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Analysis of a Kind of Quitting Smoking Model
with Beddington-DeAngelis Function∗

Zhimin Li1, Tailei Zhang1,†, Jianzhong Gao2 and Shu Fang1

Abstract In this paper, we discuss the dynamics of quitting smoking with
Beddington-Deangelis function. Firstly, the basic reproduction number of the
model is obtained by establishing the basic reproduction matrix. Then, by
using the Routh-Hurwitz criterion and Lyapunov functionals and LaSalle’s
Invariant Principle and the second additive compound matrix, local and global
dynamics of the model are analyzed. Based on the partial rank correlation
coefficients (PRCCs), we discuss some biological implications and focus on
the impact of some key model parameters. Finally, the numerical simulations
show the theoretical analysis more intuitively, and we give some strategies to
control the spread of smokers.
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1. Introduction

Smoking is called ”the fifth threat” by the World Health Organization (WHO)
(The others are war, famine, plague and pollution). Among smoking-related death-
s, chronic lung diseases accounted for 45%, lung cancer 15%, esophageal cancer,
gastric cancer, liver cancer, stroke, heart disease and tuberculosis accounted for
40%. If the epidemic trend of smoking patterns is uncontrolled, it is expected that
3 million Chinese will die from tobacco-related diseases by 2050 [1, 2]. On October
27, 2017, World Health Organization International Agency for Research on Cancer
lists smoking as a list of primary carcinogens. Epidemiological investigation showed
that smoking is one of the important pathogenic factors of lung cancer. Smokers
are 13 times more likely to develop lung cancer than non-smokers. About 85% of
lung cancer deaths are caused by smoking. Smokers who are exposed to chemical
carcinogens such as asbestos, nickel, uranium and arsenic at the same time are at
higher risk of lung cancer. Smoking can reduce the activity of natural killer cells,
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thereby impairing the body’s surveillance, killing and scavenging functions of tumor
cell growth, which further explains that smoking is a high risk factor for multiple
cancers. In China, the smoking rate of minors is on the rise, the age at which mi-
nors start to smoke is declining, and about 80,000 young people become long-term
smokers every day. This situation not only affects the healthy growth of children,
but also seriously affects the improvement of the physical fitness of our country as
a whole. Therefore, the problem of smoking among minors has attracted more and
more attention of the society [3].

Many scholars have done a lot of works on quitting smoking models [4–10].
In [9], Erturk et al. studied the dynamics of a quitting smoking model containing
fractional derivatives. The unique positive solution for the fractional order model is
presented. In [10], Zeb et al. studied a new quitting smoking model with square root
of potential and occasional smokers of model. The local and global stability of the
model and its general solution are discussed. Both non-negativity and conservative
law for differential equations system are discussed.

Scholars have studied the predator-prey model in depth. Based on the predator-
prey model, A.J.Lotka and V.Volterra proposed the famous Lotka-Volterra model
[11] x′ = a1x−b1xy, y

′ = −a2y+b2xy. This model is reasonable to some extent, but
it ignores the factors of digestive saturation. Holling [12] proposed three functional
response functions for different biological types in 1965:

(1) For filter predators, Holling I type functional response function with satura-
tion is given.

Φ(x) =

{
cx, x 6 x0,

cx0, x < x0.

(2) For invertebrates, the Holling II type functional response function Φ(x) =
αx

1+ωx is given. This functional response function reflects that when the amount of
prey increases, the predator’s prey will also increase until the number of predators
reaches a saturated level.

(3) For vertebrates with complex behavior, the Holling III type functional re-

sponse function Φ(x) = αx2

1+βx2 is given. When the number of prey is small, the
predator learns to catch. When the number of prey increases, the predation rate
increases accordingly. When the food is very full, the degree of hunger decreases and
negative acceleration occurs to reach saturation. If the prey has defensive strategies,
the predation behavior also belongs to this kind of functional response. The more

general form of Holling III type functional response function is Φ(x) = αx2

1+ωx+βx2 .
In the study of biodynamics, when the amount of food increases to a certain

extent, the population growth will be inhibited. In order to describe this inhibiting
phenomenon, Andrews gave Holling IV type functional function: Φ(x) = αx

a+ωx+βx2 .

Later, Howell simplified it to Φ(x) = αx
a+x2 . It is unexpectedly found that the

simplified function is more in line with the experimental data, and it also reduced
the difficulty of research. Based on these practical factors and experimental results,
some biologists and scholars realized that the predator’s role should be added to the
functional response function, so they established a new kind of functional response
function, namely predator-dependent functional response. In 1975, the functional
response function proposed by Beddington and DeAngelis is called Beddington-
DeAngelis [13] functional response function, which is more in line with the actual
situation. At present, the Beddington-DeAngelis function is used to study the
dynamics model of infectious diseases [14, 15]. Based on population dynamics, this
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paper establishes a practical smoking cessation dynamics model. In the existing
literature on smoking cessation models, the infection rate considered is relatively
single. In this paper, smokers are divided into occasional smokers L and regular
smokers S in detail during the modeling process, considering that both smokers
have infectious effects on potential smokers P . Specifically, on the basis of common
bilinear infection rates βPL and βPS, this paper adds a denominator 1 + aiL +
biS greater than 1, i.e. the inhibition of infection, which is only related to the
number of smokers (including occasional smokers L and smokers S). This can
be understood as non-smokers encounter people who smoke will produce rejection
and avoidance behavior. In addition, the infection rates of regular smokers S and
occasional smokers L were β1PL

1+a1L+b1S
and β2PS

1+a2L+b2S
, respectively.

This paper is organized as follows: In Section 2, we will establish a quitting
smoking model. In Section 3, the local stability and global asymptotic stability of
the equilibria are proved. In Section 4, we will do numerical simulations to visually
show the theoretical analysis in Section 3. Finally, we summarize the whole paper.

2. Model description

In order to describe the model, P (t), L(t), S(t) and Q(t) represent the number
of potential smokers, occasional smokers, smokers and quit smokers at time t,
respectively. The total population number at time t is expressed by N(t) =
P (t) + L(t) + S(t) +Q(t).

Main assumptions are as follows:
(i) λ is constant birth rate for the potential smokers. βi(i = 1, 2) is the contact

rate.
(ii) µ is the natural death rate and d represents death rate for potential smokers,

occasional smokers and quit smokers related to smoking disease. d + α represents
death rate for smokers (high mortality due to heavy smoking). γ is the conversion
rate from occasional smokers to smokers. δ is the rate of quitting smoking.

According to the above assumptions (i-ii), we can formulate a PLSQ quitting
smoking model as follows:

dP

dt
= λ− β1PL

1 + a1L+ b1S
− β2PS

1 + a2L+ b2S
− (µ+ d)P,

dL

dt
=

β1PL

1 + a1L+ b1S
+

β2PS

1 + a2L+ b2S
− (µ+ d+ γ)L,

dS

dt
= γL− (µ+ d+ α+ δ)S,

dQ

dt
= δS − (µ+ d)Q.

(2.1)

The meaningful domain of the model (2.1) is

Ω =

{
(P,L, S,Q) ∈ R4

+ : P + L+ S +Q 6 λ

µ+ d

}
,

and it is easy to show that Ω is a positively invariant set.

One can easily verify that the non-smoker equilibrium is given byE0

(
λ

µ+d , 0, 0, 0
)
.

According to the notation in [16], the Jacobian matrices F (of new infection terms)
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and V (of remaining transition terms) are given, respectively [17]. We have

F =

 β1λ
µ+d

β2λ
µ+d

0 0

 , V =

µ+ d+ γ 0

−γ µ+ d+ α+ δ

 ,

hence, the basic reproduction number R0 of model (2.1) is given by

R0 = ρ(FV−1) =
β1λ

(µ+ d)(µ+ d+ γ)
+

β2λγ

(µ+ d)(µ+ d+ γ)(µ+ d+ α+ δ)
,

here ρ denote the spectral radius.
The transmission of smoking behavior is similar to the disease, so the T (type

reproduction number [18]) can be used to describe the dynamic behavior of smokers.
The type reproduction number defines the expected number of secondary infective
cases of a particular population type caused by a typical primary case in completely
potential smokers [16–18]. It is an extension of the basic reproduction number R0.
Particularly, the type reproduction number T1 for control of infection among humans
is defined in the references [18–20] as

T1 = eT1 M(I − (I − P1)M)−1e1,

provided the spectral radius of matrix (I−P1)M is less than one, i.e., ρ((I−P1)M) <
1. Here I is the 2×2 identity matrix, vectors e1 = (1, 0)T , M is the next generation
matrix, and P1 is the 2× 2 projection matrix with all zero entries expect that the
(1, 1) entry is 1. Write M = (mij). The type reproduction number T1 can be easily
defined in terms of the elements mij :

T1 = m11 +
m12m21

1−m22
, (2.2)

T1 exists provided m22 < 1. In view of m21 = m22 = 0, by (2.2), the type repro-
duction number associated with the infectious humans is given by

T1 =
β1λ

(µ+ d)(µ+ d+ γ)
+

β2λγ

(µ+ d)(µ+ d+ γ)(µ+ d+ α+ δ)
= R0.

It has been shown in [19] that R0 < 1 (= 1, > 1) ⇔ T1 < 1 (= 1, > 1).

3. Equilibria analysis

Through the simple calculation of model (2.1), we find that model (2.1) always has
a non-smoker equilibrium E0 and its smoker equilibrium E∗ satisfies the following
equation 

λ− β1PL

1 + a1L+ b1S
− β2PS

1 + a2L+ b2S
− (µ+ d)P = 0,

β1PL

1 + a1L+ b1S
+

β2PS

1 + a2L+ b2S
− (µ+ d+ γ)L = 0,

γL− (µ+ d+ α+ δ)S = 0,

δS − (µ+ d)Q = 0.

(3.1)
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After computing, we have



P =
λ

β1(µ+d+α+δ)S

γ
(
1+

(
a1(µ+d+α+δ)

γ +b1
)
S
) + β2S

1+
(

a2(µ+d+α+δ)
γ +b2

)
S
+ (µ+ d)

,

L =
(µ+ d+ α+ δ)S

γ
,

Q =
δS

µ+ d
,

P =
(µ+ d+ γ)(µ+ d+ α+ δ)

β1(µ+d+α+δ)

1+
(

a1(µ+d+α+δ)
γ +b1

)
S
+ β2γ

1+
(

a2(µ+d+α+δ)
γ +b2

)
S

.

(3.2)

Noting (3.2), the first and fourth equations are



P = Φ(S) =
λ

β1(µ+d+α+δ)S

γ
(
1+

(
a1(µ+d+α+δ)

γ +b1
)
S
) + β2S

1+
(

a2(µ+d+α+δ)
γ +b2

)
S
+ (µ+ d)

,

P = Ψ(S) =
(µ+ d+ γ)(µ+ d+ α+ δ)

β1(µ+d+α+δ)

1+
(

a1(µ+d+α+δ)
γ +b1

)
S
+ β2γ

1+
(

a2(µ+d+α+δ)
γ +b2

)
S

.

(3.3)

Thus, the intersections of the curves P = Φ(S) and P = Ψ(S) in
[
0, λ

µ+d

]2
de-

termine the nontrivial equilibria. The P = Ψ(S) is a strictly increasing function.
Meanwhile, it is clear that Φ(S) is a strictly decreasing function. From (3.3), we
also have

Φ(0) =
λ

µ+ d
, Ψ(0) =

µ+ d+ γ

β1 +
β2γ

µ+d+α+δ

, Φ(
λ

µ+ d
) < Ψ(

λ

µ+ d
). (3.4)

From (3.1) and (3.4), we see that if R0 > 1, then Φ(0) > Ψ(0), which implies that
there is a unique intersection in R2

+ between Φ(S) and Ψ(S); if R0 6 1, then
Φ(0) 6 Ψ(0), which indicates that there is no intersection between these curves in
the interior of R2

+. Therefore we have the following existence, uniqueness and local
stability theorem on E0 and E∗ of model (2.1).

Theorem 3.1. If R0 6 1, then system (2.1) has a unique equilibrium E0. E0 is
locally asymptotically stable when R0 < 1 and Lyapunov stable when R0 = 1.

Proof. We consider an equivalent system of model (2.1)



dP

dt
= λ− β1PL

1 + a1L+ b1S
− β2PS

1 + a2L+ b2S
− (µ+ d)P,

dL

dt
=

β1PL

1 + a1L+ b1S
+

β2PS

1 + a2L+ b2S
− (µ+ d+ γ)L,

dS

dt
= γL− (µ+ d+ α+ δ)S.

(3.5)
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The Jacobian matrix of the vector field described by system (3.5) is

J = [Jij ] =


− β1L

1 + a1L+b1S
− β2S

1 + a2L+b2S
− (µ+ d) J12 J13

β1L
1 + a1L+b1S

+ β2S
1 + a2L+b2S

J22 J23

0 γ −(µ+ d+ α+ δ)

 ,

(3.6)
where

J12 =
a1β1PL− β2P (1 + a1L+ b1S)

(1 + a1L+ b1S)
2 +

a2β2PS

(1 + a2L+ b2S)
2 ,

J13 =
b2β2PS − β2P (1 + a2L+ b2S)

(1 + a2L+ b2S)
2 +

b1β1PL

(1 + a1L+ b1S)
2 ,

J22 = −J12 − (µ+ d+ γ),

J23 = −J13.

Computing the Jacobian matrix (3.6) at E0, gives

J |E0 =


−(µ+ d) − β1λ

µ+d − β2λ
µ+d

0 β1λ
µ+d − (µ+ d+ γ) β2λ

µ+d

0 γ −(µ+ d+ α+ δ)

 .

Let λ1, λ2 and λ3 denote the eigenvalues of J |E0 , where λ1 = −(µ + d) < 0. It is
easy to verify that λ2 and λ3 satisfying equation

λ2 − aλ+ b = 0,

where

a =
β1λ

µ+ d
− (µ+ d+ γ)− (µ+ d+ α+ δ),

b =

(
(µ+ d+ γ)− β1λ

µ+ d

)
(µ+ d+ α+ δ)− β2λγ

µ+ d
.

According to the relation between root and coefficient, we get

λ2 + λ3 =
β1λ

µ+ d
− (µ+ d+ γ)− (µ+ d+ α+ δ),

λ2λ3 =

(
(µ+ d+ γ)− β1λ

µ+ d

)
(µ+ d+ α+ δ)− β2λγ

µ+ d
.

(3.7)

Since R0 6 1, we can obtain λ2 + λ3 < 0, λ2λ3 > 0, that is, λ2 and λ3 have
both negative real part. So, all of the eigenvalues of the characteristic equation are
negative real part. Hence, the equilibrium E0 is locally asymptotically stable in the
interior of Ω. This completes the proof of Theorem 3.1.

Theorem 3.2. If R0 > 1, then system (2.1) has two equilibria E0 and E∗. E0 is
unstable and E∗ is locally asymptotically stable as R0 > 1.

Proof. We know that E0 is unstable when R0 > 1 from (3.7). Now, we will prove
that the E∗ is locally asymptotically stable. Evaluating the Jacobian matrix (3.6)
at the E∗, we find the characteristic equation of J |E∗ is given by

λ3 + c1λ
2 + c2λ+ c3 = 0,
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where

c1 = −(J11 + J22 + J33)|E∗ ,

c2 = (−J12J21 + J11J22 + J22J33 + J11J33 − J13J31 − J23J32)|E∗ ,

c3 = (−J22J11J33 + J22J13J31 + J12J21J33 + J11J23J32 − J12J23J31 − J13J21J32)|E∗ .
(3.8)

If c1 > 0, c2 > 0, c3 > 0 and c1c2 − c3 > 0 holds, according to the Routh-Hurwitz
criterion, we know that E∗ is locally asymptotically stable. In fact,

J11 = − β1L

1 + a1L+ b1S
− β2S

1 + a2L+ b2S
− (µ+ d) < 0,

J33 = −(µ+ d+ α+ δ) < 0,

J22 =
β1P (1 + a1L+ b1S)− a1β1PL

(1 + a1L+ b1S)
2 − a2β2PS

(1 + a2L+ b2S)
2 − (µ+ d+ γ),

(3.9)

From (2.1), we have

β1PL

1 + a1L+ b1S
+

β2PS

1 + a2L+ b2S
= (µ+ d+ γ)L,

so we obtain that
β1PL

1 + a1L+ b1S
− (µ+ d+ γ)L < 0,

we can get that J22 < 0. Thus, c1 > 0. From (3.6), we know J21 > 0, J32 = γ > 0,
which implies

c2 = −J12J21 + J11J22 + J22J33 + J11J33 − J13J31 − J23J32

= −J12J21 + J13J32 + J11J22 + J22J33 + J11J33.
(3.10)

Since −J12 = J22 + (µ+ d+ γ)we can obtain that

−J12J21 + J11J22 = (J22 + (µ+ d+ γ)) J21 + J11J22

= J22J21 + J11J22 + J21(µ+ d+ γ)

= J22(J21 + J11) + J21(µ+ d+ γ)

= −J22(µ+ d) + J21(µ+ d+ γ) > 0.

(3.11)

We analyze the expression of c2 from (3.10), we have

J22J33 + J11J33 + J13J32

= γ

(
b2β2PS − β2P (1 + a2L+ b2S)

(1 + a2L+ b2S)
2 +

b1β1PL

(1 + a1L+ b1S)
2

)

+(µ+ d+ α+ δ)

(
(µ+ d+ γ) +

a1β1PL− β1P (1 + a1L+ b1S)

(1 + a1L+ b1S)
2

)

+(µ+ d+ α+ δ)
a2β2PS

(1 + a2L+ b2S)
2

+(µ+ d+ α+ δ)

(
β1L

1 + a1L+ b1S
+

β2S

1 + a2L+ b2S
+ (µ+ d)

)
,
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in that γL = (µ+ d+ α + δ)S, (µ+ d+ γ)L = β1PL
1 + a1L+b1S

+ β2PS
1 + a2L+b2S

, thus we
have

(µ+ d+ α+ δ) =
γL

S
, (µ+ d+ γ) =

β1P

1 + a1L+ b1S
+

β2PS

(1 + a2L+ b2S)L
,

β2PS

(1 + a2L+ b2S)L
(µ+ d+ α+ δ) =

β2PS

(1 + a2L+ b2S)L

γL

S
=

γβ2P

1 + a2L+ b2S
.

Therefore,

J22J33 + J11J33 + J13J32

= γ

(
b2β2PS − β2P (1 + a2L+ b2S)

(1 + a2L+ b2S)
2 +

b1β1PL

(1 + a1L+ b1S)
2

)

+(µ+ d+ α+ δ)

(
(µ+ d+ γ) +

a1β1PL− β1P (1 + a1L+ b1S)

(1 + a1L+ b1S)
2

)

+(µ+ d+ α+ δ)
a2β2PS

(1 + a2L+ b2S)
2

+(µ+ d+ α+ δ)

(
β1L

1 + a1L+ b1S
+

β2S

1 + a2L+ b2S
+ (µ+ d)

)
= γ

(
b2β2PS

(1 + a2L+ b2S)
2 +

b1β1PL

(1 + a1L + b1S)
2

)
− γ

β2P

1 + a2L+ b2S

+(µ+ d+ α+ δ)

(
(µ+ d+ γ) +

a1β1PL

(1 + a1L+ b1S)
2

)

+(µ+ d+ α+ δ)

(
− β1P

(1 + a1L+ b1S)
+

a2β2PS

(1 + a2L+ b2S)
2

)

+(µ+ d+ α+ δ)

(
β1L

1 + a1L+ b1S
+

β2S

1 + a2L + b2S
+ (µ+ d)

)
= γ

(
b2β2PS

(1 + a2L+ b2S)
2 +

b1β1PL

(1 + a1L + b1S)
2

)
− γ

β2P

1 + a2L+ b2S

+(µ+ d+ α+ δ)

(
β1P

1 + a1L+ b1S
+

β2PS

(1 + a2L+ b2S)L

)
+(µ+ d+ α+ δ)

(
a1β1PL

(1 + a1L+ b1S)
2 − β1P

1 + a1L+ b1S
+

a2β2PS

(1 + a2L+ b2S)
2

)

+(µ+ d+ α+ δ)

(
β1L

1 + a1L+ b1S
+

β2S

1 + a2L + b2S
+ (µ+ d)

)
= γ

(
b2β2PS

(1 + a2L+ b2S)
2 +

b1β1PL

(1 + a1L + b1S)
2

)
+ (µ+ d+ α+ δ)

×

(
a1β1PL

(1 + a1L+ b1S)
2 +

a2β2PS

(1 + a2L+ b2S)
2

)
− γ

β2P

1 + a2L+ b2S

+(µ+ d+ α+ δ)

(
β1L

1 + a1L+ b1S
+

β2S

1 + a2L + b2S
+ (µ+ d)

)
,
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so we have

J22J33 + J11J33 + J13J32

= γ

(
b2β2PS

(1 + a2L+ b2S)
2 +

b1β1PL

(1 + a1L + b1S)
2

)
+ (µ+ d+ α+ δ)

×

(
a1β1PL

(1 + a1L+ b1S)
2 +

a2β2PS

(1 + a2L+ b2S)
2

)

+γ
β2P

1 + a2L+ b2S
− γ

β2P

1 + a2L+ b2S

+(µ+ d+ α+ δ)

(
β1L

1 + a1L+ b1S
+

β2S

1 + a2L + b2S
+ (µ+ d)

)
> 0,

(3.12)

From (3.10)-(3.12), we known that c2 > 0.

Next, we will prove that c3 is positive. Since −J12 = J22 + (µ + d + γ), so we
can obtain

c3 = (−J22J11J33 + J12J21J33 + J22J13J31 + J11J23J32 − J12J23J31 − J13J21J32)|E∗

= (J12 + (µ+ d+ γ))(−J21 − (µ+ d))J33 + J12J21J33 + J22J13J31 + J11J23J32

−J12J23J31 − J13J21J32

= −J12J21J33 − (µ+ d)J12J33 − (µ+ d+ γ)J21J33 − (µ+ d+ γ)(µ+ d)J33

+J12J21J33 + J22J13J31 + J11J23J32 − J12J23J31 − J13J21J32

= −(µ+ d)J12J33 − (µ+ d+ γ)J21J33 − (µ+ d+ γ)(µ+ d)J33 + J22J13J31

+J11J23J32 − J12J23J31 − J13J21J32

= −(µ+ d)J12J33 − (µ+ d+ γ)J21J33

−(µ+ d+ γ)(µ+ d)J33 + J11J23J32 − J13J21J32

= −(µ+ d)J12J33 − (µ+ d+ γ)J21J33

−(µ+ d+ γ)(µ+ d)J33 + J13J32(−J11 − J21)

= −(µ+ d)J12J33 − (µ+ d+ γ)J21J33 − (µ+ d+ γ)(µ+ d)J33 + J13J32(µ+ d).
(3.13)

Since µ+ d+ γ = β1P
1+a1L+b1S

+ β2P
1+a2L+b2S

S
L , substituting in (3.13), we have

c3 = −(µ+ d)J12J33 − (µ+ d+ γ)J21J33 − (µ+ d+ γ)(µ+ d)J33 + J13J32(µ+ d)

= (µ+ d)(µ+ d+ α+ δ)J12 + (µ+ d+ γ)(µ+ d+ α+ δ)J21 + γ(µ+ d)J13

+(µ+ d)(µ+ d+ α+ δ)

(
β1P

1 + a1L+ b1S
+

β2P

1 + a2L+ b2S

S

L

)
= (µ+ d)(µ+ d+ α+ δ)

β1P

1 + a1L+ b1S
+ (µ+ d)(µ+ d+ α+ δ)J12

+(µ+ d)(µ+ d+ α+ δ)
β2P

1 + a2L+ b2S

S

L

+γ(µ+ d)J13 + (µ+ d+ γ)(µ+ d+ α+ δ)J21,
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so we obtain

c3 = (µ+ d)(µ+ d+ α+ δ)
β1P

1 + a1L+ b1S
+ (µ+ d)(µ+ d+ α+ δ)J12

+(µ+ d)(µ+ d+ α+ δ)
β2P

1 + a2L+ b2S

S

L
+ (µ+ d)(µ+ d+ α+ δ)

S

L
J13

+(µ+ d+ γ)(µ+ d+ α+ δ)J21

> 0.
(3.14)

By (3.14), we have

c1c2 − c3 = (J11 + J22 + J33)(J12J21 − J11J22 − J22J33 − J11J33 + J23J32)

+J11J22J33 − J12J21J33 − J11J23J32 + J13J21J32

= J11J12J21 + J22J12J21 + J33J12J21 − J2
11J22 − J11J

2
22

−J11J22J33 − J11J22J33 − J2
22J33 − J22J

2
33 − J2

11J33

−J11J22J33 − J11J
2
33 + J11J23J32 + J22J23J32 + J33J23J32

+J11J22J33 − J12J21J33 − J11J23J32 + J13J21J32.

(3.15)

By simple calculation, we have

J23 = −J13, J22 = −J12 − (µ+ d+ γ), J11 = −J21 − (µ+ d). (3.16)

According to (3.15) and (3.16), further we can obtain

c1c2 − c3 = −J2
11J22 − J11J

2
22 − J11J22J33 − J2

22J33 − J22J
2
33

−J2
11J33 − J11J22J33 − J11J

2
33 + J11J12J21

+J22J12J21 + J22J23J32 + J33J23J32 + J13J21J32,

which the positive terms are

−J2
11J22,−J11J

2
22,−J11J22J33,−J2

22J33,−J22J
2
33,−J2

11J33,−J11J22J33,−J11J
2
33,

and it contains negative terms, but the overall positive and negative uncertainties
are

J11J12J21, J22J12J21, J22J23J32, J33J23J32, J13J21J32. (3.17)

Five items are analyzed in (3.17) as follows
(1) J11J12J21 = −J11(J22+(µ+d+γ))J21 = −J11J22J21−J11(µ+d+γ)J21, here

−J11J22J21 is counteracted by the positive term −J2
11J22 in expression of c1c2− c3.

(2) J22J12J21 = −J22(J22 +(µ+ d+ γ))J21 = −J2
22J21 − J22(µ+ d+ γ)J21, here

−J2
22J21 is counteracted by the positive term −J2

22J11 in expression of c1c2 − c3.
(3) Since

β2P

1 + a2L+ b2S
γ =

β2P

1 + a2L+ b2S

(µ+ d+ α+ δ)S

L

= (µ+ d+ α+ δ)
β2P

1 + a2L+ b2S

S

L

= (µ+ d+ α+ δ)(µ+ d+ γ − β1P

1 + a1L+ b1S
).
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The negative term in expression of J13J21J32 is

−γJ21
β2P

1 + a2L+ b2S
= −J21(µ+ d+ α+ δ)(µ+ d+ γ − β1P

1 + a1L+ b1S
). (3.18)

So, (3.18) is counteracted by the positive term −J11J22J33 in expression of c1c2−c3.
(4) Similarly (3), the negative term γJ33

β2P
1+a2L+b2S

in the expression of J33J23J32 =

−γJ33J13 can be counteracted by the positive term −J22J
2
33 in the expression of

c1c2 − c3.
(5) Similarly (3), the negative term γJ22

β2P
1+a2L+b2S

in the expression of J22J23J32 =

−γJ22J13 can be counteracted by the positive term −J2
22J33 in the expression of

c1c2 − c3.
Hence, by the above analysis, we have proved that c1c2 − c3 > 0.
According to the Routh-Hurwitz criterion, we know E∗ is locally asymptotically

stable. This completes the proof of Theorem 3.2.

Theorem 3.3. If R0 6 1, E0 is globally asymptotically stable in the region Ω.

Proof. Let

F =

 β1λ
µ+d

β2λ
µ+d

0 0

 , V =

µ+ d+ γ 0

−γ µ+ d+ α+ δ

 .

Write y = (L, S)T , the system (2.1) satisfies

dy

dt
6 (F − V )y.

Let ω =
(

β1λ
µ+d ,

β2λ
µ+d

)
. In view of R0 = ρ(FV −1) = ρ(V −1F ), one can verify that

ωV −1F = R0ω. Motivated by [21], we define a Lyapunov function as follows:

L = ωV −1y.

Differentiating L along solutions of (2.1), we have

dL

dt
= ωV −1 dy

dt
6 ωV −1(F − V )y = (R0 − 1)ωy.

If R0 < 1, then dL
dt 6 0. Since dL

dt = 0 implies that ωy = 0, then L = S = 0.

It follows from the equations of model (2.1) that P = λ
µ+d and Q = 0. Hence, the

only invariant set is the singleton
{(

λ
µ+d , 0, 0, 0

)}
as dL

dt = 0.

In the case R0 = 1, then dL
dt = 0 implies that P = λ

µ+d or L = S = 0. Then,
by a similar argument above, we find that the largest invariant set is the singleton{(

λ
µ+d , 0, 0, 0

)}
as dL

dt = 0.

By LaSalle’s Invariant Principle [22], the E0 is globally asymptotically stable in
Ω when R0 6 1. This completes the proof of Theorem 3.3.

Next we give the proof of the global stability of E∗. Firstly, we give the cor-
responding preliminary and lemma. Suppose that R0 > 1. Hence, by Theorem
3.2, the system (2.1) has two equilibria E0 and E∗. We now proceed to prove the
global stability of the endemic equilibrium of (2.1) by using the geometric approach
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based on the second additive compound matrix [23]. The details on the geometric
approach are as follows. Here we present the main result of the geometric approach
for global stability, originally developed by Li and Muldowney [24]. We consider a
dynamical system

dX

dt
= f(X), (3.19)

where f : D 7→ Rn is a C1 function and D ⊂ Rn is a simply connected open set.

Let P (X) be a

n

2

×

n

2

 matrix-valued C1 function in D, and set

Q = PfP
−1 + PJ [2]P−1,

where Pf is the derivative of P (entry-wise) along the direction of f , and J [2] is the
second additive compound matrix of the Jacobian J(X) = Df(X). Let M (Q) be
the Lozinskii measure of Q with respect to a matrix norm i.e.,

M (Q) = lim
h→0+

|I + hQ| − 1

h
,

where I represent the identity matrix. Define a quantity q̄2 as

q̄2 = lim sup
t→∞

sup
X0∈K

1

t

∫ t

0

M (Q(X(s,X0)))ds,

where K is a compact absorbing subset of D. Then the condition q̄2 < 0 provides
a Bendixson criterion in D. As a result, the following lemma holds:

Lemma 3.1 (Theorem 3.1, [24]). Assume that there exists a compact absorbing set
K ⊂ D and the system (3.19) has a unique equilibrium point X∗ in D. Then X∗

is globally asymptotically stable in D if q̄2 < 0.

Theorem 3.4. If R0 > 1, E∗ is globally asymptotically stable in the Ω0, the interior
of Ω, provided that

sup

{
β1P

1 + a1L+ b1S
− a1β1PL

(1 + a1L+ b1S)2
− a2β2PS

(1 + a2L+ b2S)2
:

(P,L, S,Q) ∈ R4
+, P + L+ S +Q 6 λ

µ+ d

)}
6 γ

2
.

Proof. By Theorem3.2, E∗ is unstable as R0 > 1, and it is on the boundary of
the domain Ω. This implies that the number of smoking is uniformly persistent in
Ω0, namely, lim inf

t→∞
S(t) > c for some c > 0. It then follows from the compactness of

Ω and the uniform persistence of system (2.1) that there exists a compact absorbing
set in Ω. By Lemma 3.1, the following work is to construct a matrix-valued function
such that q̄2 < 0.

For simplicity, we denote

θ1 =
β1L

1 + a1L+ b1S
+

β2S

1 + a2L+ b2S
,

θ2 =
β1P (1 + a1L+ b1S)− a1β1PL

(1 + a1L+ b1S)2
− a2β2PS

(1 + a2L+ b2S)2
,

θ3 =
β2P (1 + a2L+ b2S)− b2β2PS

(1 + a2L+ b2S)2
− b1β1PL

(1 + a1L+ b1S)2
.
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The Jacobian matrix associated with the linearized system of (3.5) is

J̃ =


−θ1 − (µ+ d) −θ2 −θ3

θ1 θ2 − (µ+ d+ γ) θ3

0 γ −(µ+ d+ α+ δ)


and its second additive compound matrix is

J̃ [2] =


j11 θ3 θ3

γ j22 −θ2

0 θ1 j33

 ,

where

j11 = −θ1 + θ2 − (2µ+ 2d+ γ), j22 = −θ1 − (2µ+ 2d+ α+ δ),

j33 = θ2 − (2µ+ 2d+ γ + α+ δ).

We now take Q = diag
[
1, L

S ,
L
S

]
, then QfQ

−1 = diag
[
0, L′

L − S′

S , L′

L − S′

S

]
, where

f denote the vector field of (2.1). Thus, we have

QJ̃ [2]Q−1 =


m11 θ3

S
L θ3

S
L

γ L
S m22 −θ2

0 θ1 m33

 ,

where

m11 = −θ1 + θ2 − (2µ+ 2d+ γ), m22 = −θ1 − (2µ+ 2d+ α+ δ),

m33 = θ2 − (2µ+ 2d+ γ + α+ δ).

Thus, the matrix H = QfQ
−1 + QJ̃ [2]Q−1 can be written in the following block

form:

H =

H11 H12

H21 H22

 ,

where

H11 = − β1L

1 + a1L+ b1S
− β2S

1 + a2L+ b2S
+

β1P (1 + a1L+ b1S)− a1β1PL

(1 + a1L+ b1S)2

− a2β2PS

(1 + a2L+ b2S)2
− (2µ+ 2d+ γ),

H12 =

(
β2P (1 + a2L+ b2S)− b2β2PS

(1 + a2L+ b2S)2
− b1β1PL

(1 + a1L+ b1S)2

)
S

L

[
1 1
]
,

H21 =

γ L
S

0

 , H22 =

h11 h12

h21 h22

 ,
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with

h11 = − β1L

1 + a1L+ b1S
− β2S

1 + a2L+ b2S
− (2µ+ 2d+ α+ δ) +

L′

L
− S′

S
,

h12 =
a1β1PL− β1P (1 + a1L+ b1S)

(1 + a1L+ b1S)2
+

a2β2PS

(1 + a2L+ b2S)2
,

h21 =
β1L

1 + a1L+ b1S
+

β2S

1 + a2L+ b2S
,

h22 =
β1P (1 + a1L+ b1S)− a1β1PL

(1 + a1L+ b1S)2
− a2β2PS

(1 + a2L+ b2S)2

−(2µ+ 2d+ γ + α+ δ) +
L′

L
− S′

S
.

The vector norm |·| in R3 is chosen as

|(x1, x2, x3)| = max {|x1| , |x2| , |x3|} .

One can verify that the Lozinskii measure M (H) with respect to this norm can be
estimated as

M(H) 6 sup {g1, g2} ,
where

g1 = M1(H11) + |H12| , g2 = |H21|+M1(H22).

Here |H12| and |H21| are matrix norms induced by the l1 vector norm, M1 denote
the Lozinskii measure with respect to the l1 norm. In detail,

g1 = H11 +H12 = − β1L

1 + a1L+ b1S
− β2S

1 + a2L+ b2S
− a2β2PS

(1 + a2L+ b2S)
2

+
β1P (1 + a1L+ b1S)− a1β1PL

(1 + a1L+ b1S)
2 − (2µ+ 2d+ γ)

+

(
β1P (1 + a2L+ b2S)− a2β2PS

(1 + a2L+ b2S)
2 − a1β1PL

(1 + a1L+ b1S)
2

)
S

L
,

g2 = |H21|+max {h11 + |h21| , |h12|+ h22}

= γ
L

S
+max

{
−(2µ+ 2d+ α+ δ) +

L′

L
− S′

S
,∣∣∣∣∣a1β1PL− β1P (1 + a1L+ b1S)

(1 + a1L+ b1S)
2 +

a2β2PS

(1 + a2L+ b2S)
2

∣∣∣∣∣− a2β2PS

(1 + a2L+ b2S)
2

+
β1P (1 + a1L+ b1S)− a1β1PL

(1 + a1L+ b1S)
2 − (2µ+ 2d+ γ + α+ δ) +

L′

L
− S′

S

}

= γ
L

S
− (2µ+ 2d+ α+ δ) +

L′

L
− S′

S

+max

{
0, 2

(
β1P (1 + a1L+ b1S)− a1β1PL

(1 + a1L+ b1S)
2 − a2β2PS

(1 + a2L+ b2S)
2

)
− γ

}
.

Since

L′ =
β1PL

1 + a1L+ b1S
+

β2PS

1 + a2L+ b2S
− (µ+ d+ γ)L,
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we obtain

−(µ+ d+ γ) =
L′

L
− β1P

1 + a1L+ b1S
− S

L

β2P

1 + a2L+ b2S
.

This leads to

g1 = − β1L

1 + a1L+ b1S
− β2S

1 + a2L+ b2S
+

β1P (1 + a1L+ b1S)− a1β1PL

(1 + a1L+ b1S)2

− a2β2PS

(1 + a2L+ b2S)2
− (µ+ d) +

L′

L
− β1P

1 + a1L+ b1S
− S

L

β2P

1 + a2L+ b2S

+

(
β1P (1 + a2L+ b2S)− a2β2PS

(1 + a2L+ b2S)2
− a1β1PL

(1 + a1L+ b1S)2

)
S

L
,

6 L′

L
− (µ+ d).

(3.20)
Since S′ = γL− (µ+ d+ α+ δ)S, we have

S′

S
= γ

L

S
− (µ+ d+ α+ δ).

This leads to

g2 = max

{
0, 2

(
β1P (1 + a1L+ b1S)− a1β1PL

(1 + a1L+ b1S)
2 − a2β2PS

(1 + a2L+ b2S)
2

)
− γ

}

−(µ+ d) +
L′

L

6 L′

L
− (µ+ d),

(3.21)

if
(

β1P (1+a1L+b1S)−a1β1PL
(1+a1L+b1S)2 − a2β2PS

(1+a2L+b2S)2

)
6 γ

2 . Thus, (3.20) and (3.21) yield

M(H) 6 L′

L
− (µ+ d).

It follows from 0 6 L 6 λ
µ+d that

ln(L(t))− ln(L(0))

t
6 µ+ d

2
,

for t sufficiently large. We then obtain

1

t

t∫
0

M(H)ds 6 1

t

t∫
0

(
L′

L
− (µ+ d)

)
ds =

1

t

(
ln

L(t)

L(0)

)
− (µ+ d) 6 −µ+ d

2
,

(3.22)
if t is large enough. This in turn implies that q̄2 6 −µ+d

2 < 0. It completes the
proof.
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4. Numerical simulation

In this section, some numerical results of system (2.1) are presented for supporting
the analytic results obtained above. All the parameters values are estimated. The
model parameters are taken as:

(1) λ = 0.4, β1 = 0.35, β2 = 0.4, a1 = 0.3, a2 = 0.23, b1 = 0.4, b2 = 0.3, µ =
0.2, d = 0.21, γ = 0.02, δ = 0.21, α = 0.015, then R0 = 0.8227. According to
Theorem 3.3, we get the number of people who smoke tends to zero. Here we
choose initial value P (0) = 0.7, L(0) = 0.6, S(0) = 0.7, Q(0) = 0.4, (see Figure 1).

(2) λ = 0.4, β1 = 0.35, β2 = 0.4, a1 = 0.3, a2 = 0.23, b1 = 0.4, b2 = 0.3, µ =
0.01, d = 0.21, γ = 0.02, δ = 0.21, α = 0.015, then R0 = 2.7877. According to
Theorem 3.4, we know the number of smokers will continue. Here we choose initial
value P (0) = 0.7, L(0) = 0.6, S(0) = 0.7, Q(0) = 0.4, (see Figure 2).
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Figure 1. The global stability of the model (2.1).
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Figure 2. The permanence of the model (2.1).
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Figure 3. PRCCs for the aggregate R0 and each
input parameter variable.
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Figure 4. The influence of parameter β1 on the
value of S(t).

(3) From Figure 3, it can be shown results for the partial rank correlation co-
efficients (PRCCs) [21] and these results illustrate the dependence of R0 on each
parameter. From the biological significance of the established model, we only stud-
ied the sensitivity of contact rate βi(i = 1, 2), the rate of quitting smoking δ, the
conversion rate from occasional smokers to smokers γ, the death rate for smokers
d+ α (high mortality due to heavy smoking) on R0.
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In Figures 4-5, this changes value of parameter βi(i = 1, 2) and other parameters
values are the same as Figure 2. In Figure 6, this changes value of parameter d+α
and other parameters values are the same as Figure 2. In Figure 7, this changes
value of parameter γ and other parameters values are the same as Figure 2. In
Figure 8, this changes value of parameter δ and other parameters values are the
same as Figure 2.
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Figure 5. The influence of parameter β2 on the
value of S(t).
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Figure 6. The influence of parameter α + d on the
value of S(t).
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Figure 7. The influence of parameter γ on the value
of S(t).
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Figure 8. The influence of parameter δ on the value
of S(t).

5. Discussion

In this paper, considering the propagation of smoking behavior is similar to the
predator-prey model, we introduce a more general Beddington-DeAngelis function
into the quitting smoking model to establish a non-linear quitting smoking mod-
el. For ODE model, we have rigorously proved the reproduction number R0, and
analyzed the local and global stability of the model from the perspective of the re-
production number. In particular, when R0 6 1, the equilibrium E0 of non-smokers
is globally asymptotically stable (see Figure 1); when R0 > 1, the equilibrium E∗ of
smokers is globally asymptotically stable (see Figure 2). From the partial rank cor-
relation coefficient (PRCCs), the effects of different parameters on smokers’ trans-
mission are obtained (see Figure 3-8). Finally, the theoretical analysis is shown
more intuitively by numerical simulations. Our results show that in order to reduce
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and control the number of smokers, we can increase the rate of quitting smoking δ
and decrease contact rate βi(i = 1, 2) by scientific means from the above analysis
(see Figures 4-5, 8).
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