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Near-invariant Tori on Exponentially Long Time
for Poisson systems*

Fuzhong Cong1,†, Jialin Hong2 and Rui Wu3

Abstract This paper deals with the near-invariant tori for Poisson systems.
It is shown that the orbits with the initial points near the Diophantine torus
approach some quasi-periodic orbits over an extremely long time. In particular,
the results hold for the classical Hamiltonian system, and in this case the drift
of the motions is smaller than one in the past works.
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1. Problem, preliminaries and result

The problem of stability of Hamiltonian systems occupies a crucial place in the
field of dynamic systems. As well known, KAM theory shows that most of quasi-
periodic motions of the integrable Hamiltonian systems are persistent under a small
perturbation. The name comes from the initials of Kolmogorov, Arnold and Moser
who laid the foundation of the theory [1, 3, 6]. In 1977s, Nekhoroshev presented
a global result. He showed that under a perturbation of order ε of an integrable
Hamiltonian system with the steepness condition, the action variable of an arbitrary
orbit vary only in the order of εb over a time interval of the order of exp(ε−a),
where a and b are positive constants [7]. Now one refers to Nekhoroshev’s theorem
as effective stability. Later on, much mathematics are devoted to studying KAM
theory and effective stability, and a great deal of significant results are obtained,
see [2, 4, 8–10] and the references therein.

One remarkable problem is that the above works only localize on classical Hamil-
tonian systems which are defined on an even-dimensional manifold. Many systems
in applications can not be written as Hamiltonian forms, for example, Lotka-Voterra
model [11], the motion equation of a rigid body without any external forces, ABC
flow and so on. The reason is that their phase spaces are of odd-dimensional. Note
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that these systems possess general Poisson structures. The problem considered in
this paper is to generalize the stability theory of Hamiltonian systems to Poisson
systems defined on odd-dimensional spaces.

We first introduce the concept of Poisson systems. Moreover, some fundamental
properties are given without proofs. For details, see [5].

Let B : D × Tn → R(m+n)×(m+n) be a smooth matrix-valued function, where
D ⊂ Rm be a bounded, connected and closed region, and Tn = Rn/Zn. For all
z = (y, x) ∈ D × Tn, set

{F,G}(z) = ∇F (z)TB(z)∇G(z). (1.1)

Lemma 1.1. The bracket defined in (1.1) is bilinear, skew-symmetric and satisfies

{{F,G}, H}+ {{G,H}, F}+ {{H,F}, G} = 0, (1.2)

{F ·G,H} = F · {G,H}+G · {F,H} (1.3)

if and only if BT = −B and for all i, j, k,

m+n∑
l=1

(
∂bij(z)

∂zl
blk(z) +

∂bjk(z)

∂zl
bli(z) +

∂bki(z)

∂zl
blj(z)

)
= 0. (1.4)

Definition 1.1. If B(z) satisfies BT = −B and (1.4), formula (1.1) is said to
represent a general Poisson bracket. The corresponding system

·
z= B(z)∇H(z) (1.5)

is said to be a Poisson system with Hamiltonian H.

Definition 1.2. A transformation ϕ : U → Rm+n (where U is an open set in
Rm+n) is called a Poisson change with respect to the bracket (1.1), if the structure
matrix B satisfies

ϕ′(z)B(z)ϕ′(z)T = B(ϕ(z)).

Lemma 1.2. If B(z) is the structure matrix of a Poisson bracket, the flow φt(z)
of (1.5) is a Poisson change.

Lemma 1.3. Let φt(z) be a flow of (1.5). Acting on a function F : Rm+n → R,
the following formula holds:

d

dt
F (φt(z)) = {F,G}(φt(z)).

Definition 1.3. Let F and G be two smooth functions defined on some open subset
of Rm+n. F and G are said to be in involution, if {F,G} = 0.

From now on, we begin to describe the main result of this paper. Consider a
Poisson system

·
z= B(y)∇H(z) (1.6)

defined on some complex neighborhood of D×Tn in Cm×Cn, where B is a structure
matrix independent of x.

Through this paper, we assume that yj , j = 1, · · · ,m, and xk, k = 1, · · · , n,
respectively, satisfy the involution condition:

{yi, yj} = 0, i, j = 1, · · · ,m, (1.7)
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{xk, xl} = 0, k, l = 1, · · · , n, (1.8)

which imply that B can be simplified to the form

B =

 0m B12

−BT12 0n

 , (1.9)

where B12 is an m×n matrix, and 0m and 0n, respectively, are m and n order zero
matrices. Hence,

·
y= B12

∂H

∂x
,
·
x= −BT12

∂H

∂y
. (1.10)

If
∂H

∂x
= 0, that is, H depends only on y, equation (1.10) suits

·
y= 0,

·
x= ω(y) (1.11)

with

−BT12
∂H

∂y
(y) = ω(y). (1.12)

We need the further assumption. Suppose that Poisson system (1.5) possesses
one invariant torus. Thus, H can be writen as the form

H(y, x) = c0 + a · (y − y∗) + F (y − y∗, x) (1.13)

with F (y − y∗, x) = O((y − y∗)2), namely, {y = y∗, x ∈ Tn} is an invariant torus of
(1.5) with frequency

ω∗ = −BT12(y∗)a,

where a is a fixed vector.
Let | · | denote the maximum norm of a vector in components, and ‖ · ‖ the usual

supremum norm either for a function or for a matrix on the given set.

Theorem 1.1. Let the above assumption hold. Let H be real analytic on the com-
plex ρ0-neighborhood of Bδ0(y∗)× Tm for some positive constants ρ0 and δ0, where
Bδ0(y∗) denotes a ball centered at y∗ with radius δ0. Suppose that ω∗ suits Diophan-
tine condition

|k · ω∗| ≥ γ|k|−ν , 0 6= k ∈ Zn (1.14)

for some positive constants γ and ν. Then there are positive constants ε0, c1, c2 and
c3 such that for every 0 < ε ≤ ε0, if (y(t), x(t)) is a solution of Poisson system with
Hamiltonian (1.13) starting with |y(0)− y∗| ≤ 1

2ε, the following estimates hold:

|y(t)− y(0)| < c1ε
1+ 1

ν+n+2 ,

|x(t)− ωdrift(y(0), ε)t− x(0)| < c2ε
1

ν+n+2

for |t| < exp

(
c3ε
− 1
ν+n+2

)
. Moreover,

|ωdrift(y(0), ε)− ω∗| = O(ε).
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2. Auxiliary Poisson system and small divisor prob-
lem

Let D ⊂ Rl. For small positive constants ρ and σ. We use D + ρ and D − σ to
denote the ρ-complex neighborhood of D in Cl and the set of points contained in D
together with σ-neighborhood, respectively. By c4, c5, · · · , we denote the constants
depending only on a, ρ,m, n, y∗ and P in what follows.

We consider (1.13) on ({y : |y − y∗| < ε}+ ερ)× (Tn + ρ). Let

y − y∗ = εY, Ĥ(Y, x) =
c0
ε

+ a · Y + εP (Y, x, ε). (2.1)

Here

P (Y, x, ε) =
1

ε2
F (εY, x).

Then (Y, x) is defined on ({(Y, x) : |Y | < 1} × Tn) + ρ, and under the structure
matrix

B̂(Y, ε) =

 0m B12

−BT12 0n

 (εY + y∗)

the Poisson system corresponding to (1.13) is changed to ·
Y
·
x

 = B̂(Y, ε)∇Ĥ(Y, x). (2.2)

Without loss of generality, taking c0 = 0. We begin study Poisson system

·
Y= B12

∂Ĥ

∂x
,
·
x= −BT12

∂Ĥ

∂Y
(2.3)

with Hamiltonian
Ĥ = a · Y + εP (Y, x, ε), (2.4)

where we omit the variables εY + y∗ in B12. For a function l(y, x) defined on some
subset of Cm × Cn, let

l̄(y) =

∫
Tn
l(y, x)dx and

∼
l (y, x) = l(y, x)− l̄(y).

Set D0 = (B 1
2
(0) × Tn) + ρ. In order to prove Theorem A, we need the following

small divisor lemma.

Lemma 2.1. Assume that ω∗ satisfies Diophantine condition (1.14). Let P (y, x)
be a real analytic function on D0. Then the equation

ω∗ ·
∂φ

∂x
+
∼
P= 0 (2.5)

has only one real analytic solution φ satisfying φ̄ = 0. Moreover, for any σ with
0 < σ < ρ,

‖φ‖D0−σ ≤
c4

σν+n
‖P‖D0 .
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Proof. We write P (y, x) as the Fourier expansion

P (y, x) =
∑
k∈Zn

pk(y)e2π
√
−1k·x,

and formally, let

φ(y, x) =
∑

06=k∈Zn
φk(y)e2π

√
−1k·x.

Inserting this formula into (2.5) we obtain

φ(y, x) = −
∑

06=k∈Zn

pk(y)

2π
√
−1k · ω∗

e2π
√
−1k·x,

which is a unique solution of (2.5) suiting φ̄ = 0. From Cauchy’s formula, it follows
that

‖φ‖D0−σ ≤
∑

0 6=k∈Zn

‖φk‖D0−σ

2π|k · ω∗|
|e2π

√
−1k·x|

≤ ‖P‖D0

2πγ

∑
06=k∈Zn

|k|ν

e2πσ|k|

≤ 2n−1‖P‖D0

2πγ

∞∑
j=1

jν+n−1e−2πσj

≤ c5

(∫ +∞

0

xν+n−1e−σxdx+ lν+n−1∗ e−2πσl∗
)
‖P‖D0 .

Here, letting h(θ) = θν+n−1e−2πσθ, l∗ satisfies h(l∗) = max
l∈Z+

h(l). By finding critical

point of h(θ), we have either l∗ =

[
ν + n− 1

2πσ

]
or l∗ =

[
ν + n− 1

2πσ

]
+ 1, where [ · ]

denotes the integer part of a given real number. So,

lν+n−1∗ e−2πσl∗ ≤ c6σ−(ν+n−1). (2.6)

It is easy to prove ∫ +∞

0

xν+n−1e−2πσxdx ≤ c7σ−(ν+n). (2.7)

By (2.6) and (2.7), we have

‖φ‖D0−σ ≤
c4

σν+n
‖P‖D0

.

3. Proof of Theorem1.1

We continue to consider Hamiltonian (2.4). Let

Dj = D0 − 6jσ, σ = Kεα, j = 1, · · · , L,
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where K > 0 is a constant determined below, and

α =
1

ν + n+ 2
, L =

[
ρ

12Kεα

]
+ 1.

Obviously, there exists a constant M > 0 such that

max{‖B̂‖, ‖P‖, ‖∇P‖, |a · y|} ≤M (3.1)

on D0.
Assume that under the jth step Hamiltonian (2.4) is changed to the form

Hj(y, x) = Nj(y, ε) + εPj(y, x, ε), (3.2)

Nj(y, ε) = a · y + ε

j−1∑
i=1

P̄i(y, ε), N0(y, ε) = a · y, (3.3)

‖Pj‖ ≤
1

2j
M, (3.4)

defined on Dj . We introduce a Poisson change of coordinate Φj+1 : Dj+1 → Dj by
defining Φj+1 = φ1j+1. Here φtj+1 is the flow of Poisson system

d

dt
φtj+1 = εB̂∇Sj(φtj+1). (3.5)

On the basis of Lemma1.3and Taylor’s formula, we have

Hj+1(y, x) = Hj ◦ Φj+1(y, x)

= Nj(y, x) + ε{Nj , Sj}+ ε2
∫ 1

0

(1− t){{Nj , Sj}, Sj} ◦ φtj+1dt

+ εPj(y, x, ε) + ε2
∫ 1

0

{Pj , Sj} ◦ φtj+1dt

= Nj(y, ε) + εP̄j(y, ε)

+ ε2
∫ 1

0

{Pj + (1− t){Nj , Sj}, Sj} ◦ φtj+1dt

+ ε{Nj −N0, Sj}

+ ε({N0, Sj}+
∼
P j (y, x, ε)). (3.6)

Choose Sj such that

ω∗ ·
∂Sj
∂x

+
∼
P j (y, x, ε) = 0. (3.7)

Then

Hj+1(y, x) = Nj+1(y, ε) + εPj+1(y, x, ε), (3.8)

Nj+1(y, ε) = Nj(y, ε) + εP̄j(y, ε), (3.9)

Pj+1(y, x, ε) = ε

∫ 1

0

{Pj + (1− t){Nj , Sj}, Sj} ◦ φtj+1dt

+ {Nj −N0, Sj}

+ a · (B12(εy + y∗)−B12(y∗))
∂Sj
∂x
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= P 1
j+1 + P 2

j+1 + P 3
j+1. (3.10)

Inductively, from (3.3), (3.4) and (3.1), it follows that

‖Nj −N0‖ ≤ ε
j−1∑
i=0

1

2i
M ≤ 2Mε (3.11)

on Dj , provided ε is sufficiently small. Let (Yt, Xt) = φtj+1(y, x). From (3.7),
Lemma 2.1 and Cauchy’s formula, for all (Yt, Xt) ∈ Dj − 2σ with 0 ≤ t ≤ 1, we
have ∣∣∣∣(y, x)− (Yt, Xt)

∣∣∣∣ ≤ Mε

∥∥∥∥∇Sj(Yt, Xt

)∥∥∥∥
Dj−2σ

≤ Mε

σ

∥∥∥∥S(Yt, Xt

)∥∥∥∥
Dj−σ

≤ c4Mε

σν+n+1
‖Pj‖Dj

≤ 1

2j
c4M

2

Kν+n+2
σ

<
1

2j
σ < σ, (3.12)

provided K satisfies

K
1

ν+n+2 > c4M
2. (A)

By the geometric lemma in [1], φ−tj+1(Dj − 2σ) ⊃ Dj − 3σ, and φ−tj+1 is a diffeomor-

phism defined on Dj − 6σ. This shows that φtj+1(Dj+1) ⊂ Dj . If K satisfies the
inequalities

max

{
2M2c4

5Kν+n+2
,
c8M |a|
Kν+n+2

}
<

1

6
, (B)

by lemma2.1, (3.11) and Cauchy’s formula, we derive∥∥∥∥P 2
j+1

∥∥∥∥
Dj+1

≤ ‖{Nj −N0, Sj}‖Dj−5σ

≤ ‖∇(Nj −N0)‖Dj−5σ‖B̂‖D0‖∇Sj‖Dj−5σ

≤ M

5σ2
‖Nj −N0‖Dj‖Sj‖Dj−4σ

≤ 2M2

5σ2
ε · c4

σν+n
‖Pj‖Dj−3σ

≤ 1

6
‖Pj‖Dj ; (3.13)∥∥∥∥P 3

j+1

∥∥∥∥
Dj+1

≤
∥∥∥∥P 3

j+1

∥∥∥∥
Dj−5σ

≤ |a| · εM
σ2
· ‖Sj‖Dj−4σ

≤ c4M |a|ε
σν+n+2

‖Pj‖Dj
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≤ c8M |a|
Kν+n+2

‖Pj‖Dj

<
1

6
‖Pj‖Dj . (3.14)

On the basis of (3.7), (3.13) and (3.14), it is concluded that

‖{Nj , S}‖Dj−5σ ≤
∥∥∥∥P 2

j+1

∥∥∥∥
Dj−5σ

+

∥∥∥∥P 3
j+1

∥∥∥∥
Dj−5σ

+

∥∥∥∥ ∼Pj ∥∥∥∥
Dj−5σ

≤ 4‖Pj‖Dj . (3.15)

Hence, as K satisfies
5M

Kν+n+2
<

1

6
, (C)

we obtain

‖P 1
j+1‖Dj+1

≤ ε‖∇(Pj + (1− t){Nj , Sj})‖Dj+1
‖B̂‖D0

‖∇Sj‖Dj+1

≤ εM

σ
‖Pj + (1− t){Nj , Sj}‖Dj−5σ ·

1

σ
‖Sj‖Dj−5σ

≤ Mε

σν+n+2
(‖Pj‖Dj + ‖{Nj , Sj}‖Dj−5σ)

≤ 5M

Kν+n+2
‖Pj‖Dj

<
1

6
‖Pj‖Dj . (3.16)

From (3.13), (3.14) and (3.16), we have

‖Pj+1‖Dj+1
≤ ‖P 1

j+1‖Dj+1
+ ‖P 2

j+1‖Dj+1
+ ‖P 3

j+1‖Dj+1
≤ 1

2
‖Pj‖Dj <

1

2j+1
M.

(3.17)

Putting Ψ = Φ1 ◦ · · · ◦ ΦL then Ψ : DL = (B 1
2
(0)× Tn) +

ρ

2
→ D0.

Let Ψ(r, θ) = (Y, x). Then

HL(r, θ) = Ĥ ◦Ψ(r, θ) = NL(r, ε) + εPL(r, θ, ε) (3.18)

satisfying

‖NL −N0‖DL ≤ 2Mε, (3.19)

‖PL‖DL ≤
1

2L
M ≤ c10exp

(
− c9ε−α

)
. (3.20)

Corresponding to (3.18) Poisson system is

·
r= εB12(y∗ + εr)

∂PL
∂θ

, (3.21)

·
θ= ω∗ − (BT12(y∗ + εr)−BT12(y∗))a

−BT12(y∗ + εr)
∂

∂r
(NL −N0)− εBT12(y∗ + εr)

∂PL
∂r

. (3.22)

Let D∗ = (B 1
2
(0)× Tn) +

ρ

4
. By Cauchy’s formula,

max

{∥∥∥∥∂PL∂θ
∥∥∥∥
D∗

,

∥∥∥∥∂PL∂r
∥∥∥∥
D∗

}
<

4

ρ
‖PL‖DL .
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From (3.21), as |t| ≤ exp

(
1

2
c9ε
−α
)
, it follows that

|r(t)− r(0)| ≤ c11εexp

(
− 1

2
c11ε

−α
)
≤ c11ε (3.23)

on (B 1
2
(0)× Tn) +

ρ

8
. Writing

ω∗∗(r, ε) = −(BT12(y∗ + εr)−BT12(y∗))a−BT12(y∗ + εT )
∂

∂r
(NL −N0). (3.24)

Thus,

|ω∗∗(r(t), ε)− ω∗∗(r(0), ε)| ≤ c12ε|r(t)− r(0)|

≤ c13εexp

(
− 1

2
c9ε
−α
)
≤ c14ε (3.25)

on (B 1
2
(0)× Tn) +

ρ

16
. It follows from (3.22), (3.20), (3.25) and Cauchy’s formula

that

|θ(t)− (ω∗ + ω∗∗(r(0), ε))t− θ(0)| ≤ c14εexp

(
− 1

4
c9ε
−α
)
≤ c14ε, (3.26)

provided |t| ≤ exp

(
− 1

4
c9ε
−α
)
.

We choose K to satisfy (A), (B) and (C). Let (y(t), x(t)) be a solution, with

|y(0) − y∗| <
1

2
ε, of Poisson system with Hamiltonian (1.13). Then, by (2.1),

(Y (t), x(t)) is a solution of (2.3) with |Y (0)| < 1

2
. Thus, if (Y, x) and (r, θ) are the

corresponding expressions in the new and old coordinates, respectively, (Y (t), x(t))
and (r(t), θ(t)) are also ones. By applying (3.12), we get

|(Y, x)− (r, θ)| ≤
L∑
j=0

1

2j
σ < 2σ. (3.27)

From (3.23) and (3.27), as |t| ≤ exp

(
1

2
c9ε
−α
)
, it follows that

|Y (t)− Y (0)| ≤ |Y (t)− r(t)|+ |r(t)− r(0)|+ |Y (0)− r(0)| ≤ c15σ. (3.28)

Similarly, if |t| ≤ exp

(
1

4
c9ε
−α
)

, then

|x(t)− (ω∗ + ωdrift(y(0), ε))t− x(0)| ≤ c16σ, (3.29)

where

ωdrift(y(0), ε) = ω∗∗

(
y(0)− y∗

ε
, ε

)
.

By (2.1) and (3.28), as |t| ≤ exp

(
1

2
c9ε
−α
)

, we have

|y(t)− y(0)| ≤ c15σε. (3.30)

According to the definition of σ, (3.29) and (3.30). The proof of Theorem A is
finished.
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4. Further results
Note that Lemma 2.1 plays an important role in the proof of Theorem A. Rüssmann
has shown that the estimate of Lemma 2.1 holds with the optimal exponent ν
replacing ν + n [9]. Hence, we can obtain an exact near-invariant torus theorem as
follows.

Theorem 4.1. Under the assumptions of Theorem1.1 there is positive constant ε0
such that for every 0 < ε ≤ ε0, if (y(t), x(t)) is a solution of Poisson system (1.13)

with initial value (y(0), x(0)) satisfying |y(0) − y∗| <
1

2
ε and x(0) ∈ Tn, then, as

|t| < exp

(
c3ε
− 1
ν+2

)
,

|y(t)− y(0)| < c1ε
1+ 1

ν+2 ,

|x(t)− ωdrift(y(0), ε)t− x(0)| < c2ε
1
ν+2

for some positive constants c1, c2 and c3, which are independent of ε, y(0) and x(0).
Moreover,

|ωdrift(y(0), ε)− ω∗| = O(ε).

Remark 4.1. If B is independent of y and x, and m = n, that is, the dimension
of action variables is equal to one of angle variables, and B = J ( the standard
symplectic structure matrix), the Poisson system is an usual Hamiltonian system.
In this case, Perry and Wiggins gave a theorem on near-invariant torus [8]. In their
theorem the estimate of time is same as Theorem B, but the drift distance of the
orbits with initial points near the torus is bigger than one in Theorem B, that is,

our estimate O

(
ε1+

1
ν+2

)
is different from their estimate O(ε).

By examining the proof of Theorem1.1, it is found that we can study a perturbed
Poisson system

H(y, x) = c0 + a · (y − y∗) + F (y − y∗, x) + ε2G(y, x), (4.1)

where ε2 is a small parameter. When we introduce a change y − y∗ = εY, the
Poisson system with Hamiltonian (4.1) is equivalent to another Poisson system
with the following generating function

Ĥ(Y, x, ε) =
c0
ε

+ a · Y + εP (Y, x, ε), (4.2)

where
P (Y, x, ε) =

1

ε2
F (εY, x) +G(y∗ + εY, x). (4.3)

Moreover, the structure matrix B is changed to

B̂(Y, ε) =

 0m B12

−BT12 0n

 (εY + y∗).

Following the proof of Theorem1.1and combing Rüssmann’s result [9], we have
Theorem C as follows.

Theorem 4.2. Assume that the conditions of Theorem1.1 hold. Let G be real
analytic. Let (y(t), x(t)) be a solution of Poisson system with Hamiltonian (4.1)
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with initial value (y(0), x(0)). Then there exists a positive constant c such that for

sufficiently small ε > 0, as |t| < exp

(
cε−

1
ν+2

)
,

|y(t)− y(0)| < cε1+
1
ν+2 ,

|x(t)− ωdrift(y(0), ε)t− x(0)| < cε
1
ν+2 ,

provided |y(0)−y∗| <
1

2
ε and x(0) ∈ Tn, where ωdrift is a constant vector depending

on y(0) and ε.

Remark 4.2. Theorem 4.2 shows that if Γ is an orbit of the small perturbed system
of Poisson system possesses some Diophantine torus, and Γ starts with the initial
points near this torus, then Γ approaches the quasi-periodic orbit on an extremely
long time.
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