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Abstract By using the first eigenvalue corresponding to the relevant linear
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istence of positive solutions for a nonlinear second order periodic boundary
value problem are given. Our results improve and generalize some preliminary
works.
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1. Introduction
In recent years, due to the widespread applications in the field of physics and engi-
neering, the study of the existence of the positive solutions for second-order differ-
ential equations has attracted the attention of many scholars [2, 9, 11].

In [12], Nieto studied the periodic boundary value problem for the second order
differential equation −x′′ = f(t, x(t)), t ∈ [0, 2π],

x(0) = x(2π), x′(0) = x′(2π),

where f satisfies Carathéodory conditions. Their main method is the upper and
lower solutions.

In [13], by using the Krasnoselskii fixed point theorem, Torres obtained the
existence of solutions to the following periodic boundary value problemx′′ = f(t, x(t)), t ∈ [0, T ],

x(0) = x(T ), x′(0) = x′(T ),

where f is also a function of L1-Carathéodory type and T -periodic in t.
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In [4], Jiang studied the existence of the positive solutions to the following
equation x′′ +Mx = f(t, x(t)), t ∈ [0, 2π],

x(0) = x(2π), x′(0) = x′(2π),

where f ∈ C([0, 2π]× R+,R+) and M > 0. The main method is Krasnoselskii fixed
point theorem.

For the following periodic boundary value problemx′′ + a(t)x = f(t, x(t)), t ∈ [0, T ],

x(0) = x(T ), x′(0) = x′(T ),
(1.1)

when f is nonnegative, Li [8] obtained the existence of positive solutions for Eq.(1.1)
by using the Krasnoselskii fixed point theorem, Li and Liang [7] also established the
existence of the positive solutions for Eq.(1.1) by using the fixed point index theory
on a cone. Moreover, in [10], the authors investigated the existence of the positive
solutions for Eq.(1.1) under the condition that f may take negative values and the
nonlinearity may be sign-changing.

Motivated by the above papers, in this paper, we study the existence of the
positive solutions for the following second order periodic boundary value problemx′′ + h (t)x′ + a(t)x = g(t)f(t, x),

x(0) = x(T ), x′(0) = x′(T ),
(1.2)

where h ∈ C([0, T ],R+), a ∈ C([0, T ],R+) and a ̸≡ 0, g ∈ C((0, T ),R+) ∩ L[0, T ]

and
∫ T

0
g(t)dt > 0, f ∈ C([0, T ]× R,R), in which R = (−∞,+∞), R+ = [0,+∞).

In particular, the function g may be singular at t = 0 or t = T , f may take negative
values and the nonlinearity may be sign-changing. Moreover, when h(t) ≡ 0, g(t) ≡
1, Eq.(1.2) becomes Eq.(1.1).

Three highlights should be pointed out. The damping term h(t)x′ has been
added to generalize the previous equations, g may be singular at t = 0 or t = T and
f can take negative values and be sign-changing.

The paper is organized as follows. Some useful lemmas for the proof of the main
results are given in Section 2. The main results will be given and proved in Section
3. Two examples are given to support our main results in Section 4.

2. Preliminaries
We say the linear system

x′′ + h (t)x′ + a(t)x = 0, (2.1)

associated to periodic boundary conditions

x(0) = x(T ), x′(0) = x′(T ) (2.2)
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is nonresonant when its unique solution is the trivial one. If (2.1)-(2.2) is nonres-
onant, as a consequence of Fredholm’s alternative theorem, the nonhomogeneous
equation

x′′ + h (t)x′ + a(t)x = l(t) (2.3)

admits a unique solution which can be written as

x(t) =
∫ T

0
G(t, s)l(s)ds,

where G(t, s) is the Green’s function of (2.1)-(2.2).
Now we assume that:
(A0) The Green’s function G(t, s), associated with (2.1)-(2.2), is positive for all

(t, s) ∈ [0, T ]× [0, T ].
For the general case, it is difficult to verify that condition (A0) holds. However,

by the following definition, we can get that G(t, s) is non-negative.

Definition 2.1. We say that (2.1)-(2.2) admits the anti-maximum principle if (2.3)-
(2.2) has a unique solution for any l ∈ C([0, T ],R) and the unique solution xl of
(2.3)-(2.2) satisfies xl(t) > 0 for all t ∈ [0, T ] if l ≥ 0 and l ̸≡ 0.

We can apply the anti-maximum principle to prove the existence of a solution to
an abstract nonlinear second order periodic boundary value problem. Moreover, we
can apply an explicit criterion in [1] obtained by Chu, Fan and Torres to ensure that
condition (A0) holds, which is obtained by the anti-maximum principle established
by Hakl and Torres (see [3]).

Define the functions

σ(h)(t) = exp(
∫ t

0
h(s)ds), σ1(h)(t) = σ(h)(T )

∫ t

0
σ(h)(s)ds+

∫ T

t
σ(h)(s)ds.

Lemma 2.1 (Corollary 2.6, [1]). If a ̸≡ 0 and the following two inequalities∫ T

0
a(s)σ(h)(s)σ1(−h)(s)ds ≥ 0, (H1)

and

sup
0≤t≤T

{
∫ t+T

t
σ(−h)(s)ds

∫ t+T

t
[a(s)]+σ(h)(s)ds} ≤ 4. (H2)

are satisfied, where [a(s)]+ = max{a(s), 0}. Then (A0) holds.

When (A0) holds, we always denote

m = min
0≤s,t≤T

G(t, s), M = max
0≤s,t≤T

G(t, s). (2.4)

Obviously M > m > 0.

Lemma 2.2 (Theorem 20.10, [5]). Let E be a real Banach space and Ω ⊂ E be a
bounded open set with 0 ∈ Ω. Suppose that A : Ω → E is a completely continuous
operator. If there is y0 ∈ E with y0 ̸= 0 such that x ̸= Ax + λy0, for all x ∈ ∂Ω
and λ ≥ 0, then deg(I − A,Ω, θ) = 0, where deg stands for the Leray-Schauder
topological degree in E.
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Let

E = C([0, T ], R), ∥ x ∥= max{|x(t)|
∣∣∣x(t) ∈ E, t ∈ [0, T ]},

P = {x(t) ∈ E : x(t) ≥ 0, ∀t ∈ [0, T ]}.

Clearly, (E, ∥ · ∥) is a real Banach space and P is a totally positive cone of E.
Denote the dual space of E by E∗ and the dual cone of P by P ∗. Then

E∗ = {y : y is right continuous on [0, T ) and is of bounded variation on [0, T ]
with y(0) = 0},

P ∗ = {y ∈ E∗ : y is nondecreasing on [0, T ]}.
Moreover, the bounded linear functional on E can be represented in the Riemann-

Stieltjes integral

< y, x >=
∫ T

0
x(t)dy(t), x ∈ E, y ∈ E∗.

Define an operator A by

(Ax)(t) =
∫ T

0
G(t, s)g(s)f(s, x(s))ds, x ∈ E. (2.5)

Clearly, A : E → E is a completely continuous nonlinear operator, it is easy to
verify that a positive solution of (1.2) is just a fixed point of the operator equation
x = Ax.

Moreover, define an operator L by

(Lx)(t) =
∫ T

0
G(t, s)g(s)x(s)ds, x ∈ E. (2.6)

Clearly, L : E → E is a completely continuous linear operator, satisfying L(P ) ⊂ P
and L(P\{0}) ⊂ intP . That is, L is a strongly positive, completely continuous,
linear operator. Moreover, since G(t, s) is positive, g ∈ C((0, T ),R+) ∩ L[0, T ] and∫ T

0
g(t)dt > 0, the spectral radius r(L) of the operator L is positive [14].
Let L∗ : E∗ → E∗ be the dual operator of L, given by

(L∗y)(s) =
∫ s

0

∫ T

0
G(t, τ)g(τ)dy(t)dτ, y ∈ E∗. (2.7)

In order to obtain the properties of L and L∗, next we recall the Krein-Rutman
Theorem [6].

Lemma 2.3 (Krein-Rutman theorem [6]). Let P be a cone, and L is a completely
continuous linear operator strongly positive with respect to P , then r(L) is an eigen-
value of L and L∗ with eigenvectors in P\{0} and P ∗\{0}.

By Lemma 2.3, we have p ∈ P\{0} and w ∈ P ∗\{0} such that

Lp = r(L)p (2.8)

and
L∗w = r(L)w, w(T ) = 1. (2.9)

From the definition of L∗, the continuity of G and the integrability of g, we have
w ∈ C1[0, T ]. Denote w′(t) = q(t), then q ∈ P\{0}, and (2.9) can be written in the
following equivalent form

r(L)q(s) =
∫ T

0
G(t, s)g(s)q(t)dt,

∫ T

0
q(t)dt = 1. (2.10)
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Lemma 2.4. Assume P0 is the subcone of P , given by

P0 = {x ∈ P :
∫ T

0
x(t)q(t)dt ≥ δ ∥ x ∥},

where δ = m
M

∫ T

0
q(t)dt = m

M , then L(P ) ⊂ P0.

Proof. Since∫ T

0
(Lx)(t)q(t)dt =

∫ T

0

∫ T

0
G(t, s)g(s)x(s)q(t)dsdt ≥ m

∫ T

0

∫ T

0
g(s)x(s)q(t)dsdt

and
∥ Lx ∥= max

0≤t≤T
|
∫ T

0
G(t, s)g(s)x(s)ds |≤ M

∫ T

0
g(s)x(s)ds,

we have
δ ∥ Lx ∥≤ m

∫ T

0

∫ T

0
g(s)x(s)q(t)dsdt ≤

∫ T

0
(Lx)(t)q(t)dt.

The proof is complete.

3. Main results
Let λ1 = 1/r(L), then λ1 is the first positive eigenvalue of the eigenvalue problemx′′ + h (t)x′ + a(t)x = λg(t)x, t ∈ [0, T ],

x(0) = x(T ), x′(0) = x′(T ).

We list the following assumptions on f :
(A1) lim inf

x→+∞
f(t,x)

x > λ1, uniformly on t ∈ [0, T ]; lim sup
x→−∞

f(t,x)
x < λ1, uniformly on

t ∈ [0, T ].
(A2) lim sup

x→0

|f(t,x)|
|x| < λ1, uniformly on t ∈ [0, T ].

(A3) lim sup
x→∞

|f(t,x)|
|x| < λ1, uniformly on t ∈ [0, T ].

(A4) lim inf
x→0+

f(t,x)
x > λ1, uniformly on t ∈ [0, T ]; lim sup

x→0−

f(t,x)
x < λ1, uniformly on

t ∈ [0, T ].

Theorem 3.1. If (A0)− (A2) hold, then (1.2) has at least one positive solution.

Proof. (A1) implies that there are ε ∈ (0, λ1) and C1 > 0 such that

f(t, x) ≥ (λ1 + ε)x− C1, ∀x ≥ 0, t ∈ [0, T ], (3.1)

and
f(t, x) ≥ (λ1 − ε)x− C1, ∀x ≤ 0, t ∈ [0, T ]. (3.2)

The above inequalities imply that

f(t, x) ≥ (λ1 + ε)x− C1 ≥ (λ1 − ε)x− C1,

if (t, x) ∈ [0, T ]× [0,+∞), and

f(t, x) ≥ (λ1 − ε)x− C1 ≥ (λ1 + ε)x− C1,
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if (t, x) ∈ [0, T ]× (−∞, 0]. Thus, we have

f(t, x) ≥ (λ1 + ε)x− C1, ∀x ∈ R, t ∈ [0, T ]. (3.3)

and
f(t, x) ≥ (λ1 − ε)x− C1, ∀x ∈ R, t ∈ [0, T ]. (3.4)

Let
M1 = {x ∈ E : there exists some σ ≥ 0 such that x = Ax+ σp},

where p ∈ P\{0} is given by (2.8). Next we prove that M1 is bounded on E. From
the definition of M1, if x0 ∈ M1, there exists σ0 ≥ 0, such that

x0(t) = (Ax0)(t) + σ0p(t) =
∫ T

0
G(t, s)g(s)f(s, x0(s))ds+ σ0p(t). (3.5)

Combining (3.5) with (3.3), we have

x0(t) ≥ (λ1 + ε)(Lx0)(t)− C1(L1)(t), (3.6)

where 1 refers to the constant function 1(t) ≡ 1, ∀t ∈ [0, T ]. Multiply q(t) on both
sides of (3.6) and integrate over [0, T ], also in view of (2.10), we can obtain∫ T

0
x0(t)q(t)dt ≥ [1 + εr(L)]

∫ T

0
x0(t)q(t)dt− C1r(L),

where q(t) is given by (2.10), thus∫ T

0
x0(t)q(t)dt ≤ C1

ε . (3.7)

Moreover, (3.5) is equivalent to

x0(t)− (λ1 − ε)(Lx0)(t) + C1(L1)(t) =(L[Fx0 − (λ1 − ε)x0 + C11])(t) + σ0p(t)

=(L[Fx0 − (λ1 − ε)x0 + C11])(t) + σ0λ1(Lp)(t)

=(L[Fx0 − (λ1 − ε)x0 + C11 + σ0λ1p])(t),

where Fx(t) = f(t, x(t)). Since (3.4) holds, (Fx0 − (λ1 − ε)x0 + C1)(t) ∈ P , that
is, (Fx0 − (λ1 − ε)x0 + C11 + σ0λ1p)(t) ∈ P . By Lemma 2.4, we obtain

x0(t)− (λ1 − ε)(Lx0)(t) + C1(L1)(t) ∈ P0.

Thus,

∥ x0(t)− (λ1 − ε)(Lx0)(t) + C1(L1)(t) ∥

≤ 1
δ

∫ T

0
[x0(t)− (λ1 − ε)(Lx0)(t) + C1(L1)(t)]q(t)dt

= r(L)ε
δ

∫ T

0
x0(t)q(t)dt+

C1r(L)
δ

≤ 2C1r(L)
δ .

Since (λ1−ε)r(L) < 1, the operator I− (λ1−ε)L has the bounded inverse operator
(I − (λ1 − ε)L)−1. Thus, there exists Q > 0 such that ∥ x ∥≤ Q, for all x ∈ M1.
Therefore, M1 is bounded. For each R > sup

x∈M1

∥ x ∥, we have

x ̸= Ax+ σp, ∀x ∈ ∂BR, ∀σ ≥ 0,
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where BR = {x ∈ E :∥ x ∥< R}. By Lemma 2.2, we obtain

deg(I −A,BR, θ) = 0. (3.8)

On the other hand, (A2) shows that there are ρ ∈ (0, λ1) and r > 0, such that

|f(t, x)| ≤ (λ1 − ρ)|x|, ∀|x| ≤ r, t ∈ [0, T ].

Moreover, we may choose r > 0 such that r < sup
x∈M1

∥ x ∥. Therefore

|(Ax)(t)| ≤ (λ1 − ρ)(L|x|)(t), ∀x ∈ Br, t ∈ [0, T ].

Next, we need to prove that

x ̸= µAx, ∀x ∈ ∂Br, µ ∈ [0, 1]. (3.9)

If not, then there are x0 ∈ ∂Br and µ0 ∈ [0, 1] such that x0 = µ0Ax0. Let
v(t) = |x0(t)|, then v ∈ P and v ≤ µ0(λ1 − ρ)Lv ≤ (λ1 − ρ)Lv. Obviously L
is a linear increasing operator, thus, Lv ≤ (λ1−ρ)L2v, so v ≤ (λ1−ρ)2L2v, thence,
the nth iteration of this inequality implies that v ≤ (λ1 − ρ)nLnv(n = 2, 3, ...),
therefore, ∥ v ∥≤ (λ1 − ρ)n ∥ Ln ∥∥ v ∥, where ∥ L ∥= sup

x ̸=0,x∈E

∥Lx∥
∥x∥ . Thus, we have

1 ≤ (λ1 − ρ)n ∥ Ln ∥, which means

(λ1 − ρ)r(L) = (λ1 − ρ) lim
n→∞

n
√

∥ Ln ∥ ≥ 1,

however, (λ1 − ρ)r(L) = 1− ρr(L) < 1. Therefore, (3.9) holds. So I and I −A are
homotopic on ∂Br. From the homotopy invariance of Leray-Schauder degree, we
obtain

deg(I −A,Br, θ) = 1.

Combine this with (3.8), we have

deg(I −A,BR \Br, θ) = deg(I −A,BR, θ)− deg(I −A,Br, θ) = −1.

Thus the operator A has at least one fixed point in BR \ Br. That is, (1.2) has at
least one positive solution. This proves the theorem.

From Theorem 3.1 and Lemma 2.1, we have

Corollary 3.1. If a ̸≡ 0, (H1) and (H2) hold, f(t, x) satisfies (A1) and (A2),
then Theorem 3.1 is still true. In particular, when h(t) ≡ 0, (H1) and (H2) can be
changed to ∫ T

0
a(s)ds ≥ 0, (H3)

and ∫ T

0
a(s)ds ≤ 4

T . (H4)

Theorem 3.2. If (A0), (A3) and (A4) hold, then (1.2) has at least one positive
solution.
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Proof. (A4) implies that there are ε ∈ (0, λ1) and r > 0 such that

f(t, x) ≥ (λ1 + ε)x, ∀x ∈ [0, r], t ∈ [0, T ], (3.10)

and
f(t, x) ≥ (λ1 − ε)x, ∀x ∈ [−r, 0], t ∈ [0, T ]. (3.11)

From the above inequalities, we have

f(t, x) ≥ (λ1 + ε)x ≥ (λ1 − ε)x,

if (t, x) ∈ [0, T ]× [0, r], and

f(t, x) ≥ (λ1 − ε)x ≥ (λ1 + ε)x,

if (t, x) ∈ [0, T ]× [−r, 0]. Thus, we have

f(t, x) ≥ (λ1 + ε)x, ∀x ∈ [−r, r], t ∈ [0, T ], (3.12)

and
f(t, x) ≥ (λ1 − ε)x, ∀x ∈ [−r, r], t ∈ [0, T ]. (3.13)

Next we prove that

x ̸= Ax+ σp, ∀x ∈ ∂Br, ∀σ ≥ 0, (3.14)

where p ∈ P \ {0} is given by (2.8). If not, then there are x0 ∈ ∂Br and σ0 ≥ 0
such that

x0(t) = (Ax0)(t) + σ0p(t). (3.15)

By (3.10), we obtain (Ax0)(t) ≥ (λ1 + ε)(Lx0)(t), therefore,

x0(t) ≥ (λ1 + ε)(Lx0)(t). (3.16)

Multiply (3.16) by q(t) on both sides and integrate over [0, T ] and use (2.10), we
can obtain∫ T

0
x0(t)q(t)dt ≥ (λ1 + ε)

∫ T

0
(Lx0)(t)q(t)dt = (1 + r(L)ε)

∫ T

0
x0(t)q(t)dt,

where q(t) is given by (2.10), thus∫ T

0
x0(t)q(t)dt ≤ 0. (3.17)

Moreover, from (3.15), we have

x0(t)− (λ1 − ε)(Lx0)(t) =(Ax0)(t)− (λ1 − ε)(Lx0)(t) + σ0p(t)

=(L[Fx0 − (λ1 − ε)x0])(t) + σ0p(t).

By (3.13) and Lemma 2.4, we have x0(t)− (λ1 − ε)(Lx0)(t) ∈ P0, thus

∥ x0(t)− (λ1 − ε)(Lx0)(t) ∥≤
1

δ

∫ T

0

[x0(t)− (λ1 − ε)(Lx0)(t)]q(t)dt
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=
εr(L)

δ

∫ T

0

x0(t)q(t)dt ≤ 0.

Then we have x0(t) − (λ1 − ε)(Lx0)(t) = (I − (λ1 − ε)L)x0(t) = 0, where I is the
identity operator. Moreover, since (λ1−ε)r(L) < 1, the operator I−(λ1−ε)L has the
bounded linear inverse operator (I−(λ1−ε)L)−1. Thus, x0(t) = (I−(λ1−ε)L)−10 =
0, which contradicts x0 ∈ ∂Br, that is, (3.14) holds. By Lemma 2.2, we have

deg(I −A,Br, θ) = 0. (3.18)

On the other hand, (A3) shows that there are ε ∈ (0, λ1) and C2 > 0 such that

|f(t, x)| ≤ (λ1 − ε)|x|+ C2, x ∈ R, t ∈ [0, T ]. (3.19)

Let
M2 = {x ∈ E : x = σAx, for some σ ∈ [0, 1]}.

Next we prove that M2 is bounded on E. From the definition of M2, if x0 ∈ M2,
there is σ0 ∈ [0, 1], such that x0 = σ0Ax0. By (3.19), we have

|x0| ≤ (λ1 − ε)L|x0|+ C2L1.

Let v0 = |x0| and u0 = C2L1, then v0 ∈ P , u0 ∈ P , and

v0 ≤ (λ1 − ε)Lv0 + u0.

Obviously L is a linear increasing operator, thus, Lv0 ≤ (λ1 − ε)L2v0 + Lu0, so
v0 ≤ (λ1− ε)2L2v0+(λ1− ε)Lu0+u0, therefore, the iteration of this inequality has
the following form

v0 ≤
n∑

i=0

(λ1 − ε)iLiu0 + (λ1 − ε)n+1Ln+1v0, (n = 1, 2, ...).

Since (λ1 − ε)r(L) = 1− εr(L) < 1, we have

lim
n→∞

n∑
i=0

(λ1 − ε)iLiu0 = (I − (λ1 − ε)L)−1u0, lim
n→∞

(λ1 − ε)n+1Ln+1v0 = 0.

Then v0 ≤ (I − (λ1 − ε)L)−1u0, therefore, M2 is bounded.
Choose R > max{ sup

x∈M2

∥ x ∥, r}, then

x ̸= σAx, ∀x ∈ ∂BR, ∀0 ≤ σ ≤ 1.

From the homotopy invariance of Leray-Schauder degree, we obtain

deg(I −A,BR, θ) = 1.

Combine this and (3.18), we have

deg(I −A,BR\Br, θ) = 1− 0 = 1.

Thus the operator A has at least one fixed point in BR \ Br. That is, (1.2) has at
least one positive solution. The proof is finished.

From Theorem 3.2 and Lemma 2.1, we also have



522 P. Liu, Y. Fan & L. Wang

Corollary 3.2. If a ̸≡ 0, (H1) and (H2) hold, f(t, x) satisfies (A3) and (A4),
then Theorem 3.2 is still true. In particular, when h(t) ≡ 0, (H1) and (H2) can be
changed to ∫ T

0
a(s)ds ≥ 0, (H3)

and ∫ T

0
a(s)ds ≤ 4

T . (H4)

Moreover, if we set
(A1)′ lim sup

x→+∞

f(t,x)
x < λ1, uniformly on t ∈ [0, T ]; lim inf

x→−∞
f(t,x)

x > λ1, uniformly on

t ∈ [0, T ].
(A4)′ lim sup

x→0+

f(t,x)
x < λ1, uniformly on t ∈ [0, T ]; lim inf

x→0−

f(t,x)
x > λ1, uniformly on

t ∈ [0, T ], then, we have the following theorems.

Theorem 3.3. If (A0), (A1)′ and (A2) hold, then (1.2) has at least one positive
solution.

Theorem 3.4. If (A0), (A3) and (A4)′ hold, then (1.2) has at least one positive
solution.

The proofs of the two theorems are similar to that of Theorem 3.1 and Theorem
3.2 respectively, so they are omitted.

4. Examples
We give two examples to verify the validity of our results.

Example 4.1. Consider the following equation:x′′ + x′ + 2x = b1x+ x2,

x(0) = x(1), x′(0) = x′(1).
(4.1)

where 0 < b1 < λ1 and λ1 is the first positive eigenvalue of the following equationx′′ + x′ + 2x = λx,

x(0) = x(1), x′(0) = x′(1).

Through some calculations, we obtain λ1 = 2, so 0 < b1 < 2. Moreover, the
conditions of Lemma 2.1 are satisfied, that is, (A0) holds. Let g(t) = 1, f(t, x) =
b1x+ x2, then

lim inf
x→+∞

f(t,x)
x = lim inf

x→+∞
(b1 + x) = +∞ > λ1 = 2, uniformly on t ∈ [0, 1],

lim sup
x→−∞

f(t,x)
x = lim sup

x→−∞
(b1 + x) = −∞ < λ1 = 2, uniformly on t ∈ [0, 1],

lim sup
x→0

|f(t,x)|
|x| = lim sup

x→0
|b1 + x| = b1 < λ1 = 2, uniformly on t ∈ [0, 1].

Thus, (A1) and (A2) are satisfied. By Theorem 3.1, we obtain that (4.1) has at
least one positive solution.
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Example 4.2. .Consider the following equation:x′′ + x′ + (1 + cos 4t)x = 1√
t
(b2x+ x

1
2 ),

x(0) = x(π2 ), x′(0) = x′(π2 ).
(4.2)

where 0 < b2 < λ1 and λ1 is the first positive eigenvalue of the following equationx′′ + x′ + (1 + cos 4t)x = 1√
t
λx,

x(0) = x(π2 ), x′(0) = x′(π2 ).

Through some calculations, the conditions of Lemma 2.1 are satisfied, that is,
(A0) holds. Let g(t) = 1√

t
, f(t, x) = b2x+x

1
2 . Moreover, notice that g(t) is singular

at t = 0, then
lim sup
x→∞

|f(t,x)|
|x| = lim sup

x→∞
|b2 + x− 1

2 | = b2 < λ1, uniformly on t ∈ [0, π
2 ],

lim inf
x→0+

f(t,x)
x = lim inf

x→0+
(b2 + x− 1

2 ) = +∞ > λ1, uniformly on t ∈ [0, π
2 ],

lim sup
x→0−

f(t,x)
x = lim sup

x→0−
(b2 + x− 1

2 ) = −∞ < λ1, uniformly on t ∈ [0, π
2 ].

Thus, (A3) and (A4) are satisfied. By Theorem 3.2, we obtain that (4.2) has at
least one positive solution.
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