 equilibrium points exist. The colors denoting the 11 numerical attractors (libration points)
are the same as in Fig. 4. (Second column): Distributions of the corresponding required numbers of
iterations. (Third column): Histograms with the corresponding probability distributions. (First row):
A = −0.08718; (Second row): A = −0.15; (Third row): A = −0.1555. (Color figure online).

is considerably confined.

For A = −0.2706, which is a level close to the critical level A3, it is observed in
panel (g) of Fig. 6 that the BOC corresponding to the libration points L8, L9, L12,
and L13 have almost disappeared, while at the same time the BOC of the points of
equilibrium L7 and L10 have been highly suppressed. These facts indicate that the
dynamical properties of the Hamiltonian system are about to change by the mutual
annihilation of the equilibrium points L8, L9, L12.

4.4. Case IV: 9 equilibrium points

In Fig. 7 we present the BOC on the configuration space (x, y) for the fourth interval
(A4, A3), when 9 equilibrium points exist. In this case, the overall geometrical shape
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Figure 6. (First column): Color-coded plots showing the NR BOC on the configuration space (x, y),
when 13 equilibrium points exist. The colors denoting the 13 numerical attractors (libration points)
are the same as in Fig. 4, with the following addition to the palette: L14 (magenta); L15 (orange).
(Second column): Distributions of the corresponding required numbers of iterations. (Third column):
Histograms with the corresponding probability distributions. (First row): A = −0.1556; (Second row):
A = −0.25; (Third row): A = −0.2706. (Color figure online).

of the BOC is not highly affected by the decrease on the oblateness parameter.
Nevertheless, the parameter A mostly affects the size of the BOC. In other words,
even though the overall shape remains almost the same, its size on the physical
plane (x, y) grows drastically. Moreover, also the distributions of the iterations
remain the same, with decreasing value of the oblateness.

4.5. Case V: 5 equilibrium points

The results of the last case are given in Fig. 8. Now the dynamical system has
only five equilibrium points, that is the same total number as in the case of the
classical RTBP. In the second row of Fig. 8, where A = −0.5, one can observe the
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Figure 7. (First column): Color-coded plots showing the NR BOC on the configuration space (x, y),
when 9 equilibrium points exist. The colors denoting the 9 numerical attractors (libration points) are the
same as in Fig. 4. (Second column): Distributions of the corresponding required numbers of iterations.
(Third column): Histograms with the corresponding probability distributions. (First row): A = −0.2707;
(Second row): A = −0.33. (Color figure online).

presence of two main regions which are composed of initial conditions for which the
NR displays non-convergence. Additional numerical calculations reveal that these
starting conditions are true non-converging points which do not show any signs of
convergence to one of the numerical attractors (equilibrium points), even after 1000
iterations. More information about the non-converging points of the RTBP system
with prolate primaries will be given in the next Section.

With decreasing value of the oblateness we see that the area of the BOC shrinks
and they are confined near the origin. For example, when A = −1 (see third row
of Fig. 8), for each of the four libration points L7, L10, L14, and L15 we have only
one main BOC, while the area of the BOC corresponding to the central point of
equilibrium L1 extends to infinity, as usual. Another interesting fact which occur
when the value of A decreases is that the required time of iterations is also reduced,
according to the second and third column of Fig. 8.

5. Influence of the oblateness A

To determine in detail the dependence of the convergence properties of the system on
the oblateness parameter A, we classified 1000 grids of 1024×1024 initial conditions
(x0, y0), with −10 ≤ x ≤ +10, and −10 ≤ y ≤ +10, for the range A ∈ [−1, 0).

Panel (a) of Fig. 9 shows the average required number of iterations < N >, as a
function of the oblateness A. It is seen, that< N > displays local maxima (peaks) at
the critical levels of the parameter A. Our numerical computations suggest that for



422 E. E. Zotos

Figure 8. (First column): Color-coded plots showing the NR BOC on the configuration space (x, y),
when only 5 equilibrium points exist. The colors denoting the 5 numerical attractors (libration points)
are the same as in Fig. 4. (Second column): Distributions of the corresponding required numbers of
iterations. (Third column): Histograms with the corresponding probability distributions. (First row):
A = −0.34; (Second row): A = −0.5; (Third row): A = −1. (Color figure online).

A < −0.55 the average value of required iterations remains completely unperturbed
at < N >= 5.

The histograms shown in Figs. 4-8 can be used for extracting additional results,
regarding the convergence properties of the NR method. For instance, we can use
the Laplace distribution for obtaining the best fits of the tails of the histograms
(see blue solid lines in the histograms). We choose to use the Laplace distribution
because this is the most natural choice, particularly in systems where we encounter
transient chaos (see e.g., [21–23]).

The Laplace probability density function (PDF) is given by

P (N |l, d) = 1

2d

{
exp

(
− l−N

d

)
, if N < l

exp
(
−N−l

d

)
, if N ≥ l

, (5.1)
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Figure 9. Parametric evolution of the (a-upper left): most average number of iterations < N >; (b-
upper right): location parameter l; (c- lower left): diversity d; (d-lower right): differential entropy h,
as a function of the oblateness A. With blue color in panel (b) we denote the parametric evolution of
< N >. The red, dashed, vertical lines indicate the four critical values of the oblateness. (Color figure
online).

where the parameters l and d > 0 are the location parameter and the diversity,
respectively. From the PDF we need only the N ≥ l part because the Laplace
distributions refer only to the tails of the probability histograms.

In panels (b) and (c) of Fig. 9 we present the parametric evolution of the location
parameter l and the diversity d, respectively, as a function of A. In part (b) we also
included, for comparison reasons, using blue color, the evolution of the < N > of the
iterations. One can observe that in general terms l is relatively close to the average
number of required iterations (almost always |l− < N > | ≤ 2). This implies that
the Laplace probability density function (PDF) can satisfactorily fit the tails of
the probability histograms. According to the diagram shown in part (c) of Fig. 9
the diversity is, in most of the cases, low (d < 3), thus indicating the dispersion
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Figure 10. Parametric evolution of the (a-upper left): area on the configuration space (x, y) corre-
sponding to a fractal-like geometry, (b-upper right): uncertainty or fractal dimension D0, (c-lower left):
basin entropy Sb and (d-lower right): boundary basin entropy Sbb, as a function of the oblateness A.
The red, dashed, vertical lines indicate the four critical values of the oblateness. The blue, dashed,
horizontal line denotes the critical value log 2. (Color figure online).

of the values of N is very close to < N >. On the other hand, in the vicinity of
the critical values of the oblateness the diversity exhibits a local maximum (peaks).
Panel (d) of Fig. 9 illustrates the parametric evolution of the differential entropy
h = 1 + ln(2d), where d is the diversity. One can see, that the evolution of both d
and h displays similar overall patterns.

In the previous section we seen in the BOC presented in Figs. 4-8 that in many
studied cases the basin boundaries seem very fractal. In panel (a) of Fig. 10 we
present the evolution of the area on the configuration space (R%) covered by regions
with fractal-like geometry, as a function of the parameter A. One of the most
convenient ways of measuring the degree of fractality of a system is by computing the
uncertainty or fractal dimensionD0 (see e.g., [24]), thus following the computational
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Figure 11. Parametric evolution of the area on the (x, y) plane corresponding to non-converging initial
conditions, as a function of the oblateness A. The red, dashed, vertical lines indicate the four critical
values of the oblateness. (Color figure online).

Figure 12. Parametric evolution of the (a-left): x coordinate and (b-right): y coordinate, as a function
of the number N of iterations of a characteristic non-converging initial condition with: x0 = −0.2 and
y0 = 1.8, while A = −0.5.

methodology used in [25, 26]. At this point, we would like to emphasize that the
degree of fractality is an intrinsic property of the system and therefore it does not
depend on the particular initial conditions we use for its calculation. Fig. 10(b)
shows the evolution of the uncertainty dimension, as a function of the oblateness
A. Near the critical level A4 the fractal dimension tends to 1, which implies zero
fractality. Moreover, in the vicinity of all critical levels of the oblateness the fractal
dimension exhibits local maxima (peaks).

Another efficient way for quantitatively measuring the degree of fractality of a
system is by computing the so-called basin entropy [27,28]. This method determines
the fractality of a basin diagram by the process of examination of its topological
properties. The parametric evolution of the basin entropy Sb, as a function of the
oblateness A, is illustrated in panel (c) of Fig. 10. Once more, we note that in the
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vicinity of all the critical values of A there are four local maxima of Sb. Taking
into account the outcomes of panels (a)-(c) of Fig. 10, we may argue that three
different methods (i.e., the area of the fractal-like regions, the fractal dimension
along with the basin entropy) suggest that the degree of the fractality of the BOC
on the configuration space (x, y) is high near the critical levels of A. At this point,
we would like to emphasize that the particular evolution of the three quantities
(i.e., the area of the fractal-like regions, the uncertainty dimension and the basin
entropy) is very similar, which is an extraordinary numerical finding.

Apart from the basin entropy there is also the boundary basin entropy Sbb [27],
from which we can extract additional information about the fractal geometry of the
BOC. The parametric evolution of Sbb is given in panel (d) of Fig. 10. From this
type of plot we can also deduce information regarding the degree of fractality of the
BOC on the configuration space. More specifically, we can use the so-called “log 2
criterion”, according to which if Sbb > log 2 then the basin boundaries are certainly
fractal (here note that the converse statement is not valid). As it is seen in panel
(d) of Fig. 10 the basin boundaries are certainly fractal when A > A4. Once more,
the lowest values of Sbb are reported in the fourth interval, that is when A < A4,
where only five numerical attractors exist.

At this point, we would like to briefly discuss the efficiency of the NR method.
The classification of the 1000 grids of initial conditions suggested that there are
cases at which non-converging points exist. In Fig. 11 we provide the parametric
evolution of the area on the configuration space (x, y) covered by non-converging
initial conditions, as a function of the oblateness A. We see that the non-converging
points emerge mainly in the vicinity of the critical values of A, where the dynamics
of the system changes. In particular, for A = A1 and A = A4 more than 80% of the
physical plane is occupied by non-converging initial conditions. In the same plot,
one can observe an additional small peat around A = 0.47, where non-converging
points also exist.

For the RTBP system with prolate primaries the multivariate Newton-Raphson
scheme reported only non-converging initial conditions, for some values of the
oblateness. Our computations indicate that for these starting points the iterative
method fluctuates between real numbers, without displaying any numerical evidence
of convergence. Additional calculations revealed that the same behavior is still valid
even after extremely large number of iterations N = 104. In panels (a-b) of Fig. 12
we present the evolution of the x and y coordinates, respectively, as a function of
the number N of iterations of a characteristic non-converging initial condition. For
the x coordinate the NR method quickly converges to zero after about 15 iterations,
while for the y coordinate is always fluctuates between two opposite numbers, thus
resulting to a non-converging initial condition.

6. Discussion

The present article is in fact a continuation of [17]. The scope of the article was
a numerical investigation of the convergence properties of the RTBP with prolate
primaries. By integrating large sets of initial conditions we obtained the NR BOC,
by means of color-coded basin diagrams. Moreover, we explored how the oblateness
parameter A influences the convergence properties of the Hamiltonian system. To
determine the level of fractality in the dynamics we calculated the fractal dimension,
along with the (boundary) basin entropy.
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In this work we demonstrated for the first time how the oblateness of the RTBP
with prolate primaries influences the overall properties of the system. Additionally,
we relate also for the first time different techniques for measuring how fractal a
dynamical system is. More specifically, we computed and compared the results
of the uncertainty (fractal) dimension and the (boundary) basin entropy. On this
basis, we claim that all the presented results of the article are novel and interesting,
while they contribute to our existing knowledge on the convergence properties of
Hamiltonian systems.

The numerical routine of the Newton-Raphson iterative method was written
in standard FORTRAN 77 [29]. For the classification of the starting points on the
configuration space, we needed roughly about 2.5 minutes of CPU time, per grid,
using a Quad-Core i7 vPro 4.0 GHz processor. The version 11.3 of Mathematicar

[30] has been deployed for constructing all the graphics of the paper.
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