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Dynamics of a Diffusive SIR Epidemic Model
with Time Delay*

Bounsanong Sounvoravong1 and Shangjiang Guo2,†

Abstract This paper is devoted to a reaction-diffusion system for a SIR epi-
demic model with time delay and incidence rate. Firstly, the nonnegativity
and boundedness of solutions determined by nonnegative initial values are
obtained. Secondly, the existence and local stability of the disease-free equi-
librium as well as the endemic equilibrium are investigated by analyzing the
characteristic equations. Finally, the global asymptotical stability are obtained
via Lyapunov functionals.
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1. Introduction

In this paper, we consider the following SIR epidemic model:

St(x, t)− dS∆S(x, t) = am− aS(x, t)− S(x, t)f(I(x, t− τ)), x ∈ Ω,

It(x, t)− dI∆I(x, t) = S(x, t)f(I(x, t− τ))− (a+ c)I, x ∈ Ω,

Rt(x, t)− dR∆R(x, t) = cI(x, t)− aR(x, t), x ∈ Ω,

∂S

∂n
=
∂I

∂n
=
∂R

∂n
= 0, x ∈ ∂Ω,

(1.1)

for t ≥ 0, where dS , dI , dR, a, c, m and τ are positive constants, the density
functions S(x, t), I(x, t) and R(x, t) represent the numbers of susceptible, infective
and recovered individuals at position x and time t, respectively, and the parameters
dS , dI , and dR are their diffusion coefficients. The constant am is the recruitment
rate of the susceptible population, a is a natural death rate for all the susceptible,
infective and recovered population, c is the recovery rate of the infective individuals,
and τ is the latent period of the disease. The constant m can be interpreted as a
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carrying capacity, or maximum possible population size. ∆ denotes the Laplacian
operator on RN , n is the outward unit normal vector on ∂Ω. The homogeneous
Neumann boundary condition means that the two species have zero flux across the
boundary ∂Ω. In practical use, there are various types of the incidence term Sf(I).
The common types include bilinear incidence (or mass action incidence) bSI (see,
for example, [4,6,7,16,18,22,27]), standard incidence bSI/m (see, for example, [11]),
and saturated incidence bSI/(1+αI) (see, for example, [5,11,12,17,19,20,24,26,28]),
where b and α are positive constants. Throughout this paper, we always assume
that the function f(·) is strictly monotone increasing, positive, and continuously
differentiable on [0,∞) and satisfies the conditions

f(0) = 0, f(x) ≤ f ′(0)x

for all x > 0, and [
f(x)

x
− f(y)

y

]
[f(x)− f(y)] ≤ 0 (1.2)

for all x, y > 0. The initial conditions of system (1.1) are given as{
S(x, 0) = S0(x), R(x, 0) = R0(x),

I(x, θ) = I0(x, θ) for all θ ∈ [−τ, 0].
(1.3)

For a SIR epidemic model without diffusion (i.e., dS = dI = dR = 0), Wang [13]
studied the existence, uniqueness and some estimates of a global solution, and also
investigated the long time behavior of solutions to an initial-boundary value prob-
lem in a half space. Similarly, in this paper we can define a number R0 (so-called the
basic reproduction number) such that the disease-free equilibrium is stable when
R0 < 1. But for the case R0 > 1 the endemic equilibrium is asymptotically sta-
ble. Kumar, Narayan and Reddy [14] studied the local asymptotical stability of
the disease-free equilibrium and endemic equilibrium, and obtained the existence of
the Hopf bifurcation at the positive equilibrium, Greenhalgh [8] studied the some
SEIBS epidemiological models with vaccination and temporary immunity are con-
sidered. First of all, previously published work is reviewed. A general model with a
constant contact rate and a density dependent death rate is examined. The model
is reformulated in terms of the proportions of susceptible, incubating, infectious,
and immune individuals. The equilibrium and stability properties of this model are
examined, assuming that the average duration of immunity exceeds the infectious
period. There is a threshold parameter R0, and the disease can persist if and only
if R0, exceeds one. The disease-free equilibrium always exists and is locally stable
if R0 < 1 and unstable if R0 > 1. Conditions are derived for the global stability
of the disease-free equilibrium. For R0 > 1, the endemic equilibrium is unique and
locally asymptotically stable.

This paper is organized as follows. In section 2 we consider the nonnegativity and
boundedness and show that all solutions of system (1.1) is nonnegative and bounded
for all t ≥ 0; Sections 3 is devoted to the local stability of equilibria of model (1.1).
The global stability of the endemic equilibrium when R0 < 1 and R0 > 1 is proved
in section 4, Numerical simulations are provided in section 5. In the paper, we
denote by N (respectively, R+) the set of all the positive integers (respectively,
nonnegative real numbers), and N0 = N ∪ {0}. Denote by Hk(Ω,R+) (k ≥ 0) the
Sobolev space of the nonnegative L2-functions f(x) defined on Ω whose derivatives
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dn

dxn f (n = 1, . . . , k) also belong to L2(Ω). Denote the spaces X = {ψ ∈ H2(Ω,R+) :
∂ψ/∂n = 0 on ∂Ω} and Y = L2(Ω,R+). Denote by Ckτ = Ck([−τ, 0],X) the Banach
space of k-times continuously differentiable mappings from [−τ, 0] into X equipped
with the supremum norm ‖φ‖ = sup{‖φ(j)(θ)‖X : θ ∈ [−τ, 0], j = 0, 1, ..., k} for
φ ∈ Ckτ .

2. Nonnegativity and boundedness

From biological meaning, it is necessary to show that all solutions of system (1.1)
is nonnegative and bounded for all t ≥ 0. Generally speaking, the local existence of
solution of (1.1) and (1.3) is guaranteed, but the global existence of solution for (1.1)
and (1.3) depends on the fact that the solution does not become infinite in a finite
time. Since the growth functions are sufficiently smooth, the standard parabolic
equation theory (see Ladyzenskaja, Solonnikov and Ural¡ceva [15]) implies that the
solution of (1.1) and (1.3) is unique and continuous for all t ≥ 0 in Ω. Furthermore,
we have the following result.

Lemma 2.1. Let Ω ⊂ RN with 1 ≤ N ≤ 3 be a bounded domain with smooth
boundary ∂Ω. For each initial value (S0, I0, R0) ∈ X×C0

τ×X satisfying S0, I0, R0 ≥
0 (but not identically equal to 0), system (1.1) has a unique global classical solution
(S(x, t), I(x, t), R(x, t)) satisfying that S(x, t) ≥ 0, I(x, t) ≥ 0, and R(x, t) ≥ 0 for
t ≥ 0 and x ∈ Ω, and that lim supt→+∞ S(x, t) ≤ m for all x ∈ Ω.

Proof. We first give the existence of local solutions of (1.1), which can be readily
proved by the Amann¡s theorem [1, 2]. Namely, there exists Tmax > 0 such that
the problem (1.1) has a unique classical solution (S, I,R) ∈ C(Ω × [0, Tmax),R3

+)

satisfying S(x, t) ≥ 0, I(x, t) ≥ 0, and R(x, t) ≥ 0 for all (x, t) ∈ Ω × [0, Tmax).
Moreover, if Tmax < ∞ then ‖S(·, t)‖L∞ + ‖I(·, t)‖L∞ + ‖R(·, t)‖L∞ → ∞. Using
the facts that S, I, R, and f(·) are non-negative, then we have

St(x, t)− dS∆S(x, t) = am− aS(x, t)− S(x, t)f(I(x, t− τ)) ≤ am− aS(x, t)

for all (x, t) ∈ Ω × (0, Tmax), and ∂S
∂n = 0 for all x ∈ ∂Ω, and S(x, 0) = S0(x) for

all x ∈ Ω. Let S∗(t) be the solution of the following ordinary differential equation
problem 

dS∗(t)

dt
=am− aS∗, t > 0,

S∗(0) =‖S0‖L∞ .
(2.1)

It is easy to see that S∗(t) ≤ Smax , max{m, ‖S0‖L∞} and that S∗(t) is a super-
solution of the following partial differential equation problem

S̃t(x, t)− dS∆S̃(x, t) = am− aS̃(x, t), x ∈ Ω, t > 0,

∂S̃

∂n
= 0, x ∈ ∂Ω, t > 0,

S̃(x, 0) = S0(x), x ∈ Ω,

and hence it holds that

0 < S̃(x, t) ≤ S∗(t) for all (x, t) ∈ Ω× (0,∞),
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where S̃ > 0 results from the strong maximum principle. Therefore, using the
comparison principle, one has

0 < S(x, t) ≤ S̃(x, t) ≤ S∗(t) ≤ Smax (2.2)

for all (x, t) ∈ Ω× (0, Tmax). Let M(x, t) = S(x, t) + I(x, t) +R(x, t), then we have

Mt(x, t) = ∆[dSS(x, t) + dII(x, t) + dRR(x, t)]− aN(x, t) + am.

Integrating the above equation over Ω, one has

d

dt

∫
Ω

M(x, t)dx+ a

∫
Ω

M(x, t)dx = am|Ω|.

and hence ∫
Ω

M(x, t)dx ≤ max

{
m|Ω|,

∫
Ω

M(x, 0)dx

}
(2.3)

for all t ∈ (0, Tmax). Using the variation-of-constants formula, we get

I(x, t) ≤ e(dI∆−a−c)tI(·, 0) + Smax

∫ t

0

e(dI∆−a−c)(t−s)f(I(·, s− τ))ds,

which implies ‖I(·, t)‖L∞ ≤ I1(t) + I2(t) with

I1(t) =‖e(dI∆−a−c)tI(·, 0)‖L∞ ,

I2(t) =Smaxf
′(0)

∫ t

0

‖e(dI∆−a−c)(t−s)I(·, s− τ)‖L∞ds.

Using the same argument in [3, Lemma 3.2] has shown that there is a constant

c1 > 0 such that I1(t) ≤ c1 for all t ∈ (0, Tmax). Letting Ĩ(t) = 1
|Ω|
∫

Ω
I(x, t)dx,

then it follows from (2.3) that there is a constant c2 > 0 such that Ĩ(t) ≤ c2 for all t.
Multiplying by 2I(x, t) the second equation of (1.1) and then integrating the resulted
equation over Ω and using the fact that 0 < S(x, t) ≤ Smax and f(x) ≤ f ′(0)x, we
have

d

dt
‖I(·, t)‖2L2 + 2dI‖∇I(·, t)‖2L2

≤2Smaxf
′(0)

∫
Ω

I(x, t)I(x, t− τ)dx− 2(a+ c)‖I(·, t)‖2L2 .
(2.4)

It follows from the Young’s inequality that∫
Ω

I(x, t)I(x, t− τ)dx ≤ Smaxf
′(0)

2(a+ c)
‖I(·, t)‖2L2 +

a+ c

2Smaxf ′(0)
‖I(·, t− τ)‖2L2 . (2.5)

The Gagliardo-Nirenberg inequality and Young’s inequality and (2.3) can give us
that and

S2
maxf

′2(0)

a+ c
‖I(·, t)‖2L2≤ c1

[
‖∇I(·, t)‖L2‖I(·, t)‖L1 +‖I(·, t)‖2L1

]
≤ dI‖∇I(·, t)‖2L2+c2,

which, together with (2.4) and (2.5), implies that

d

dt
‖I(·, t)‖2L2 + 2(a+ c)‖I(·, t)‖2L2 ≤ c2 + (a+ c)‖I(·, t− τ)‖2L2 .
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This together with the Gronwall’s inequality implies that ‖I(·, t)‖L2< c3 for all t.
Using the smoothing properties of {et∆ : t ≥ 0} ( [23, Lemma 1.3]) again and noting
t− t0 ≤ 1, we obtain

I2(t) ≤Smaxf
′(0)

∫ t

0

e−(a+c)(t−s)
∥∥∥edI(t−s)∆

[
I(·, s− τ)− Ĩ(s− τ)

]∥∥∥
L∞

ds

+ Smaxf
′(0)

∫ t

0

e−(a+c)(t−s)
∥∥∥edI(t−s)∆Ĩ(s− τ)

∥∥∥
L∞

ds

≤c4
∫ t

0

e−(a+c)(t−s)
[
1 + (t− s)−N/4

] ∥∥∥I(·, s− τ)− Ĩ(s− τ)
∥∥∥
L2
ds

+ c2Smaxf
′(0)

∫ t

0

e−(a+c)(t−s)ds

≤c5
∫ t

0

e−(a+c)(t−s)(t− s)−N/4ds+ c5

∫ t

0

e−(a+c)(t−s)ds

=c5

∫ t

0

e−(a+c)ss−N/2ds+ c5

∫ t

0

e−(a+c)sds,

and hence

‖I(·, t)‖L∞ ≤I1(t) + I2(t)

≤c1 + c5

∫ t

0

e−(a+c)ss−N/2ds+ c5

∫ t

0

e−(a+c)sds≤ c6
(2.6)

for all t ∈ (0, Tmax), where we have used (2.3) and the fact that
∫ t

0
e−(a+c)sds ≤ 1

a+c
and ∫ t

0

e−(a+c)ss−N/4ds =

∫ t

1

e−(a+c)ss−N/4ds+

∫ 1

0

e−(a+c)ss−N/2ds

≤
∫ t

1

e−(a+c)sds+

∫ 1

0

s−N/4ds

≤ 1

a+ c
+

4

4−N
.

Using a similar argument as above, we can show that there is a positive constant c7
independently of t such that ‖R(·, t)‖L∞ ≤ c7 for all t ∈ (0, Tmax). This, together
with (2.2) and (2.6) and the local existence of the solution (S(x, t), I(x, t), R(x, t))
of (1.1) with initial value (S0, I0, R0) ∈ X×C0

τ ×X, implies that system (1.1) has a
unique global classical solution (S, I,R) ∈ C(Ω× [0,∞),R3). We further have from
(2.1) that lim supt→∞ S∗(t) = m, which along with the above inequalities gives

lim sup
t→∞

S(x, t) ≤ m for all x ∈ Ω.

The proof is completed.

In what follows, we analyze the existence and stability of the disease-free equi-
librium and endemic equilibria of model (1.1). Note that the first two equations of
model (1.1) about (S, I) don’t contain R, and the third equation is a linear equation
of R. Therefore, the dynamical behaviors of model (1.1) is equivalent to those of
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the following model
St(x, t)− dS∆S(x, t) = am− aS(x, t)− S(x, t)f(I(x, t− τ)), x ∈ Ω,

It(x, t)− dI∆I(x, t) = S(x, t)f(I(x, t− τ))− (a+ c)I(x, t), x ∈ Ω,

∂S

∂n
=
∂I

∂n
= 0, x ∈ ∂Ω,

(2.7)

which only contains S and I. Obviously, solutions of system (2.7) with positive
initial values are positive and bounded, and system (2.7) has an equilibrium at
(m, 0) in the S-axis for all permissible parameters. What we are interested in is
the equilibria in the interior of the first quadrant, so we need to seek conditions
ensuring such equilibria exist. In fact, if (S, I) is an interior equilibrium of system
(2.7), then the positive numbers S and I satisfy

S =
am− (a+ c)I

a
, a(a+ c) = F (I), (2.8)

where the continuous function F (·) is given by

F (x) =
[am− (a+ c)x]f(x)

x
.

It follows from (1.2) that F (x) is monotone decreasing on (0,∞) and so F (x) ≤
amf ′(0). Hence, the second equation of (2.8) is solvable for x > 0 when R0 ,
mf ′(0)
a+c > 1. Then the following results are obtained immediately.

Lemma 2.2. (i) If the basic reproductive rate R0 < 1 , then model (2.7) has ex-
actly one disease-free equilibrium E0(m, 0) ;

(ii) If the basic reproductive rate R0 > 1, then model (2.7) has two equilibria: a
disease-free equilibrium E0(m, 0) and an endemic equilibrium E∗(S∗, I∗).

3. Local stability

In this section, we discuss the local stability of the positive equilibrium of the
following model:

St − dSSxx = am− aS − Sf(I(x, t− τ)), x ∈ (0, lπ), t > 0,

It − dIIxx = Sf(I(x, t− τ))− (a+ c)I, x ∈ (0, lπ), t > 0,

Sx = Ix = 0, x = 0, lπ, t ≥ 0.

(3.1)

We first consider the local stability of the constant steady-state of (3.1). Notice
that µ = σn , (n/l)2, n ∈ N0 are the eigenvalues of the linear eigenvalue problem
U ′′ + µU = 0 subject to the homogeneous Neumann boundary condition U ′(0) =
U ′(lπ) = 0. Let ϕn be the eigenfunction associated with the eigenvalue σn, then we
have

ϕ0(x) =
1√
lπ
, ϕn(x) =

√
2

lπ
cos

nx

l

for n ∈ N. We have the following results on the local stability of steady-state
solutions of (3.1)
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Theorem 3.1. (i) The steady-state solution (m, 0) is locally asymptotically stable
if R0 < 1, and is unstable if R0 > 1;

(ii) If R0 > 1 then the steady state solution (S∗, I∗) of (3.1) is locally asymptotically
stable for all τ ≥ 0.

Proof. The linearization of (3.1) at the steady-state solution E = (S, I) takes the
form {

ut − dSuxx = −[a+ f(I)]u− Sf ′(I)υ(x, t− τ),

υt − dIυxx = Sf ′(I)υ(x, t− τ) + f(I)u− (a+ c)υ.
(3.2)

If system (3.2) has a solution of the form u(x, t) = P (x)eλt, then we haveλ− ∂2

∂x2 + a+ f(I) Sf ′(I)e−λτ

−f(I) λ− ∂2

∂x2 + (a+ c)− Sf ′(I)e−λτ

P = 0. (3.3)

Let P =
∑∞
n=0(cn, dn)Tϕn, then we have

∞∑
n=0

λ− σn + a+ f(I) Sf ′(I)e−λτ

−f(I) λ− σn + (a+ c)− Sf ′(I)e−λτ

 cn
dn

 = 0,

and hence that (cn, dn) 6= 0 for some n ∈ N ∪ {0} if and only if

PS,In (λ) , det

λ+ σn + a+ f(I) Sf ′(I)e−λτ

−f(I) λ+ σn + (a+ c)− Sf ′(I)e−λτ

 = 0. (3.4)

Thus, the steady-state solution E = (S, I) is locally asymptotically stable if all
zeros of PS,In (·) have negative real parts for all n ∈ N0 and is unstable if there exists
some n ∈ N0 such that PS,In (·) has at least one zero with positive real parts (see
also [9, 10,21]).

We first consider the boundary steady-state solutions E0(m, 0). Notice that

Pm,0n (λ) = (λ+ σn + a)[λ+ σn + (a+ c)−mf ′(0)e−λτ ],

one of whose zeros is λ = −(a+ σn) < 0 for n ∈ N0, the others satisfy

λ+ a+ c+ σn = mf ′(0)e−λτ . (3.5)

Substituting λ = iω with ω > 0 into (3.5) yields

a+ c+ σn = mf ′(0) cos τω, −ω = mf ′(0) sin τω,

from which it follows that ω2 = b2m2 − (a + c + σn)2. If R0 < 1 then ω2 =
[mf ′(0)]2 − (a + c + σn)2 < 0 and hence (3.5) has no purely imaginary solutions.
This implies that all the solutions to (3.5) have negative real parts for all τ ≥ 0 and
n ∈ N∪{0} and hence that the disease-free equilibrium E0 of model (3.1) is locally
asymptotically stable for all τ ≥ 0.

If R0 > 1 then ω = ωn ,
√

[mf ′(0)]2 − (a+ c+ σn)2 for some n ∈ N0 (for
example, n = 0) and we can obtain the following sequence of critical values of τ :

τk,n =
2kπ − arcsin ωn

mf ′(0)

ωn
, k ∈ N.
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By mean of the implicit function theorem, for each k ∈ N there exists δ > 0 and a
smooth mapping λ: (τk,n − δ, τk,n + δ) → C such that λ(τk,n) = iωn and that for
each τ ∈ (τk,n − δ, τk,n + δ), λ = λ(τ) is a solution to (3.5). Differentiating (3.5)
with respect to τ yields

λ′(τ) +mf ′(0)e−λ(τ)τ [τλ′(τ) + λ(τ)] = 0,

and hence

λ′(τ) = − mf ′(0)λ(τ)e−λ(τ)τ

1 + τmf ′(0)e−λ(τ)τ
= −λ(τ) [λ(τ) + a+ c+ σn]

1 + τ [λ+ a+ c+ σn]
.

In particular, we have

λ′(τk,n) =− iωn (iωn + a+ c+ σn)

1 + τk,n(iωn + a+ c+ σn)

=− iωn [iωn + a+ c+ σn] [1 + τk,n(−iωn + a+ c+ σn)]

|1 + τk,n(iωn + a+ c+ σn)|2
,

and hence

sgnReλ′(τk,n) =− sgnRe {i [iωn + a+ c+ σn] [1 + τk,n(−iωn + a+ c+ σn)]}

=− sgnRe
{

i
[
iωn + a+ c+ σn + τk,n |iωn + a+ c+ σn|2

]}
=ωn > 0.

This implies that as τ increases and passes through each critical value τk,n, two
more zero-points of Pm,0n (·) vary from a pair of conjugate complex numbers with
negative real parts to a pair of conjugate purely imaginary numbers and then to
a pair of conjugate complex numbers with positive real parts. This, together with
the fact that Pm,0n (·) has exactly one positive real zero-point mf ′(0)−a− c, implies
that Pm,0n (·) has at least one zero-point with a positive real part for all τ ≥ 0, and
hence that the disease-free equilibrium E0 of model (3.1) is locally asymptotically
stable for all τ ≥ 0.

Now, we consider the stability of steady-state solution E∗(S∗, I∗). In this case,
we have

PS
∗,I∗

n (λ) = λ2 +Bnλ+ Cn − S∗f ′(I∗)(λ+ En)e−λτ . (3.6)

with
Bn =2σn + 2a+ c+ f(I∗),

Cn =[σn + a+ f(I∗)](σn + a+ c),

En =σn + a.

We need to seek the necessary and sufficient condition ensuring that every zero of
PS∗,I∗n (·) has negative real parts. We start with the case where τ = 0. In this case,
we have

PS
∗,I∗

n (λ) =λ2 + [2σn + 2a+ c+ f(I∗)− S∗f ′(I∗)]λ
+ (σn + a+ f(I∗))(σn + a+ c)− (σn + a)S∗f ′(I∗).

(3.7)

It is easy to see that all zeros of PS∗,I∗n (λ) given in (3.7) have negative real parts
for all n ∈ N0, which implies that E∗(S∗, I∗) is locally asymptotically stable when
R0 > 1 and τ = 0.
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In what follows, we consider the case where τ > 0. Assume that PS∗,I∗n (·) has a
zero iω, then we have

−ω2 +Bniω + Cn − S∗f ′(I∗)(iω + En)(cosωτ − i sinωτ) = 0. (3.8)

Separating the real and imaginary parts, we get

Cn − ω2 =S∗f ′(I∗) (ω sinωτ + En cosωτ) ,

Bnω =S∗f ′(I∗) (−En sinωτ + ω cosωτ) ,
(3.9)

and hence

ω4 + [B2
n − 2Cn − (S∗f ′(I∗))2]ω2 + C2

n − (S∗f ′(I∗))2E2
n = 0. (3.10)

Note that

a+ c =
S∗f(I∗)

I∗
≥ S∗f ′(I∗),

then we have

B2
n − 2Cn − (S∗f ′(I∗))2 =[σn + a+ f(I∗)]2 + (σn + a+ c)2 − (S∗f ′(I∗))2

>(a+ c)2 −m2f ′2(I∗) > 0

and

Cn − S∗f ′(I∗)En =[σn + a+ f(I∗)](σn + a+ c)− (σn + a)S∗f ′(I∗)

≥(σn + a)(σn + a+ c)− (σn + a)S∗f ′(I∗)

=(σn + a)[σn + a+ c− S∗f ′(I∗] > 0.

This implies that there is no positive solutions to (3.10). Note that (S∗, I∗) is stable
when τ = 0, then it remains stable for all τ ≥ 0. Thus, the proof is completed.

4. Global asymptotical stability

In the previous section, we see that the disease-free equilibrium E0(m, 0) (respec-
tively, the endemic equilibrium E∗(S∗, I∗)) of model (3.1) is locally asymptotically
stable for all τ ≥ 0 when R0 < 1 (respectively, R0 > 1). In this section, we shall
study the global asymptotical stability. For this purpose, we introduce the following
two functions:

F (u) =
f(I∗u)

f(I∗)
, g(u) = u− 1− lnu

for u > 0. It is easy to see that function g(u) is strictly decreasing on (0, 1), is
strictly increasing on (1,+∞), and has a global minimum 0 at u = 1.

Lemma 4.1 ( [25]). g(F (u)) ≤ g(u) for ω > 0.

Theorem 4.1. The disease-free equilibrium E0(m, 0) is globally asymptotically sta-
ble for all τ ≥ 0 when R0 < 1.

Proof. Since E0 is locally asymptotically stable for all τ ≥ 0 when R0 < 1, then in
order to show it’s global asymptotical stability, we just need to consider it’s global
attractivity. Define Lyapunov functional as follows,

V (S(x, t), I(x, t)) =

∫
Ω

[
mg

(
S(x, t)

m

)
+ I(x, t) +m

∫ t

t−τ
f(I(x, s))ds

]
dx.
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Obviously, V (m, 0) = 0, and V is positive definite with respect to (S, I) ∈ R2
+ and

has the property V (S, I)→ +∞ as ‖(S, I)‖ → +∞. The derivative of V along the
solutions of system (3.1) is

Vt(S(x, t), I(x, t))

=

∫
Ω

(
1− m

S(x, t)

)
(am− aS(x, t)− S(x, t)f(I(x, t− τ))) dx

+

∫
Ω

[S(x, t)f(I(x, t− τ))− (a+ c)I(x, t)] dx

+m

∫
Ω

f(I(x, t))dx−m
∫

Ω

f(I(x, t− τ))dx

+

∫
Ω

(
1− m

S(x, t)

)
dS∆S(x, t)dx+

∫
Ω

dI∆I(x, t)dx

=−
∫

Ω

(
1− m

S(x, t)

)2

aS(x, t)dx−
∫

Ω

S(x, t)f(I(x, t− τ))dx

+

∫
Ω

mf(I(x, t− τ))dx+

∫
Ω

S(x, t)f(I(x, t− τ))dx

−
∫

Ω

(a+ c)I(x, t)dx+

∫
Ω

mf(I(x, t))dx−
∫

Ω

mf(I(x, t− τ))dx

−
∫

Ω

m

S2(x, t)
dS |∇S(x, t)|2dx

≤
∫

Ω

mf(I(x, t))dx−
∫

Ω

(a+ c)I(x, t)dx

≤
∫

Ω

[mf ′(0)− (a+ c)] I(x, t)dx

=
1

a+ c

∫
Ω

(R0 − 1) I(x, t)dx.

This implies that Vt(S(x, t), I(x, t)) ≤ 0 along an orbit (S(x, t), I(x, t)) of system
(3.1) with any non-negative initial value when R0 < 1. This, together with Theorem
4.1, implies that E0 is globally asymptotically stable if R0 < 1.

Theorem 4.2. The endemic equilibrium E∗(S∗, I∗) of model (3.1) is globally asymp-
totically stable for all τ ≥ 0 when R0 > 1.

Proof. In this case we consider the global attractivity of E∗. Define Lyapunov
functional as follows,

V (S(x, t), I(x, t)) =

∫
Ω

[
S∗g

(
S(x, t)

S∗

)
+ I∗g

(
I(x, t)

I∗

)
+S∗f(I∗)

∫ t

t−τ
g

(
I(x, s)

I∗

)
ds

]
dx,

where function g(·) is defined as that in the previous discussion. Obviously, V (S∗, I∗) =
0, and V is positive definite with respect to (S, I) ∈ R2

+ and has the property
V (S, I) → +∞ as ‖(S, I)‖ → +∞. The derivative of V along the solutions of
system (3.1) is

Vt(S(x, t), I(x, t))
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=

∫
Ω

[(
1− S∗

S(x, t)

)
(am− aS(x, t)− S(x, t)f(I(x, t− τ)))

]
dx

+

∫
Ω

[(
1− I∗

I(x, t)

)
(S(x, t)f(I(x, t− τ))− (a+ c)I(x, t))

]
dx

+ S∗f(I∗)

∫
Ω

[
g

(
I(x, t)

I∗

)
− g

(
I(x, t− τ)

I∗

)]
dx

+

∫
Ω

(
1− S∗

S

)
dS∆S(x, t)dx+

∫
Ω

(
1− I∗

I

)
dI∆I(x, t)dx

=

∫
Ω

[(
1− S∗

S(x, t)

)
(aS∗ + S∗f(I∗)− aS(x, t)− S(x, t)f(I(x, t− τ)))

]
dx

+

∫
Ω

[(
1− I∗

I(x, t)

)(
S(x, t)f(I(x, t− τ))− S∗f(I∗)

I∗
I(x, t)

)]
dx

+ S∗f(I∗)

∫
Ω

[
g

(
I(x, t)

I∗

)
− g

(
I(x, t− τ)

I∗

)]
dx

−
∫

Ω

S∗

S2
dS |∇S(x, t)|2dx−

∫
Ω

I∗

I2
dI |∇I(x, t)|2dx

≤
∫

Ω

(
1− S∗

S(x, t)

)
(aS∗ − aS(x, t)) dx

+

∫
Ω

(
1− S∗

S(x, t)

)
(S∗f(I∗)− S(x, t)f(I(x, t− τ))) dx

+ S∗f(I∗)

∫
Ω

(
1− I∗

I(x, t)

)(
S(x, t)f(I(x, t− τ))

S∗f(I∗)
− I(x, t)

I∗

)
dx

+ S∗f(I∗)

∫
Ω

[
g

(
I(x, t)

I∗

)
− g

(
I(x, t− τ)

I∗

)]
dx

≤− a
∫

Ω

(
1− S∗

S(x, t)

)2

S(x, t)dx

+ S∗f(I∗)

∫
Ω

[
1− S(x, t)f(I(x, t− τ))

S∗f(I∗)
− S∗

S(x, t)
+
f(I(x, t− τ))

f(I∗)

]
dx

+ S∗f(I∗)

∫
Ω

[
S(x, t)f(I(x, t− τ))

S∗f(I∗)
− I(x, t)

I∗
− S(x, t)I∗f(I(x, t− τ))

S∗f(I∗)I(x, t)
+ 1

]
dx

+ S∗f(I∗)

∫
Ω

[
I(x, t)

I∗
− I(x, t− τ)

I∗
− ln

I(x, t)

I∗
+ ln

I(x, t− τ)

I∗

]
dx

≤− a
∫

Ω

(
1− S∗

S(x, t)

)2

S(x, t)dx

+ S∗f(I∗)

∫
Ω

[
1−

(
S∗

S(x, t)

)
+

(
f(I(x, t− τ))

f(I∗)

)
+ 1 −

(
S(x, t)I∗f(I(x, t− τ))

S∗I(x, t)f(I∗)

)
+ 1−

(
I(x, t− τ)

I∗

)
− ln

I(x, t)

I∗
+ ln

I(x, t− τ)

I∗

]
dx

=− a
∫

Ω

(
1− S∗

S(x, t)

)2

S(x, t)dx

+ S∗f(I∗)

∫
Ω

[
1− g

(
S∗

S(x, t)

)
− 1− ln

S∗

S(x, t)
+ g

(
f(I(x, t− τ))

f(I∗)

)
+ 1
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+ ln
f(I(x, t− τ))

f(I∗)
−g
(
S(x, t)I∗f(I(x, t− τ))

S∗I(x, t)f(I∗)

)
+1−ln

(
S(x, t)I∗f(I(x, t− τ))

S∗I(x, t)f(I∗)

)
+ 1 −g

(
I(x, t− τ)

I∗

)
− 1− ln

I(x, t− τ)

I∗
− ln

I(x, t)

I∗
+ ln

I(x, t− τ)

I∗

]
dx

=− a
∫

Ω

(
1− S∗

S(x, t)

)2

S(x, t)dx

+ S∗f(I∗)

∫
Ω

[
−g
(

S∗

S(x, t)

)
+ g

(
f(I(x, t− τ))

f(I∗)

)
− g

(
S(x, t)I∗f(I(x, t− τ))

S∗I(x, t)f(I∗)

)
−g
(
I(x, t− τ)

I∗

)]
dx

≤ S∗f(I∗)

∫
Ω

[
g

(
f(I(x, t− τ))

f(I∗)

)
− g

(
I(x, t− τ)

I∗

)]
dx

=S∗f(I∗)

∫
Ω

[g(f(ω(x, t)))− g(ω(x, t))] dx

where ω(x, t) = I(x, t− τ)/I∗ > 0. Using the fact in Lemma 4.1 , that

Vt(S(x, t), I(x, t)) ≤ 0

along an orbit (S(x, t), I(x, t)) of system (3.1) with any non-negative initial value
when R0 > 1. This, together with Theorem 4.2, implies that E∗ is globally asymp-
totically stable if R0 > 1.

5. Conclusion and numerical simulations

In this paper, we have investigated the dynamic behavior of a delayed SIR epidemic
model with diffusion. The global dynamical behaviour of the model is studied and
the threshold value R0 of the system is defined to determine the behaviours of
the system. More precisely, the disease free equilibrium (m, 0) is asymptotically
stable if R0 < 1 and unstable if R0 > 1. But, the endemic equilibrium (S∗, I∗) is
asymptotically stable if R0 > 1 for all τ ≥ 0. In what follows, we present some
numerical simulations to support and supplement the our analytic results.

We first consider system (2.7) the case where f(I) = I, a = 0.01, c = 2.6,
Ω = (0, 3π), and initial values S(x, 0) = 0.3+0.05 cos(x), I(x, 0) = 0.3+0.05 cos(x).
Namely, we consider the following system

St(x, t)− dS∆S(x, t) = 0.01m− 0.01S(x, t)− S(x, t)I(x, t− τ), x ∈ (0, 3π),

It(x, t)− dI∆I(x, t) = S(x, t)I(x, t− τ)− 2.61I(x, t), x ∈ (0, 3π),

Sx(0, t) = Sx(3π, t) = Ix(0, t) = Ix(3π, t) = 0.
(5.1)

Choose m = 2.7, then we have R0 = 1.03 > 1 and hence it follows from Theorem 4.2
that the endemic equilibrium E∗(S∗, I∗) of model (5.1) is asymptotically stable (see
Figure 1). Choose m = 0.3, then we have R0 = 0.11 < 1 and hence the disease-free
equilibrium E0(m, 0) of model (5.1) is stable (see Figure 2)
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(a) (b)

Figure 1. Numerical simulations of system (5.1) with m = 2.7 showing that the endemic equilibrium is
asymptotically stable.

(a) (b)

Figure 2. Numerical simulations of system (5.1) with m = 0.3 showing that the disease-free equilibrium
is asymptotically stable.

And then we consider system (2.7) the case where f(I) = 6.8I
1+I , a = 0.01, c = 7.6,

Ω = (0, 3π), and initial values S(x, t) = 0.3 + 0.05 cos(x), I(x, t) = 0.3 + 0.05 cos(x).
Namely, consider the following system


St(x, t)− dS∆S(x, t) = 0.01m− 0.01S(x, t)− 6.8S(x, t)I(x, t− τ)

1 + I(x, t− τ)
, x ∈ (0, 3π),

It(x, t)− dI∆I(x, t) =
6.8S(x, t)I(x, t− τ)

1 + I(x, t− τ)
− 7.61I(x, t), x ∈ (0, 3π),

Sx(0, t) = Sx(3π, t) = Ix(0, t) = Ix(3π, t) = 0.
(5.2)

Choose m = 1.13, then we have R0 = 1.009 > 1 and hence it follows from Theorem
4.2 that the endemic equilibrium E∗(S∗, I∗) of model (5.2) is asymptotically stable
(see Figure 3). Choose m = 0.1, then we have R0 = 0.08 < 1 and hence the
disease-free equilibrium E0(m, 0) of model (5.2) is stable (see Figure 4)
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(a) (b)

Figure 3. Numerical simulations of system (5.2) with m = 1.13 showing that the endemic equilibrium
is asymptotically stable..

(a) (b)

Figure 4. Numerical simulations of system (5.2) with m = 0.1 showing that the disease-free equilibrium
is asymptotically stable.
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