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Geometric Properties and Exact Travelling Wave
Solutions for the Generalized Burger-Fisher

Equation and the Sharma-Tasso-Olver Equation∗

Jibin Li1,2

Abstract In this paper, we study the dynamical behavior and exact paramet-
ric representations of the traveling wave solutions for the generalized Burger-
Fisher equation and the Sharma-Tasso-Olver equation under different para-
metric conditions, the exact monotonic and non-monotonic kink wave solu-
tions, two-peak solitary wave solutions, periodic wave solutions, as well as
unbounded traveling wave solutions are obtained.
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1. Introduction

It is well known that finding exact solutions of nonlinear wave equations is of great
significance because a lot of mathematical models of describing physical phenom-
ena are arising in physics, mechanics, biology, chemistry and engineering. Various
powerful methods for obtaining explicit exact traveling wave solutions to nonlinear
equations have been developed such as the inverse scattering method, Darboux
transformation method, Hirota bilinear method, homogeneous balance method,
tanh-function method and so on. For examples, the generalized Burgers-Fisher
equation

ut + αumux + βuxx + γu(1− um) = 0 (1.1)

has a wide range of applications in plasma physics, fluid mechanics, capillary-gravity
waves, nonlinear optics and chemical physics, where α, β and γ ∈ R,m is positive
constant. By using different method, [1,7,8,11,12,14,16] have obtained some exact
explicit traveling wave solutions of equation (1.1).

For the following double nonlinear dispersive equation (it was called the Sharma-
Tasso-Olver equation):

ut + α(u3)x +
3

2
α(u2)xx + αuxxx = 0, (1.2)
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where α is a real parameter, it was first derived as an example of odd members of
the Burgers hierarchy by extending the “linearization” achieved through the Cole-
Hopf ansatz to equations containing as highest derivatives odd space derivatives.
To find the exact traveling wave solutions of equation (1.2), many physicists and
mathematicians have paid much attentions to this equation in recent years due to
its importance in mathematical physics (see [?, 3, 4, 6, 9–11,15], et al.).

Letting u(x, t) = φ(x−vt) = φ(ξ), where ξ = x−vt and v stand for the velocity
of wave, substituting it into equation (1.1), we have

φ′′ +
1

β
(αφm − v)φ′ +

γ

β
φ(1− φm) = 0, (1.3)

where “′” stand for the derivative with respect to ξ. Without loss of generality, by
a parameter transformation, we can take β = 1.

Equation (1.3) is equivalent to the planar cubic system:

dφ

dξ
= y,

dy

dξ
= −(αφm − v)y − γφ(1− φm). (1.4)

Letting u(x, t) = φ(x − vt) = φ(ξ), substituting it into equation (1.2) and
integrating the obtained equation once, taking the integral constant as 0, we obtain

φ′′ + 3φφ′ − v

α
φ+ φ3 = 0. (1.5)

Equation (1.5) is equivalent to the planar cubic system:

dφ

dξ
= y,

dy

dξ
= −3φy +

v

α
φ− φ3. (1.6)

To the best our knowledge, we notice that the dynamical behavior of travelling
wave solutions of systems (1.4) and (1.6) have not be studied before. From the view
point of the theory of dynamical systems, we hope to know which orbit corresponds
to a known exact solution. In other words, we need to understand the geometric
properties of all known exact solutions. In this paper, under some integrable pa-
rameter conditions, we consider two traveling wave systems of equation (1.1) and
equation (1.2) and answer the above problem. The dynamics and exact parametric
representations for the traveling wave solutions of equations (1.1) and (1.2) can be
given.

This paper is organized as follows. In section 2, we consider the phase portraits
of system (1.4) in the integrable cases and give exact kink wave solutions for the
generalized Burgers-Fisher equation (1.1). In section 3, we discuss the phase por-
traits and the graphs of level curves (i.e. the orbits of (1.4) for any fixed h) defined
by H(φ, y) = h of system (1.6) for vα > 0, v = 0 and vα < 0, respectively. In
section 4, we discuss the dynamical behavior of solutions of system (1.4) and figure
out exact explicit parametric representations of the traveling wave solutions of the
Sharma-Tasso-Olver equation (1.2).
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2. The phase portraits of system (1.4) in the inte-
grable cases and the exact kink wave solutions of
equation (1.1)

In this section, we first consider the dynamics of system (1.4). Clearly, If m is a non-
even positive real number, then system (1.4) has two equilibrium points E0(0, 0)
and E+(1, 0). If m is an even integer, then system (1.4) has three equilibrium points
E0(0, 0), E−(−1, 0) and E+(1, 0).

Let M(φi, 0) be the coefficient matrix of the linearized system of (1.4) at equi-
librium point Ei(φi, 0). Then, we obtain detM(φi, 0) = γ(1 − (m + 1)φmi ). Thus,
we have

J(0, 0) = detM(0, 0) = γ, J (±1, 0) = detM (±1, 0) = −mγ.

Ω = (traceM(0, 0))2 − 4J(0, 0) = v2 − 4γ.

By the theory of planar dynamical systems, for an equilibrium point of a planar
integrable system, if J < 0, then the equilibrium point is a saddle point; If J > 0
and (traceM)2 − 4J < 0(> 0), then it is a center point (a node point); if J = 0
and the Poincaré index of the equilibrium point is 0, then this equilibrium point is
a cusp.

By using the results in [2], we know the following two conclusions.

Condition 1. v > 2α
m+1 , γ = α((m+1)v−α)

(m+1)2 . Under this parameter condition, system

(1.4) has two first integral as follows:

I1(φ, y) =

(
y +

1

2
(−v ∓ ω)φ+

α

m+ 1
φm+1

)
e

1
2 (−v±ω)t = h, (2.1)

where ω =
√

Ω =
√
v2 − 4γ.

Condition 2. α = (m+1)v
m+2 , γ = (m+1)v2

(m+2)2 . Under this parameter condition, system

(1.4) has a first integral as follows:

I2(φ, y) =

(
y − v

m+ 2
φ+

α

m+ 1
φm+1

)
e−(m+1

m+2 )vt = h. (2.2)

Under the above two parameter conditions, we know that Ω > 0, equilibrium
point E0(0, 0) is a node. Equilibrium points E∓(∓1, 0) are saddle points. For
m = 1, 2, 3, 4, respectively, we have the phase portraits of system (1.4) shown in
Fig.1 (a)-(d).

We see from (2.1) and (2.2) that when h = 0, system (1.4) has three algebraic
curve solutions of degree m+ 1:

y = −1

2
(−v ∓ ω)φ− α

m+ 1
φm+1, y =

v

m+ 2
φ− α

m+ 1
φm+1. (2.3)

Write that
y = φ(Aj −Bφm), j = 1, 2, 3, (2.4)

where

A1 =
1

2
(v + ω), A2 =

1

2
(v − ω), A3 =

v

m+ 2
, B =

α

m+ 1
.
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(a) m = 1 (b) m = 2 (c) m = 3 (d) m = 4

Figure 1. The phase portraits and invariant curves of system (1.4)

By using the first equation of (1.4), we get ξ =
∫ φ
φ0

dφ
φ(Aj−Bφm) , 0 < φ0 < 1. It

implies that

φ(ξ) =

(
AjΦ0e

mAjξ

1 + Φ0BemAjξ

) 1
m

, j = 1, 2, 3, (2.5)

where Φ0 =
φm0

Aj−Bφm0
.

Hence, we obtain the following conclusion.

Theorem 2.1. Under the parameter condition 1 or 2, the generalized Burger-Fisher
equation (1.1) has kink wave solutions given by (2.5), which correspond to the in-
variant curve solutions of system (1.4) defined by (2.3).

3. The phase portraits of system (1.6) and the graphs
of the level curves defined by H(φ, y) = h

We first consider the Liénard equation

φ′′ + f(φ)φ′ + g(φ) = 0 (3.1)

and corresponding planar dynamical system

dφ

dξ
= y,

dy

dξ
= −f(φ)φ′ − g(φ). (3.2)

If functions f(φ) and g(φ) of equation (3.1) satisfy

d

dφ

(
g(φ)

f(φ)

)
= kf(φ), k = constant 6= 0, (L)

we say that the Chiellini’s integrability condition holds.
In [5], we stated the following conclusion.

Theorem A( The integrability of Liénard equation via Chiellini’s condition). Sup-
pose that the functions f(φ) and g(φ) of equation (3.1) satisfy the Chiellini’s inte-
grability condition (L).

(i) If f(φ) is known, then

g(φ) = f(φ)

[
C1 + k

∫
f(φ)dφ

]
; (3.3)
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if g(φ) is known, then

f(φ) = ± g(φ)√
C2 + 2k

∫
g(φ)dφ

, (3.4)

where C1 and C2 are two arbitrary constants.
(ii) For a fixed k given by condition (L), system (3.2) has the following first

integrals:(
ky2 + y g(φ)

f(φ) + g2(φ)
f2(φ)

)
exp

(
2√

4k−1
arctan

(
y+2

g(φ)
f(φ)

y
√

4k−1

))
= h, for k > 1

4 ,

y

y+2
g(φ)
f(φ)

− 2arctanh
(

1 + 4g(φ)
yf(φ)

)
− ln

(
g(φ)
f(φ)

)
= h, for k = 1

4 ,(
y − κ1

g(φ)
f(φ)

)√1−4k−1 (
y − κ2

g(φ)
f(φ)

)√1−4k+1

= h, for k < 1
4 ,

(3.5)

where κ1 = −1+
√

1−4k
2k , κ2 = − 1+

√
1−4k

2k , h is an integral constant.

Clearly, equation (1.5) satisfies Chiellini’s integrability condition with k = 2
9 . In

fact, d
dφ

(
g
f

)
= d

dφ

(
1
3φ

2 − v
α

)
= 2

9 (3φ) = 2
9f(φ). Therefore, we know from Theorem

A that system (1.6) is an integrable system. It has the first integral as follows (also
see [2]):

H(φ, y) =
(
y + φ2 − v

α

)−2
(
y +

1

2

(
φ2 − v

α

))
= h. (3.6)

For planar dynamical system (1.6), when vα > 0, it has three equilibrium points
E1

(
−
√

v
α , 0

)
, E2(0, 0) and E3

(√
v
α , 0

)
. When vα ≤ 0, system (1.6) has only one

equilibrium point E(0, 0).
Let M(φi, 0) be the coefficient matrix of the linearized system of (1.6) at equi-

librium point (φi, 0). Then, we have detM(φ, 0) = 3φi − v
α . Thus, we have

J(0, 0) = detM(0, 0) = − v
α
, J

(
±
√
v

α
, 0

)
= detM

(√
v

α
, 0

)
=

2v

α
,

(
traceM

(
±
√
v

α
, 0

))2

− 4J

(
±
√
v

α
, 0

)
=
v

α
.

We see from the above discussion that for vα > 0, E1 and E3 are node points,
E2 is a saddle point. For vα < 0, E(0, 0) is a center point. For v = 0, it is a
three-multiple singular point.

Let h2 = H(0, 0) = − α
2v and h1,3 = H

(
±
√

v
α , 0

)
=∞. By qualitative analysis,

corresponding to vα > 0, v = 0 and vα < 0, respectively, we have the following
three phase portraits shown in Fig.1. We also give the graphs of some level curves
defined by H(φ, y) = h when h varies, which are shown in Fig.2 and Fig.3.

4. Exact traveling wave solutions of equation (1.2)
and their dynamics

In this section, we consider the exact traveling wave solutions of equation (1.2) and
their dynamics.
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Figure 2. The phase portraits of system (1.6)
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Figure 3. The level curves defined by H(φ, y) = h of system (1.6) when vα > 0
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1. The case vα > 0 (see Fig.2 (a)).
(i) Corresponding to the level curves defined by H(φ, y) = h2 in Fig.3 (a), we

have six orbits of system (1.6) to the three equilibrium points, for which four orbits
give rise to unbounded solutions of equation (1.2), two heteroclinic orbits connecting
the equilibrium points E1, E2 and E3 give rise to two kink wave solutions of equation
(1.2). In fact, H(φ, y) = h2 can be written as(

y −
√
v

α
φ+ φ2

)(
y +

√
v

α
φ+ φ2

)
= 0.

Thus, by taking y =
√

v
αφ − φ

2 and y = −
√

v
αφ − φ

2, respectively, using the first
equation of system (1.6) to integrate, we obtain the parametric representations of
two monotonic kink wave solutions as follows:

φ(ξ) = φ+(ξ) ≡
√

v
α

1 + a0e
−
√

v
α ξ
, φ(ξ) = φ−(ξ) ≡ −

√
v
α

1 + a0e
√

v
α ξ
, (4.1)

where a0 =

√
v
α−φ0

φ0
, 0 < φ0 <

√
v
α .

(ii) Corresponding to the level curves defined by H(φ, y) = h, h ∈ (h2, 0) in Fig.3
(b), for every h, the level curves consist of three unbounded orbits and a heteroclinic
orbit of system (1.6) connecting the equilibrium points E1 and E3. The heteroclinic
orbit gives a monotonic kink wave solution of equation (1.2). Now, H(φ, y) = h can
be solved to get

y =
1

2|h|

(
1 +

2|h|v
α
− 2|h|φ2 +

√
1 +

2|h|v
α
− 2|h|φ2

)

and

y =
1

2|h|

(
1 +

2|h|v
α
− 2|h|φ2 −

√
1 +

2|h|v
α
− 2|h|φ2

)
.

Hence, using the first equation of system (1.6), we obtain the parametric representa-
tions of the family of heteroclinic orbits of system (1.6) connecting the equilibrium
points E1 and E3 as follows:

φ(ξ) = ∓ 1√
2

[
2v
α −

1
|h| +

(
1√
|h|
−

2v
α√

A cosh(ωξ)+ 1√
|h|

)2
] 1

2

,

for ξ ∈ (−∞, 0] and ξ ∈ [0,∞), respectively,

(4.2)

where A = 1
|h| −

2v
α > 0, ω = 1

2

√
2A. Therefore, for all h ∈ (h2, 0), there exists a

family of monotonic kink wave solutions of equation (1.2) given by equation (4.2).
(iii) Corresponding to the level curves defined by H(φ, y) = 0 in Fig.3 (c), we

have three orbits of system (1.6), for which two orbits are unbounded, one orbit is
the heteroclinic orbits connecting the equilibrium points E1 and E3. In this case,
H(φ, y) = 0 can be written as y = − 1

2

(
φ2 − v

α

)
.Hence, by using the first equation of

system (1.6) to integrate, we have the parametric representation of the heteroclinic
orbits as follows:

φ(ξ) = φl(ξ) ≡
√
v

α
tanh

(
1

2

√
v

α
ξ

)
. (4.3)
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This parametric representation gives rise to a monotonic kink wave solution(i.e.,
wavefront solution) of equation (1.2).

The two unbounded orbits has the parametric representations:

φ(ξ) = ±
√
v

α
ctnh

(
1

2

√
v

α
ξ

)
. (4.4)

(iv) Corresponding to the level curves defined by H(φ, y) = h, h ∈ (0,∞) in
Fig.4 (a), for every h we have two families of heteroclinic orbits of system (1.6)
connecting the equilibrium points E1 and E3, for which one orbit family gives a
family of monotonic kink wave solutions of equation (1.2), another orbit family give
a family of non-monotonic kink wave solutions of equation (1.2).

Considering the lower arc of level curve defined by y = 1
2

((
2v
α + 1

h −2φ2
)
−√

1
h

(
2v
α + 1

h − 2φ2
))

from (3.6) and using the first equation of system (1.6), we

obtain the parametric representation of monotonic kink wave solutions as follows:

φ(ξ) = ∓ 1√
2

[
2v
α + 1

h −
(

2v
α√

A cosh(ωξ)+ 1√
h

+ 1√
h

)2
] 1

2

,

for ξ ∈ (−∞, 0] and ξ ∈ [0,∞), respectively,

(4.5)

where A = 1
h + 2v

α > 0, ω = 1
2

√
2A.

For all h ∈ (0,∞), equation (4.5) gives rise to uncountably infinite many mono-
tonic kink wave solutions of equation (1.2) shown in Fig.5 (a).

Considering the upper arc of level curve defined by y = 1
2

( (
2v
α + 1

h − 2φ2
)

+√
1
h

(
2v
α + 1

h − 2φ2
))

from (3.6), h ∈ (0,∞), using the first equation of system (1.6),

we obtain the parametric representation of non-monotonic kink wave solutions as
follows:

φ(ξ) = ∓ 1√
2

[
2v
α + 1

h −
(

2v
α√

A cosh(ωξ)− 1√
h

− 1√
h

)2
] 1

2

,

for ξ ∈ (−∞, 0] and ξ ∈ [0,∞), respectively.

(4.6)

For all h ∈ (0,∞), equation (4.6) gives rise to uncountably infinite many non-
monotonic kink wave solutions of equation (1.2) shown in Fig.5 (b).

2. The case of v = 0 (see Fig.2 (b)).
Corresponding to the curves defined by H(φ, y) = h, h ∈ (0,∞) in (3.6) (see

Fig.4 (b)), system (1.6) has a family of homoclinic orbits connecting to the ori-
gin E(0, 0). We see from (3.6) that in this case, H(φ, y) = h follows that y =

1
2

(
1
h − 2φ2 ±

√
1
h−2φ2

h

)
.

Thus, we have the parametric representations of the family of homoclinic orbits
as follows:

φ(ξ) = φu(ξ) =
2ξ

2h+ ξ2
. (4.7)

By using (4.7), for a fixed h ∈ (0,∞) and c = 0, we obtain the wave profiles of
two peak solitary wave solution φ(ξ) of equation (1.2) shown in Fig.5 (c).

3. The case of vα < 0 (see Fig.2(c)).
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(i) Corresponding to the level curves defined by H(φ, y) = h, h ∈ (−∞, 0] in
(3.6) (see Fig.2 (c)), for every fixed h, system (1.6) has three unbounded orbits.
They give three unbounded solutions of equation (1.2). Specially, when h = 0,
H(φ, y) = 0 can be written as 1

2 (y + φ2 + | vα |)(2y + φ2 + | vα |) = 0. Thus, we have
the parametric representations of the exact solutions of equation (1.2) as follows:

φ(ξ) = −
√
| v
α
| tan

(√
| v
α
|ξ
)
, φ(ξ) = −

√
| v
α
| tan

(
1

2

√
| v
α
|ξ
)
. (4.8)

(ii) Corresponding to the curves defined by H(φ, y) = h, h ∈
(
0, | 2αv |

)
in (3.6)

(see Fig.4 (c)), system (1.6) has a family of periodic orbits enclosing the origin
E(0, 0). These orbits give rise to a family of periodic solutions of equation (1.2). By

using (3.6), we see from y = 1
2

[
1
h − |

2v
α | − 2φ2 +

√
1
h ( 1

h − |
2v
α | − 2φ2)

]
and the first

equation of (1.6) that the parametric representation of the exact periodic solutions
of equation (1.2) is as follows:

φ(ξ) = ∓ 1√
2

[
1
h − |

2v
α | −

(
| 2vα |

1√
h

+
√
A sin(

√
| vα |ξ−ξ0)

− 1√
h

)2
] 1

2

,

for ξ ∈ (−∞, 0] and ξ ∈ [0,∞), respectively,

(4.9)

where ξ0 = arcsin

(
(
√
A+ 1√

h
)−| 4vα |

√
h

(
√
Ah+1)

√
A

)
.

By using (4.9), for a fixed h ∈ (0,∞) and vα < 0, we obtain the wave profiles
of periodic wave solution of equation (1.2) shown in Fig.5 (d).

(a) (b) (c) (d)

Figure 5. The Profiles of waves of equation (1.2) defined by H(φ, y) = h

To sum up, from the above discussions, we have the following result.

Theorem 4.1. The traveling wave system (1.6) of the Sharma-Tasso-Olver equa-
tion (1.2) is an integrable system with the first integral (3.6).

(i) For vα > 0, depending on the changes of the level curves defined by H(φ, y) =
h, h ∈ (h2, 0) and h ∈ (0,∞), equation (1.2) has two families of uncountably infi-
nite many monotonic kink wave solutions given by (4.2), (4.5) and a family non-
monotonic kink wave solutions given by (4.6).

(ii) For v = 0, depending on the changes of the level curves defined by H(φ, y) =
h, h ∈ (0,∞), equation (1.2) has a family of uncountably infinite many two-peak
solitary wave solutions.

(iii) For vα < 0, depending on the changes of the level curves defined by H(φ, y) =
h, h ∈ (0, h2), equation (1.2) has a family of uncountably infinite many periodic wave
solutions given by (4.9).
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