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Chaotic Behavior and Subharmonic Bifurcations
for the Duffing-van Der Pol Oscillator*

Hong Li1,†, Lilin Ma2 and Wenjing Zhu3

Abstract Chaotic behavior for the Duffing-van der Pol (DVP) oscillator is
investigated both analytically and numerically. The critical curves separating
the chaotic and non-chaotic regions are obtained. The chaotic feature on the
system parameters are discussed in detail. The conditions for subharmonic
bifurcations are also obtained. Numerical results are given, which verify the
analytical ones.
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1. Introduction

The Duffing oscillator is a non-linear differential equation used to model certain
damped and driven oscillators. The equation is given by

d2x

dt2
+ δ

dx

dt
+ αx+ βx3 = γ cos(ωt).

The equation describes the motion of a damped oscillator with a more complicated
potential than in simple harmonic motion (which corresponds to the case β = δ = 0);
in physical terms, it models, for example, a spring pendulum whose spring’s stiffness
does not exactly obey Hooke’s law.

In dynamics, the van der Pol (VDP) oscillator is a non-conservative oscillator
with non-linear damping. It evolves in time according to the second-order differen-
tial equation:

d2x

dt2
− µ0(1− x2)

dx

dt
+ x = 0.

The two classical nonlinear systems, the Duffing oscillator and the VDP oscil-
lator can describe many kinds of practical systems. They have been extensively
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investigated [1, 9, 12, 16]. As the combination of these two classical nonlinear sys-
tems, the DVP oscillator as a model of mechanics can be applied in many fields, such
as physics, engineering, electronics, biology, neurology and many other disciplines.

The mathematical expression of the DVP oscillator is assumed in the form of
the second-order non-autonomous differential equation

d2x

dt2
− µ0(1− x2)

dx

dt
+
dV (x)

dx
= g(f0, ω, t), (1.1)

where x stands for the displacement from the equilibrium position, f0 is the forcing
strength and µ0 > 0 is a damping parameter of the system. g(f0, ω, t) = f0 cos(ωt)
represents the periodic driving function of time with period T = 2π

ω , ω being the
angular frequency of the driving force. V (x) is the potential approximated by a
finite Taylor series. The DVP oscillator belongs to the category of three-dimensional
dynamical system with continuous time and can be expressed in the strict feed-back
form. System (1.1) is a generalization of the classic DVP oscillator equation. It can
be considered in at least three physically interesting situations, wherein the potential

V (x) = −αx
2

2
+ β

x4

4
(1.2)

is a (i) single-well (α < 0, β > 0), (ii) double-well (α > 0, β > 0) or (iii) double-hump
(α < 0, β < 0). Each of the above three cases has become a classic central model
describing inherently nonlinear phenomenon exhibiting rich and baffling varieties of
regular and chaotic motions.

DVP oscillator as a model of mechanics can be applied in many fields and many
researches on DVP oscillator have been done. Ravisankar et al. [15] investigated
the occurrence of horseshoe chaos in three different asymmetric DVP oscillators
driven by a narrow-band frequency modulated force. Njah and Vincent [14] pre-
sented chaos synchronization between single and double wells DVP oscillators with
potential based on the active control technique. Wang and Li [18] analyzed the
nonlinear dynamical characteristics of the DVP oscillator subject to both external
and parametric excitations with time delayed feedback control. Leung et al. [7]
investigated the damping characteristics of two DVP oscillators having damping
terms described by fractional derivative and time delay respectively. By the residue
harmonic method, Leung et al. [8] investigated periodic bifurcation of DVP oscil-
lators having fractional derivatives and time delay. Chen and Jiang [2] studied the
periodic solution of the DVP oscillator by homotopy perturbation method. The
nonlinear dynamics of a DVP oscillator under linear-plus-nonlinear state feedback
control with a time delay are investigated by means of the averaging method and
Taylor expansion [13].

In this present paper, we consider only the double-well (α > 0, β > 0) and the
double-hump (α < 0, β < 0) cases of the following the DVP oscillator

d2x

dt2
− µ0(1− x2)

dx

dt
− αx+ βx3 = f0 cos(ωt). (1.3)

Assume the damping and excitation terms µ0, f0 are small, denoting them as εµ,
εf , where ε is a small parameter, then Eq. (1.3) can be written as the following
planar system x′ = y,

y′ = αx− βx3 + εµ(1− x2)y + εf cos(ωξ)
(1.4)
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where “′” is the derivative with respect to ξ.
The phase portraits of the unperturbed double-well and double-hump DVP os-

cillator (ε = 0) are shown in Figure 1 and Figure 4. The parameter representations
of homoclinic orbits, heteroclinic orbits and all periodic orbits of the unperturbed
system can be calculated in terms of hyperbolic and elliptic functions, so that the
Melnikov method can be used and all explicit bifurcation conditions on parameter
space can be obtained [6, 10, 11]. The chaotic motions of the two cases are studied
analytically with the Melnikov method. The critical curves separating the chaotic
and non-chaotic regions are drawn. Associated phase portraits are numerically com-
puted, which verify the analytical results. The subharmonic bifurcations are also
investigated.

The paper is organized as follows. In Section 2, we present all parametric rep-
resentations of phase orbits for the unperturbed system of (1.4) and discuss the
chaotic behavior of Eq. (1.4) by calculating the Melnikov integrals. In Section 3,
we give the conditions for subharmonic bifurcations of the DVP oscillator (1.4).
Numerical results are given in Section 4.

2. Chaotic motions of the system

2.1. The double-well case (α > 0, β > 0)

Using the transformations

x = p

√
α

β
, ξ =

√
1

α
t, (2.1)

then Eq. (1.4) can be written asp′ = q,

q′ = p− p3 + ε µ√
α

(1− α
β p

2)q + ε fα

√
β
α cos ( ω√

α
t),

(2.2)

where “′” is the derivative with respect to t . The unperturbed system ( ε = 0) has
the Hamiltonian

H(p, q) =
1

2
q2 − 1

2
p2 +

1

4
p4 = h. (2.3)

System (2.3) has three equilibrium points, (p, q) = (±1, 0) are all centers, (p, q) =
(0, 0) is a saddle point. When h = 0, there exist homoclinic orbits connecting (0, 0)
to itself with the expressions

(phom(t), qhom(t)) = (±
√

2 sech(t),∓
√

2 sech(t) tanh(t)). (2.4)

When h > 0, there exist closed periodic orbits around the homoclinic orbits
(2.4) with the expressions

(pk(t), qk(t)) =(

√
2k√

2k2 − 1
cn(

√
1

2k2 − 1
t, k),

−
√

2k

2k2 − 1
sn(

√
1

2k2 − 1
t, k) dn(

√
1

2k2 − 1
t, k)), (2.5)
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and 1√
2
< k < 1 is the modulus of the Jacobi elliptic functions. The period of the

closed orbit is Tk = 4K(k)
√

2k2 − 1. When − 1
4 < h < 0, there exist closed periodic

orbits around (±1, 0) with the expressions

(pk(t), qk(t)) =(

√
2

2− k2
dn(

√
1

2− k2
t, k),

−
√

2k2

2− k2
sn(

√
1

2− k2
t, k) cn(

√
1

2− k2
t, k)), (2.6)

where “sn, cn, dn” are Jacobi elliptic functions, and 0 < k < 1 is the modulus of
the Jacobi elliptic functions. The period of the closed orbit is Tk = 2K(k)

√
2− k2,

where K(k) is the complete elliptic integral of the first kind. The phase portrait of
the unperturbed double-well (α > 0, β > 0) DVP oscillator is shown in Figure 1.

Figure 1. Phase portrait of the unperturbed double-well DVP oscillator.

By using Ref. [17], the Melnikov integral computed along the homoclinic orbit
(2.4) is given by

M±(t0) =

∫ +∞

−∞
qhom(

f

α

√
β

α
cos(

ω√
α

(t+ t0)) +
µ√
α

(1− α

β
p2hom)qhom) dt

=∓
∫ +∞

−∞

√
2f

α

√
β

α
sech(t) tanh(t) cos(

ω√
α

(t+ t0)) dt

+

∫ +∞

−∞

2µ√
α

(1− 2α

β
sech2(t)) sech2(t) tanh2(t) dt. (2.7)

Further we see from (2.7) that

M±(t0) = I0µ± I1f sin(
ω√
α
t0), (2.8)

where I0 = 2√
α

( 2
3 −

8
15
α
β ), I1 =

√
2βπω
α2

1
cosh( πω

2
√
α
) .

Clearly, M±(t0) is an oscillating function with respect to t0, i.e., there exist
simple zeros of M±(t0) for all | I1I0 | > |

µ
f |. It means that the stable and unstable

manifolds of the periodic orbits intersect transversely yielding smale horseshoes on
the appropriate energy manifold.
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(a) (b)

Figure 2. The critical curves for chaotic motions of system (2.2) in the case of α = 1.

For α
β <

5
4 , the critical value Z = I1

I0
, when |µf | < Z, chaotic motions take place,

when |µf | > Z, chaotic motions don’t take place. When α is fixed,

dZ

dβ
=

πω

α
√

2αβ
(
1

3
− 4

5

α

β
)(

2

3
− 8

15

α

β
)−2 sech

πω

2
√
α
,

we have dZ
dβ > 0 for 0 < α

β <
5
12 ,

dZ
dβ < 0 for 5

12 <
α
β <

5
4 . Letting α = 1, for different

value of β (αβ <
5
4 ), we get the critical curves separating the chaotic regions (below)

and non-chaotic regions (above) as in Figure 2(a). When β is fixed,

dZ

dα
=

√
2βπω sech πω

2
√
α

2α
3
2 ( 2

3 −
8
15
α
β )

(
4

5β − 4α
− 3

2α
+

πω

4α
3
2

tanh
πω

2
√
α

).

So, when ω is small, dZ
dα < 0 for 0 < α

β < 3
4 , but when ω crosses a critical value,

dZ
dα > 0. For 3

4 <
α
β < 5

4 , we have dZ
dα > 0. Letting β = 1, for different value of α

(αβ <
5
4 ), we get the critical curves as in Figure 3(a).

For α
β >

5
4 , the critical value Z = − I1I0 . When α is fixed,

dZ

dβ
= − πω

α
√

2αβ
(
1

3
− 4

5

α

β
)(

2

3
− 8

15

α

β
)−2 sech

πω

2
√
α
> 0.

Letting α = 1, for different value of β (αβ > 5
4 ), we get the critical curves as in

Figure 2(b). When β is fixed,

dZ

dα
= −
√

2βπω sech πω
2
√
α

2α
3
2 ( 2

3 −
8
15
α
β )

(
4

5β − 4α
− 3

2α
+

πω

4α
3
2

tanh
πω

2
√
α

),

we have dZ
dα < 0 when ω is small, but when ω crosses a critical value, dZ

dα > 0.
Letting β = 1, for different value of α (αβ > 5

4 ), we get the critical curves as in

Figure 3(b).
Thus, we can obtain the following theorem:
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(a) (b)

Figure 3. The critical curves for chaotic motions of system (2.2) in the case of β = 1.

Theorem 2.1. For the double-well case (α > 0, β > 0), the critical curves of
systems (2.2) have the classical bell shape, this means that, with the excitations
possessing sufficiently small or very large periods, the systems are not chaotically
excited.

(1) When α is fixed, if 0 < α
β < 5

12 or α
β > 5

4 , the lager values of β, the lager

critical values for chaotic motions, and if 5
12 <

α
β < 5

4 , the lager values of β, the
smaller critical values for chaotic motions.

(2) When β is fixed, if 3
4 <

α
β <

5
4 , the lager values of α, the lager critical values

for chaotic motions. If 0 < α
β < 3

4 or α
β > 5

4 , the lager values of α, the smaller
critical values for chaotic motions for the case of small values of ω, but when ω
crosses a critical value, the case is opposite, so for the case of large values of ω, the
critical value for chaotic motions increases as α increases.

2.2. The double-hump case (α < 0, β < 0)

Using the transformations

x = p

√
α

β
, ξ =

√
− 1

α
t. (2.9)

Then Eq. (1.4) can be written asp′ = q,

q′ = −p+ p3 + ε µ√
−α (1− α

β p
2)q − ε fα

√
β
α cos ( ω√

−αξ),
(2.10)

where “′” is the derivative with respect to t . The unperturbed system ( ε = 0) has
the Hamiltonian

H(p, q) =
1

2
q2 +

1

2
p2 − 1

4
p4 = h. (2.11)
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System (2.11) has three equilibrium points, (p, q) = (±1, 0) are saddle points,
(p, q) = (0, 0) is a center. When h = 1

4 , there exist exist heteroclinic orbits connect-
ing (±1, 0) with the expressions

(phet(t), qhet(t)) = (± tanh(

√
2

2
t),±

√
2

2
sech2(

√
2

2
t). (2.12)

When 0 < h < 1
4 , there exist closed periodic orbits around (0, 0) with the expressions

(pk(t), qk(t)) = (

√
2k√

1 + k2
sn(

t√
1 + k2

, k),

√
2k

1 + k2
cn(

t√
1 + k2

, k) dn(
t√

1 + k2
, k)),

(2.13)

and 0 < k < 1 is the modulus of the Jacobi elliptic functions. The period of
the closed orbit is Tk = 4K(k)

√
1 + k2. The phase portrait of the unperturbed

double-hump (α < 0, β < 0) DVP oscillator is shown in Figure 4.

Figure 4. Phase portrait of the unperturbed double-hump DVP oscillator.

The Melnikov integral computed along the heteroclinic orbits (2.12) is given by

M±(t0) =

∫ +∞

−∞
qhet(

f

−α

√
β

α
cos (

ω√
−α

(t+ t0)) +
µ√
−α

(1− α

β
p2het)qhet) dt

=±
∫ +∞

−∞

√
2f

−2α

√
β

α
sech2(

√
2

2
t) cos (

ω√
−α

(t+ t0)) dt

+

∫ +∞

−∞

µ

2
√
−α

(1− α

β
tanh2(

√
2

2
t)) sech4(

√
2

2
t) dt. (2.14)

Further we see from (2.14) that

M±(t0) = I0µ± I1f cos(
ω√
−α

t0), (2.15)

where I0 = 2
√
2

3
√
−α (1− α

5β ), I1 =
√
−2βπω
α2

1
sinh( πω√

−2α
) .

Clearly, M±(t0) is an oscillating function with respect to t0, i.e., there exist
simple zeros of M±(t0) for all | I1I0 | > |

µ
f |. It means that the stable and unstable

manifolds of the periodic orbits intersect transversely yielding smale horseshoes on
the appropriate energy manifold. Thus, we have the following conclusion.

For α
β < 5, the critical value Z = I1

I0
, when |µf | < Z, chaotic motions take place,

when |µf | > Z, chaotic motions don’t take place. When α is fixed,

dZ

dβ
=

3πω

−2α

√
α

β
(

1

2α
− 1

5β − α
)(1− 1

5

α

β
)−1 csch

πω√
−2α

,
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(a) (b)

Figure 5. The critical curves for chaotic motions of system (2.10) in the case of α = −1.

we have dZ
dβ < 0 for 0 < α

β <
5
3 ,

dZ
dβ > 0 for 5

3 <
α
β < 5. Letting α = −1, for different

value of β (αβ < 5), we get the critical curves separating the chaotic regions (below)

and non-chaotic regions (above) as in Figure 5(a). When β is fixed,

dZ

dα
=

3πω csch πω√
−2α

2α2(1− 1
5
α
β )

√
β

α
(
3

2
− α

5β − α
− 3πω

8
√
−2α

coth
πω√
−2α

).

So, when ω is small, dZ
dα > 0 for 0 < α

β < 35
17 , but when ω crosses a critical value,

dZ
dα < 0. For 35

17 <
α
β < 5, we have dZ

dα < 0. Letting β = −1, for different value of α

(αβ < 5), we get the critical curves as in Figure 6(a).

For α
β > 5, the critical value Z = − I1I0 . When α is fixed,

dZ

dβ
=

3πω

2α

√
α

β
(

1

2α
− 1

5β − α
)(1− 1

5

α

β
)−1 csch

πω√
−2α

< 0.

Letting α = −1, for different value of β (αβ > 5
4 ), we get the critical curves as in

Figure 5(b). When β is fixed,

dZ

dα
= −

3πω csch πω√
−2α

2α2(1− 1
5
α
β )

√
β

α
(
3

2
− α

5β − α
− 3πω

8
√
−2α

coth
πω√
−2α

),

we have dZ
dα > 0 when ω is small, but when ω crosses a critical value, dZ

dα < 0.
Letting β = −1, for different value of α (αβ > 5

4 ), we get the critical curves as in

Figure 6(b).
Thus, we can obtain the following theorem:

Theorem 2.2. For the double-hump case (α < 0, β < 0), the critical curves of
systems (2.10) decreases to zero as ω increases from zero.
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(a) (b)

Figure 6. The critical curves for chaotic motions of system (2.10) in the case of β = −1.

(1) When α is fixed, if 0 < α
β <

5
3 or α

β > 5, the lager values of β, the smaller

critical values for chaotic motions, and if 5
3 < α

β < 5, the lager values of β, the
lager critical values for chaotic motions.

(2) When β is fixed, if 35
17 <

α
β < 5, the lager values of α, the smaller critical

values for chaotic motions. If 0 < α
β < 35

17 or α
β > 5, the lager values of α, the

lager critical values for chaotic motions for the case of small values of ω, but when
ω crosses a critical value, the case is opposite, so for the case of large values of ω,
the critical value for chaotic motions decreases as α increases.

3. Subharmonic bifurcations of the system (1.4)

Consider a planar near-Hamiltonian system which has the

x′ = f(x) + εg(t, x), (3.1)

where (x, ε) ∈ R2 ×R, g is a C2 function with period T in t, and f satisfies

f(x) = JDH(x), J =

 0 −1

−1 0


for a C3 function H(x).

When ε = 0, suppose there exist an open interval J such that (3.1) has a family
of closed orbits Lh : x = q(t, h), 0 ≤ t ≤ T (h), h ∈ J satisfying H(q(t, h)) ≡ h. Here
T (h) denotes the period of Lh.

We consider the existence of subharmonic solution of system (3.1) near Lh. We
will introduce new coordinates around Lh by using its time-parameter representa-
tion. From [3,4] we have the following lemma.

Lemma 3.1. The transformation of the variables

x = q(
T (h)

2π
θ, h) ≡ G(θ, h) (3.2)
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carries (3.1) into the 2π−periodic systemh′ = εf(G(θ, h)) ∧ g(t, G(θ, h), ε),

θ′ = Ω(h)− εΩ(h)DhG(θ, h) ∧ g(t, G(θ, h), ε),
(3.3)

where Ω(h) = 2π/T (h), a ∧ b = a1b2 − a2b1.

To consider the subharmonic solutions of system (3.1) by Eq.(3.3) , we suppose
there exists h0 ∈ J , such that

T (h0)

T
=
m

n
, (3.4)

with m and n are natural numbers, (m,n) = 1. About the existence of periodic
solutions near the periodic orbit Lh0

, we have lemma 3.2 from [5].
The mth subharmonic Melnikov function of system (3.1) is

Mm/n(t0) =

∫ mT

0

DH(q(t, h0))g(t− t0, q(t, h0))dt. (3.5)

Lemma 3.2. Suppose Eq. (3.4) is satisfied and Ω′(h0) 6= 0. If there exists t∗0 ∈
[0, T ] such that

Mm/n(t∗0) = 0, (Mm/n)′(t∗0) 6= 0,

then for sufficiently small ε 6= 0, the periodic orbit Lh0
of the system (3.1) generate

a subharmonic solution of order m

x(ε, t) = q(t+ t∗0, h0) +O(ε).

3.1. The double-well case (α > 0, β > 0)

It can be computed that the subharmonic Melnikov function of system (2.2) along
the periodic orbits (2.5) and (2.6) satisfying the resonance condition mT = nTk is

Mm/n(t0) =
µ√
α
J1 −

µ
√
α

β
J2 +

f

α

√
β

α

√
J2
3 + J2

4 sin(θ0 + θ1), (3.6)

where

J1 =
∫mT
0

q2kdt, J2 =
∫mT
0

p2kq
2
kdt, J3 =

∫mT
0

qk cos( ω√
α
t)dt,

J4 =
∫mT
0

qk sin( ω√
α
t)dt, θ0 = ω√

α
t0, θ1 = arctan J3

J4
.

(1) h > 0
Substituting (2.5) into (3.6), we get

J1 = 8n

3(2k2−1)
3
2

[(2k2 − 1)E(k) + (1− k2)K(k)],

J2 = 16n

15(2k2−1)
5
2

[2(k4 − k2 + 1)E(k)− (k4 − 3k2 + 2)K(k)],

J3 = 0,

J4 =


−
√
2mπ2

√
2k2−1K(k)

cschmπK
′(k)

2K(k) , n=1 and m is odd;

0, n=1 and m is even.

(3.7)
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Substituting (2.5) into (2.3), we have

H(pk, qk) =
k2(1− k2)

(2k2 − 1)2
,

Ω =
2π

Tk
=

π

2K(k)
√

2k2 − 1
.

Thus,

∂Ω

∂h
=

π(2k2 − 1)
3
2

4k2(1− k2)K2(k)
[k2E(k) + (1− k2)(K(k)− E(k))] > 0.

When m is even, J3 = J4 = 0, the condition (Mm/n)′(t∗0) 6= 0 can not be
satisfied. So subharmonic bifurcation of m (even) orders will not occur; while∣∣∣∣∣∣

µ√
α
J1 − µ

√
α

β J2

f
α

√
β
α

√
J2
3 + J2

4

∣∣∣∣∣∣ < 1,

subharmonic bifurcation of m (odd) orders will occur.
(2) − 1

4 < h < 0
Substituting (2.6) into (3.6), we get

J1 = 4n

3(2−k2)
3
2

[(2− k2)E(k)− 2(1− k2)K(k)],

J2 = 8n

15(2−k2)
5
2

[2(k4 − k2 + 1)E(k)− (k4 − 3k2 + 2)K(k)],

J3 = 0,

J4 = −
√
2mπ2

√
2−k2K(k)

sechmπK
′(k)

K(k) .

(3.8)

Substituting (2.6) into (2.3), we have

H(pk, qk) =
(k2 − 1)

(2− k2)2
,

Ω =
2π

Tk
=

π

K(k)
√

2− k2
.

Thus,

∂Ω

∂h
=

π(2− k2)
3
2

2k4(1− k2)K2(k)
[(2− k2)(K(k)− E(k))− k2K(k)] < 0

When ∣∣∣∣∣∣
µ√
α
J1 − µ

√
α

β J2

f
α

√
β
α

√
J2
3 + J2

4

∣∣∣∣∣∣ < 1,

subharmonic bifurcation of m orders will occur.
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3.2. The double-hump case α < 0, β < 0

It can be computed that the subharmonic Melnikov function of system (2.10) along
the periodic orbits (2.13) satisfying the resonance condition mT = nTk is

Mm/n(t0) =
µ√
−α

J1 +
µ
√
−α
β

J2 −
f

α

√
β

α

√
J2
3 + J2

4 sin(θ0 + θ1), (3.9)

where

J1 =
∫mT
0

q2kdt, J2 =
∫mT
0

p2kq
2
kdt, J3 =

∫mT
0

qk cos( ω√
−α t)dt,

J4 =
∫mT
0

qk sin( ω√
−α t)dt, θ0 = ω√

−α t0, θ1 = arctan J3
J4
.

Substituting (2.13) into (3.9), we get

J1 = 8n

3(1+k2)
3
2

[(1 + k2)E(k)− (1− k2)K(k)],

J2 = 16n

15(1+k2)
5
2

[2(k4 − k2 + 1)E(k)− (k4 − 3k2 + 2)K(k)],

J3 =


√
2mπ2

√
1+k2K(k)

cschmπK
′(k)

2K(k) , n=1 and m is odd;

0, n=1 and m is even,

J4 = 0.

(3.10)

Substituting (2.13) into (2.11), we have

H(pk, qk) =
k2

(1 + k2)2
,

Ω =
2π

Tk
=

π

2K(k)
√

1 + k2
.

Thus,

∂Ω

∂h
=

π(1 + k2)
3
2

4k2(1− k2)2K2(k)
[2K(k)− (1 + k2)(K(k) + E(k))] < 0.

When m is even, J3 = J4 = 0, the condition (Mm/n)′(t∗0) 6= 0 can not be
satisfied. So subharmonic bifurcation of m (even) orders will not occur; while∣∣∣∣∣∣

µ√
−αJ1 + µ

√
−α
β J2

f
α

√
β
α

√
J2
3 + J2

4

∣∣∣∣∣∣ < 1,

subharmonic bifurcation of m (odd) orders will occur.

4. Numerical simulations

In this section, we employ numerical simulations to verify the Melnikov method in
analysising the chaos of systems (1.4). In all the numerical simulations, we used
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Figure 7. Phase portrait of system (1.4) for (a) α = 1, β = 1 (b) α = −1, β = −1.

the standard fourth-order Runge-Kutta algorithm to solve the system. Taking the
system parameters ε = 0.01, α = 1, β = 1, µ = 1, f = 1, ω = 1, the initial value
(x(0), y(0)) = (0, 0.7), the phase portraits are shown in Figure7(a). Taking the
system parameters ε = 0.01, α = −1, β = −1, µ = 1, f = 1, ω = 1, the initial value
(x(0), y(0)) = (0.065, 0), the phase portraits are shown in Figure7(b). Noting that
for these parameters, (|µf |, ω) is below the critical curve, i.e., it is in the chaotic
region, so the system is chaotic excited, which agree with the analytical results.
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