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Oscillation Results for BVPs of Even Order
Nonlinear Neutral Partial Differential Equations*

Zhenguo Luo1,2, Liping Luo1,2,† and Yunhui Zeng1,2

Abstract A class of boundary value problems (BVPs) of even order neutral
partial functional differential equations with continuous distribution delay and
nonlinear diffusion term are studied. By applying the integral average and
Riccati’s method, the high-dimensional oscillatory problems are changed into
the one-dimensional ones, and some new sufficient conditions are obtained
for oscillation of all solutions of such boundary value problems under first
boundary condition. The results generalize and improve some results of the
latest literature.
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1. Introduction

The oscillation study of partial functional differential equations (PFDE) are of
both theoretical and practical interest. Some applicable examples in such fields
as population kinetics, chemistry reactors and control system can be found in the
monograph of Wu [9]. There have been some results on the oscillations of solutions
of various types of PFDE. Here, we mention the literatures of Kiguradze, Kusano
and Yoshida [2], Thandapani and Savithri [8], Saker [5], Li and Debnath [3], Wang
and Wu [10], Yang [12], Wang, Wu and Caccetta [11], ShouKaKu [6], ShouKaKu,
Stavroulakis and Yoshida [7] and the references cited therein. To the best of our
knowledge, there are fewer to investigate the oscillation of solutions of PFDE with
continuous distribution delay. However, we note that in many areas of their actual
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application, models describing these problems are often effected by such factors as
seasonal changes. Therefore it is necessary, either theoretically or practically, to
study a type of PFDE in a more general sense–PFDE with continuous distribution
delay. In this paper, we will discuss the oscillation of solutions of the high-order
neutral partial functional differential equations with continuous distribution delay
and nonlinear diffusion term

∂n

∂tn
[u+

∫ d

c

p(t, η)u[x, r(t, η)]dτ(η)] +

∫ b

a

f(x, t, ξ, u[x, g(t, ξ)])dµ(ξ)

= a0(t)h0(u)∆u+ a1(t)h1(u(x, σ(t)))∆u(x, σ(t)), (t, x) ∈ Ω×R+ ≡ G, (1.1)

where n ≥ 2 is even, Ω is a bounded domain in Rm with a piecewise smooth
boundary ∂Ω, ∆ is the Laplacian in Rm, R+ = [0,∞), the integral of Eq.(1.1) are
Stieltjes ones.

Consider first boundary condition:

u(x, t) = 0, (x, t) ∈ ∂Ω×R+. (1.2)

Throughout this paper, assume that the following conditions hold:
(H1) p(t, η) ∈ C(I × [c, d], R), I = [t0,∞), t0 ∈ R, p(t, η) ≥ 0, P (t) =∫ d

c
p(t, η)dτ(η) ≤ P < 1, P is a constant;
(H2) r(t, η) ∈ C(I × [c, d], R), r(t, η) ≤ t, limt→∞minη∈[c,d] r(t, η) =∞;
(H3) g(t, ξ) ∈ C(I × [a, b], R) is nondecreasing with respect to t and ξ, respec-

tively, d
dtg(t, a) exists, g(t, ξ) ≤ t for ξ ∈ [a, b], limt→∞minξ∈[a,b] g(t, ξ) =∞;

(H4) a0(t), a1(t) ∈ C(I,R+), σ(t) ∈ C(I,R), limt→∞ σ(t) =∞;
(H5) h0(u), h1(u) ∈ C1(R,R), uh′0(u) ≥ 0, uh′1(u) ≥ 0, h0(0) = 0, h1(0) = 0;
(H6) f(x, t, ξ, u) ∈ C(Ω×R+ × [a, b]×R+, R);
(H7) τ(η), µ(ξ) is nondecreasing on [c, d] and [a, b], respectively.

Definition 1.1. A function u(x, t) ∈ Cn(G) ∩ C1(G) is said to be a solution of
the boundary value problems (1.1), (1.2) if it satisfies (1.1) in G and boundary
condition (1.2) in ∂Ω×R+ .

Definition 1.2. A solution u(x, t) of the boundary value problems (1.1), (1.2) is
said to be oscillatory in G if it has arbitrarily large zeros, namely, for any T > 0,
there exists a point (x1, t1) ∈ Ω× [T,∞) such that the equality u(x1, t1) = 0 holds.
Otherwise, the solution u(x, t) is called nonoscillatory in G.

The objective of this paper is to derive some new oscillatory criteria of solutions
of the boundary value problems (1.1), (1.2). It should be noted that in the proof
we do not use the results of Dirichlet’s eigenvalue problem.

To prove the main results of this paper, we need the following lemmas.

Lemma 1.1 (Kiguradze [1]). Let y(t) ∈ Cn(I,R) be of constant sign, y(n)(t) 6= 0
and y(n)(t)y(t) ≤ 0 on I, then

(i) there exists a t1 ≥ t0, such that y(i)(t)(i = 1, 2, · · · , n− 1) is of constant sign
on [t1,∞) ;

(ii) there exists an integer l ∈ {0, 1, 2, · · · , n− 1}, with n+ l odd, such that

y(i)(t) > 0, t ≥ t1, i = 0, 1, 2, · · · , l;

(−1)i+ly(i)(t) > 0, t ≥ t1, i = l + 1, · · · , n.
.
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Lemma 1.2 (Philos [4]). Suppose that y(t) satisfies the conditions of Lemma 1 and
y(n−1)(t)y(n)(t) ≤ 0, t ≥ t1, then for every θ ∈ (0, 1), there exists a constant N > 0
satisfying

|y′(θt)| ≥ Ntn−2|y(n−1)(t)|, t ≥ t1.

2. Main results

Let u(x, t) be a solution of the boundary value problems (1.1), (1.2), we definite

V (t) = (

∫
Ω

dx)−1

∫
Ω

u(x, t)dx. (2.1)

Theorem 2.1. Suppose that there exist q(t, ξ) ∈ C([t0,∞)× [a, b], R+) and F (u) ∈
C(R,R), F (u) is a lower convex function on (0,∞), such that

f(x, t, ξ, u)sgnu ≥ q(t, ξ)F (u)sgnu, (2.2)

− F (−u) ≥ F (u) ≥Mu > 0 (u > 0, and M is a positive constant). (2.3)

If there exists a function ρ(t) ∈ C1(I,R+) , such that∫ ∞
0

[λMρ(t)Q(t)− (ρ′(t))2

4λNgn−2(t, a)g′(t, a)ρ(t)
]dt =∞, (2.4)

where Q(t) =
∫ b
a
q(t, ξ)dµ(ξ), λ = 1−P , P is defined by (H1), then all solutions of

the boundary value problems (1.1), (1.2) are oscillatory in G.

Proof. Suppose that there exists a nonoscillatory solution u(x, t) of the bound-
ary value problems (1.1), (1.2). Without loss of generality, we may assume that
u(x, t) > 0 in Ω× I, then form (H2), (H3), (H4), there exists a t1 ≥ t0, such that
u[x, r(t, η)] > 0, u[x, g(t, ξ)] > 0, u(x, σ(t)) > 0, (x, t) ∈ Ω× [t1,∞), η ∈ [c, d], ξ ∈
[a, b].

Integrating both sides of (1.1) with respect to x over the domain G, we have

dn

dtn
[

∫
Ω

udx+

∫
Ω

∫ d

c

p(t, η)u[x, r(t, η)]dτ(η)dx]

=a0(t)

∫
Ω

h0(u)∆udx+ a1(t)

∫
Ω

h1(u(x, σ(t)))∆u(x, σ(t))dx

−
∫

Ω

∫ b

a

f(x, t, ξ, u[x, g(t, ξ)])dµ(ξ)dx, t ≥ t1. (2.5)

From Green’s formula, the boundary condition (1.2), we obtain∫
Ω

h0(u)∆udx =

∫
∂Ω

h0(u)
∂u

∂ν
dS −

∫
Ω

h′0(u)|gradu|2dx

= −
∫

Ω

h′0(u)|gradu|2dx ≤ 0, t ≥ t1, (2.6)

∫
Ω

h1(u(x, σ(t)))∆u(x, σ(t))dx ≤ 0, t ≥ t1, (2.7)
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where ν is the unit exterior normal vector to ∂Ω, dS is the surface element on
∂Ω.
Changing order of integration and using the condition (2.2) and Jensen’s inequality,
we obtain∫

Ω

∫ b

a

f(x, t, ξ, u[x, g(t, ξ)])dµ(ξ)dx

=

∫ b

a

∫
Ω

f(x, t, ξ, u[x, g(t, ξ)])dxdµ(ξ)

≥
∫ b

a

q(t, ξ)

∫
Ω

F (u[x, g(t, ξ)])dxdµ(ξ)

≥
∫ b

a

q(t, ξ)F ((

∫
Ω

dx)−1

∫
Ω

u[x, g(t, ξ)])dx)(

∫
Ω

dx)dµ(ξ), t ≥ t1. (2.8)

Noting that (2.1) and (2.3) and combining (2.5)− (2.8), we have

dn

dtn
[V (t) +

∫ d

c

p(t, η)V [r(t, η)]dτ(η)] +M

∫ b

a

q(t, ξ)V [g(t, ξ)]dµ(ξ) ≤ 0, t ≥ t1.

(2.9)

Let

z(t) = V (t) +

∫ d

c

p(t, η)V [r(t, η)]dτ(η), (2.10)

then z(t) ≥ V (t) > 0 and form (2.9) and (2.10), we have

z(n)(t) ≤ −M
∫ b

a

q(t, ξ)V [g(t, ξ)]dµ(ξ) ≤ 0, t ≥ t1. (2.11)

Thus, from Lemma 1.1, there exists a t2 ≥ t1, such that z′(t) > 0 and z(n−1)(t) >
0, t ≥ t2.

Form (2.10), we have

V (t) = z(t)−
∫ d

c

p(t, η)V [r(t, η)]dτ(η)

≥ z(t)−
∫ d

c

p(t, η)z[r(t, η)]dτ(η)

≥ z(t)−
∫ d

c

p(t, η)z(t)dτ(η)

= (1− P (t))z(t)

≥ λz(t), t ≥ t2. (2.12)

Combining (2.11) and (2.12) yields

z(n)(t) ≤ −λMQ(t)z[g(t, a)], t ≥ t2. (2.13)

Let

W (t) = ρ(t)
z(n−1)(t)

z[λg(t, a)]
, t ≥ t2, (2.14)
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then W (t) > 0, t ≥ t2. Because z(t) is increasing, g(t, ξ) is nondecreasing with
respect to t and ξ, there exists a t3 ≥ t2, such that z[g(t, a)] > z[λg(t, a)] > 0, t ≥ t3.
Because g(t, a) ≤ t and d

dtg(t, a) = g′(t, a) > 0 , from Lemma 1.2, there exists a
N > 0 and t4 ≥ t3, such that

z′[λg(t, a)] ≥ Ngn−2(t, a)z(n−1)[g(t, a)] ≥ Ngn−2(t, a)z(n−1)(t), t ≥ t4. (2.15)

Thus, from (2.13)− (2.15), we have

W ′(t) = ρ(t)
z(n)(t)

z[λg(t, a)]
+
ρ′(t)

ρ(t)
W (t)− λρ(t)g′(t, a)z(n−1)(t)z′[λg(t, a)]

z2[λg(t, a)]

≤ −λMρ(t)Q(t) +
ρ′(t)

ρ(t)
W (t)− λNgn−2(t, a)g′(t, a)

ρ(t)
W 2(t), t ≥ t4. (2.16)

Let

X =
[λNgn−2(t, a)g′(t, a)]

1
2W (t)

[ρ(t)]
1
2

, Y =
1

2

ρ′(t)

ρ(t)
[

ρ(t)

λNgn−2(t, a)g′(t, a)
]
1
2 ,

then, from the fact that X2 − 2XY + Y 2 ≥ 0 for any X, Y ∈ R , we obtain the
following inequality

ρ′(t)

ρ(t)
W (t)− λNgn−2(t, a)g′(t, a)

ρ(t)
W 2(t) ≤ (ρ′(t))2

4λNgn−2(t, a)g′(t, a)ρ(t)
, t ≥ t4.

(2.17)

Thus, form (2.16) and (2.17), we have

W ′(t) ≤ −λMρ(t)Q(t) +
(ρ′(t))2

4λNgn−2(t, a)g′(t, a)ρ(t)
, t ≥ t4. (2.18)

Integrating both sides of (2.18) from t4 to t(t > t4), we have

W (t) ≤W (t4)−
∫ t

t4

[λMρ(s)Q(s)− (ρ′(s))2

4λNgn−2(s, a)g′(s, a)ρ(s)
]ds.

In the above formula, let t→∞, combining the condition (2.4), we have limt→∞W (t) =
−∞, this contradicts the fact that W (t) > 0 for t ≥ t4. The proof of Theorem 2.1
is complete.

Here we consider the sets

D0 = {(t, s)|t > s ≥ t0}, D = {(t, s)|t ≥ s ≥ t0}.

Theorem 2.2. Assume that there exists function ρ(t), ϕ(t) ∈ C(I,R+), H(t, s) ∈
C(D,R), h(t, s) ∈ C(D0, R), such that

(i) H(t, t) = 0, t ≥ t0, H(t, s) > 0, (t, s) ∈ D0;

(ii) H(t, s)ϕ(s) exists a continuous and nonpositive partial derivative on D0 with
respect to the variable s and satisfies the equality

h(t, s) = −∂[H(t, s)ϕ(s)]

ds
− ρ′(s)

ρ(s)
H(t, s)ϕ(s). (2.19)
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If

lim sup
t→∞

[λMA(t, T )− 1

4λN
B(t, T )] =∞, (2.20)

for any T ≥ t0, where

A(t, T ) =
1

H(t, T )

∫ t

T

H(t, s)ϕ(s)ρ(s)Q(s)ds,

B(t, T ) =
1

H(t, T )

∫ t

T

ρ(s)h2(t, s)

H(t, s)ϕ(s)gn−2(s, a)g′(s, a)
ds,

then all solutions of the boundary value problems (1.1), (1.2) are oscillatory in G.

Proof. Proceeding as in the proof of theorem 2.1, we already have (2.16) holds.
Multiplying both sides of (2.16) by H(t, s)ϕ(s), for T ≥ t4, integrating from T to t,
we have∫ t

T

W ′(s)H(t, s)ϕ(s)ds ≤− λM
∫ t

T

H(t, s)ϕ(s)ρ(s)Q(s)ds+

∫ t

T

ρ′(s)

ρ(s)
W (s)H(t, s)ϕ(s)ds

−λN
∫ t

T

H(t, s)ϕ(s)ρ−1(s)gn−2(s, a)g′(s, a)W 2(s)ds.

Thus

λM

∫ t

T

H(t, s)ϕ(s)ρ(s)Q(s)ds

≤H(t, T )ϕ(T )W (T )−
∫ t

T

{−∂[H(t, s)ϕ(s)]

∂s
− ρ′(s)

ρ(s)
W (s)H(t, s)ϕ(s)}W (s)ds

− λN
∫ t

T

H(t, s)ϕ(s)ρ−1(s)gn−2(s, a)g′(s, a)W 2(s)ds

≤H(t, T )ϕ(T )W (T ) +

∫ t

T

|h(t, s)W (s)|ds

− λN
∫ t

T

H(t, s)ϕ(s)ρ−1(s)gn−2(s, a)g′(s, a)W 2(s)ds. (2.21)

Let

X =
[λNH(t, s)ϕ(s)gn−2(s, a)g′(s, a)]

1
2 |W (s)|

[ρ(s)]
1
2

,

Y =
1

2
|h(t, s)|[ ρ(s)

λNH(t, s)ϕ(s)gn−2(s, a)g′(s, a)
]
1
2 ,

then, from the fact that X2 − 2XY + Y 2 ≥ 0 for any X, Y ∈ R , we obtain the
following inequality

|h(t, s)W (s)| − λNH(t, s)ϕ(s)ρ−1(s)gn−2(s, a)g′(s, a)W 2(s)

≤ ρ(s)h2(t, s)

4λNH(t, s)ϕ(s)gn−2(s, a)g′(s, a)
. (2.22)
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Combining (2.21) and (2.22), we get

λMA(t, T ) ≤ ϕ(T )W (T ) +
1

4λN
B(t, T ), t ≥ T. (2.23)

The above formula yields

lim sup
t→∞

[λMA(t, T )− 1

4λN
B(t, T )] <∞.

This contradicts (2.20). The proof of Theorem 2.2 is complete.

Corollary 2.1. If condition (2.20) of Theorem 2.2 is replaced by

lim sup
t→∞

A(t, t0) =∞

and
lim sup
t→∞

B(t, t0) <∞,

then the conclusions of Theorem 2.2 remain true.

If the condition (2.20) don’t hold, we have the following result.

Theorem 2.3. Assume that the other conditions of Theorem 2.2 remain unchanged,
the condition (2.20) of Theorem 2.2 is replaced by

inf
s≥t0
{lim inf
t→∞

H(t, s)

H(t, t0)
} > 0 (2.24)

and

lim inf
t→∞

B(t, t0) <∞. (2.25)

If there exists a function Ψ(t) ∈ C(I,R) such that

lim sup
t→∞

∫ t

t0

Ψ2
+(s)gn−2(s, a)g′(s, a)

ϕ(s)ρ(s)
ds =∞, for every t > t0 (2.26)

and

lim inf
t→∞

{λMA(t, T )− 1

4λN
B(t, T )} ≥ Ψ(T ), for every T ≥ t0, (2.27)

where Ψ+(s) = max{Ψ(s), 0}, the definitions of A(t, T ) and B(t, T ) see (2.20), then
all solutions of the boundary value problems (1.1), (1.2) are oscillatory in G.

Proof. Proceeding as in the proof of theorem 2.2, for any t ≥ T ≥ t4, , we already
have (2.23) holds, then

λMA(t, T )− 1

4λN
B(t, T ) ≤ ϕ(T )W (T ), t ≥ T. (2.28)

From (2.27) and (2.28), we have

Ψ(T ) ≤ ϕ(T )W (T ), T ≥ t4 (2.29)
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and

lim inf
t→∞

λMA(t, t4) ≥ Ψ(t4). (2.30)

From (2.26) and (2.29), we obtain∫ ∞
t4

ϕ(s)ρ−1(s)gn−2(s, a)g′(s, a)W 2(s)ds =∞. (2.31)

To complete the proof of this theorem, we merely need to prove that (2.31) is
impossible. For this purpose, we definite

F (t) =
1

H(t, t4)

∫ t

t4

|h(t, s)W (s)|ds,

G(t) =
λN

H(t, t4)

∫ t

t4

H(t, s)ϕ(s)ρ−1(s)gn−2(s, a)g′(s, a)W 2(s)ds.

From (2.21) and (2.30), we have

lim sup
t→∞

[G(t)− F (t)] ≤ ϕ(t4)W (t4)− lim inf
t→∞

λMA(t, t4)

≤ ϕ(t4)W (t4)−Ψ(t4)

<∞. (2.32)

From (2.24) and (2.31), we obtain

lim
t→∞

G(t) =∞. (2.33)

Now, let we consider a sequence {tk}∞k=1 ⊂ I with limk→∞ tk = ∞. From (2.32),
there exists a constant C such that

G(tk)− F (tk) ≤ C, k = 1, 2, · · · . (2.34)

From (2.33), we have

lim
k→∞

G(tk) =∞. (2.35)

Combining (2.34) and (2.35), we get

lim
k→∞

F (tk) =∞, (2.36)

and
F (tk)

G(tk)
− 1 ≥ − C

G(tk)
> −1

2
,

namely,

F (tk)

G(tk)
>

1

2
, for sufficiently large k.

From the above formula and (2.36), we have

lim
k→∞

F 2(tk)

G(tk)
=∞. (2.37)
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On the other hand, by using the Schwarz inequality, we obtain

F (tk) ≤{ λN

H(tk, t4)

∫ tk

t4

H(tk, s)ϕ(s)ρ−1(s)gn−2(s, a)g′(s, a)W 2(s)ds} 1
2

× { 1

λNH(tk, t4)

∫ tk

t4

ρ(s)h2(tk, s)

H(tk, s)ϕ(s)gn−2(s, a)g′(s, a)
ds} 1

2 .

Thus, we have

F 2(tk)

G(tk)
≤ 1

λN
B(tk, t4), for sufficiently large k.

Noting that (2.37), we obtain

lim
k→∞

B(tk, t4) =∞. (2.38)

Because the sequence {tk}∞k=1 is arbitrary, (2.38) contradicts (2.25). Thus, (2.31)
doesn’t hold. The proof of Theorem 2.3 is complete.

Remark 2.1. The results of this paper extend and improve the corresponding
oscillatory theorems of literature [11].

Remark 2.2. Using our ideas in this paper, we can consider the other boundary
conditions. For example, consider the following Robin boundary value condition

∂u

∂N
+ β(x)u = 0, (t, x) ∈ R+ × ∂Ω, (2.39)

where β(x) ∈ C(∂Ω, (0,∞)). It is not difficult to obtain some oscillation criteria of
the boundary value problems (1.1), (2.39). Due to limited space, their statements
are omitted here.
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