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Abstract. In this work, we propose a formulation based on the Polygonal Discontinu-
ous Galerkin (PolyDG) method for contact mechanics that arises in fluid-structure in-
teraction problems. In particular, we introduce a consistent penalization approach to
treat the frictionless contact between immersed structures that undergo large displace-
ments. The key feature of the method is that the contact condition can be naturally
embedded in the PolyDG formulation, allowing to easily support polygonal/polyhe-
dral meshes. The proposed approach introduced a fixed background mesh for the
fluid problem overlapped by the structure grid that is able to move independently of
the fluid one. To assess the validity of the proposed approach, we report the results of
several numerical experiments obtained in the case of contact between flexible struc-
tures immersed in a fluid.
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1 Introduction

The numerical modeling of the contact process in mechanical problems requires to in-
troduce inequalities in the mathematical formulation, see e.g. [60, 85]. In particular, the
contact could be modeled by means of two inequalities, one prescribing a kinematic non-
penetration condition on the displacements, the other one prescribing a dynamic condi-
tion on the tractions; an additional equality ensuring the compatibility between these two
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conditions is added to the model, see e.g. [60, 85]. Moreover, depending on the applica-
tion of interest, a friction law may be prescribed to model the tangential behaviour of the
contact tractions [60]. From the numerical viewpoint, these conditions can be imposed via
different approaches. In [38], a penalty method is employed to impose the kinematic non-
penetration condition. In [35–37,39,40,69] and [25–27,76], the authors used a Nitsche-DG
and augmented Lagrangian formulations, respectively, that guarantee the consistency of
the numerical formulation. In [41, 44, 58, 59, 61, 75, 83, 84], a Lagrange multipliers tech-
nique is presented for prescribing both the kinematic and the dynamic non-penetration
conditions.

Another important process involving many engineering applications is the interac-
tion between a solid body and a fluid, see e.g. [19, 23, 46–48, 52, 53, 67, 72, 86, 87]. The
inclusion of the contact model in a fluid-structure interaction (FSI) framework features
additional challenges from the mathematical and numerical point of view, due to the
need of modeling fluid slip at the fluid-structure interface, a condition that allows con-
tact to take place. There are several applications that require the numerical approxima-
tion of FSI problems involving contact mechanics. For example, in the context of the
modeling of the cardiovascular system, we mention the dynamics of the heart valves, see
e.g. [12, 21, 54, 65, 74, 80, 81].

The physical process that takes place during the contact between two bodies im-
mersed in a fluid has not been completely understood yet, though several recent works
addressed the physical behaviour through experiments, see e.g. [18, 62, 71]. For this rea-
son, the derivation of a suitable mathematical model that describes the contact in FSI with
proper coupling conditions is not fully understood. From the theoretical viewpoint, sev-
eral works show that the contact may happen only under specific conditions on the fluid
and structure, or on the topology, see e.g. [13, 34, 50, 51, 57]. In particular, an important
result [13, 34] shows that in the case of an incompressible fluid, for a smooth structure
geometry, the standard no-slip kinematic coupling condition at the fluid-structure in-
terface does not allow the contact between approaching bodies, since a thin fluid layer
remains trapped between them. Thus, it is required to consider a slip condition to allow
the contact.

For the numerical treatment of the contact, several approaches have been proposed
in the literature. In [77], the authors proposed a fully-Eulerian approach to discretize
the FSI problem by using no-slip conditions at the fluid-structure interface. This choice
avoids the penetration between the structures, though it never allows their actual con-
tact. In [49], the fully-Eulerian approach has been extended to the contact case with a
penalization approach to prevent the penetration of the structures. In [78], the authors
proposed a penalty approach to treat the contact problem in the framework of the Space-
Time Finite Element method developed in [79]; in [20], a Fictitious Domain approach for
the FSI problem with immersed thin structures is proposed and a penalty approach is
employed to incorporate the non-penetration condition into the formulation. Lagrange
multiplier approaches have been used as well to handle the contact conditions in FSI, see
e.g. [12, 45, 68, 80].



S. Zonca, P. F. Antonietti and C. Vergara / Commun. Comput. Phys., 30 (2021), pp. 1-33 3

Recently, a wide range of literature has been focused of the development of consis-
tent penalization methods, such as the Discontinuous Galerkin (DG) scheme. In [24], a
fully-Eulerian approach is used to formulate the discrete FSI problem and the DG ap-
proach is employed at the interface to prescribe a frictionless contact condition with both
no-slip and slip couplings at the fluid-structure interface. The authors prove a stabil-
ity result and show some two-dimensional numerical examples obtained with conform-
ing meshes. In [2], the Cut Finite Element Method (Cut-FEM) is employed to discretize
the FSI problem and frictionless contact conditions are included via a consistent penalty
method. In addition, it is proposed a transition from no-slip to slip coupling condition
close to the contact limit, based on the general Navier condition, see e.g. [62, 71]. The
authors present two-dimensional numerical examples with unfitted meshes in the case
of contact between flexible structures immersed in a fluid. Finally, in [1], the authors ex-
tended the previous contact model by coupling it with a poroelastic model to represent
the surface roughness in a layer surrounding the structures.

Despite the great advances made, owing to the above-mentioned works, for the FSI
contact numerical modeling, some points need in our opinion to be still developed and
improved: i) the standard Finite Element method and its extensions, such as the eX-
tended Finite Element Method (XFEM), use the Lagrangian basis functions that do not
allow to easily implement a high-order space discretization. This could be of great in-
terest in some applications, such as to reduce dissipation and dispersion in numerical
schemes for elastodynamics problems; ii) since the XFEM uses standard mesh element
shapes, such as triangles and quadrilaterals, from the implementation point of view in
general it requires a specific treatment of the fluid polygonal elements resulting from the
intersection with the structure and of the corresponding degrees of freedom (for example
their doubling).

The aim of this work is to design a method that could give some concrete answers
to the previous open issues. In particular, we propose a DG formulation for the contact
problem in presence of the interaction with a surrounding fluid, valid for meshes with
arbitrary polygonal elements. This allows us to develop a consistent, high-order accurate
and geometrically flexible numerical method. In particular, the idea is to use discon-
tinuous Finite Elements modal basis functions which are built directly on the polygons
generated by the intersections between fluid and structure. This allows us to i) easily
implement any order of discretization and ii) manage the degrees of freedom of the cut
elements directly on the physical polygons, simplifying their treatment. In the class of ap-
proaches based on polygonal elements, we mention [15] for an example of a FSI problem
discretized via the Virtual Element method.

Here, we consider the Discontinuous Galerkin method on polygonal grids (PolyDG)
[6,8–10,14,28–32,64,73,82] and, in particular, the FSI formulation presented in [11]. Start-
ing from this work, we propose a new consistent contact formulation for the FSI contact
problem, where the contact conditions are written in the framework of the PolyDG ap-
proach. This allows us to naturally incorporate these conditions in the formulation. As
a consequence, we are able to present a scheme that naturally features high-order space
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accuracy for the contact FSI problem and can easily handle non-conforming arbitrarily
shaped fluid and structure meshes. This provides us with a gain in geometric flexibility.
Notice also that the proposed formulation is valid both for the two and three-dimensional
cases.

The paper is organized as follows. In Section 2, we introduce the FSI problem and
the contact model; in Section 3, we present the PolyDG contact FSI formulation; finally,
in Section 4, we show several 2D numerical experiments to assess the performance of the
proposed formulation.

2 Fluid-structure interaction and contact model

In this section, we introduce the governing equations for the FSI problem and for the
contact model.

Referring to Fig. 1, for any time t∈ [0,T], being T > 0 the final observation time, we
consider a fluid domain Ω f (t)⊂R

2 and a structure domain Ωs (t)⊂R
2 such that Ω =

Ω f (t)∪Ωs (t), Ω f (t)∩Ωs (t) =∅. We assume that both the fluid and structure domains
are polygonal.

We also assume that the structure domain is completely immersed in the fluid one,
so that ∂Ωs (t) represents the fluid-structure interface. We denote by ni(t) and τi(t) the
outward unit normal and the unit tangential vectors to ∂Ωi(t), respectively, for i = f ,s.
We also set n = n f =−ns and τ = τ f =−τs on ∂Ωs (t). To ease the notation, when it
is not necessary, we drop the dependence on time. For the sake of exposition, we also
assume that the bottom boundary of Ω f (t) is a straight line defined as Γw={(x,y) :y=0}
that represents a rigid wall with outward vector normal nw and unit tangential vector
τw. We indicate with Γ f the fixed external boundary of the fluid domain. In fact, we are
considering the case of one immersed structure entering in contact with a rigid wall. The
case of two flexible immersed structures will be numerically addressed in Section 3.3.

Our mathematical model is based on the following two assumptions, which accord-
ingly introduce a splitting of ∂Ωs in three subregions ΓC,Σslip,Σno-slip, where different
coupling conditions will be applied:

i) A thin layer of fluid is assumed to be always present between structures, also at the
contact region. The latter is denoted by ΓC, see Fig. 1. Thus, the bodies may directly
exchange forces even though their geometries do not get in touch. In particular, we
assume that the contact happens whenever the distance between the two bodies is
lower than ε>0, for a suitable ε. This choice is introduced to simplify the resulting
numerical approximation, see also Remark 2.1. Owing to this, the fluid structure
interface is still ∂Ωs also during the contact;

ii) To allow the contact between the bodies, we need to prescribe slip conditions be-
tween fluid and structure at the contact region. We extend to Σslip the region where
slip conditions are prescribed, even if no contact occurs here, see Fig. 1. This is done
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Figure 1: Sketch of the fluid and structure domains Ω f and Ωs with the contact conditions. Γw is the rigid

wall. ∂Ωs is partitioned in Σno-slip (solid line), Σslip (dash line) and ΓC (bold line). The function gC (x) indicates
the distance between x and its projection Πs→w(x) on Γw. The threshold distance gslip separates the Σno-slip

and Σslip regions, while ε separates the Σslip and ΓC regions.

in order to allow the fluid between the flexible and rigid structures to slip away, so
that they could move closer each other.

On the remaining part of the interface, Σno-slip, standard FSI coupling conditions
are prescribed, see Fig. 1.

The structure problem is written in a Lagrangian framework; accordingly, the quanti-
ties in the reference configuration are denoted with ·̂. The fluid and contact problems are
instead written in an Eulerian framework.

We consider an incompressible Newtonian fluid with Tf (u,p)=−pI+2µ f D(u), where

D(v)= 1
2(∇v+∇vT), u and p are the fluid velocity and pressure and µ f is the fluid dy-

namic viscosity. For the structure, we consider a linear elastic material with Ts(d) =
λs(∇·d)I+2µsD(d), where d is the structure displacement, λs,µs > 0 are the Lamé pa-
rameters. We also introduce the fourth order elastic tensor Cs such that Ts(d)= CsD(d),
see e.g. [66]. To pass from the Cauchy stress tensor Ts(d) to the Piola-Kirchhoff stress

tensor T̂s(d̂), we use as usual the following formula:

T̂s = JTsF−T,

with J = det(F) and where F =∇x is the deformation tensor, with the gradient evalu-
ated in the reference space coordinates and x the coordinates of the points in the current
configuration.

To prevent the penetration of the solid domain Ωs into the rigid wall Γw, we impose
that their distance gC is greater than a specific threshold ε∈R

+, where gC :∂Ωs→R is the
gap function defined as

gC (x)=(Πs→w(x)−x)·nw,
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and where we have introduced the map Πs→w : ∂Ωs →Γw defined as Πs→w (x) = (x,0)
that projects a point from the boundary of the solid domain to the wall. Notice that

gC (x)= gC

(
X+d̂

)
, where X are the point coordinates in the reference configuration. For

the sake of notation, in what follows we will write gC (d) instead of gC

(
X+d̂

)
to highlight

the dependence of gC on the structure displacement.
The contact region ΓC is identified as the subregion of ∂Ωs such that gC = ε. Here, a

repulsive “force” (contact traction) λC : ∂Ωs →R
2 is prescribed to the solid:

λC =λCnw+ϕCτw,

where λC is the normal component aligned with nw and ϕC the tangential one, which is
assumed to be zero. This leads to a contact model which is friction-less and is prescribed
via an asymmetric main/secondary approach [60, 85], i.e. the contact conditions are pre-
scribed only on the secondary body. In our framework, the secondary body is the solid
domain Ωs, while we consider the wall Γw as the rigid and fixed main body. Then, given
ε> 0, the conditions that account for the contact between the structure Ωs and the wall
Γw read as follows [24]:

gC ≥ ε, λC ≤0, (ε−gC)λC=0 on ∂Ωs, (2.1a)

ϕC=0 on ∂Ωs. (2.1b)

Notice that, to impose conditions (2.1), the (constant) normal nw appearing in the defini-
tion of gC has to be translated and applied to ∂Ωs.

Remark 2.1. In condition (2.1a), the relaxation parameter ε ≥ 0 has been introduced so
that the contact arises when the gap function gC is equal to the threshold distance ε. This
choice is motivated to avoid changes of topology in the discrete setting. Indeed, the
non-linear nature of the contact conditions requires an iterative procedure for solving the
resulting non-linear problem, and its solution fulfils the constraints only at convergence.
The first inequality in Eq. (2.1a) prescribes that the distance between the solid domain
and the wall has to be greater than or equal to ε, i.e. no-penetration of the structure in the
region far at most ε from the wall Γw is allowed. The second inequality prescribes that the
normal contact traction on the solid domain acts as a compression, i.e. a repulsive force.
The last condition in (2.1a) ensures that at least one of the two previous inequalities is
zero. Finally, condition (2.1b) prescribes no friction.

The standard fluid-structure interface Σno-slip is the portion “far away” from the con-
tact region, defined as:

Σno-slip ={x∈∂Ωs : gC (x)> gslip},

where gslip > ε is a suitable threshold distance and where we assume standard FSI condi-
tions.

Instead, Σslip is the portion “close” to the contact region, defined as

Σslip ={x∈∂Ωs : ε< gC (x)≤ gslip}.
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On such a portion of the interface, slip conditions are prescribed. These prescribe the
standard continuity of velocities and tractions in the normal direction, whereas in the
tangential direction homogeneous Neumann conditions for both fluid and structure are
imposed, i.e.

u·n=∂td·n, Tf (u,p)n·n=Ts(d)n·n on Σslip,

Tf (u,p)n·τ=0, Ts(d)n·τ=0 on Σslip.
(2.2)

As observed, close to the contact region ΓC, a thin fluid layer of size ε is still present.
Thus, here we apply the slip fluid-structure interface conditions in presence of contact
that, due to the additional contact “force” λC, become:

u·n=∂td·n, Tf (u,p)n·n=Ts(d)n·n−λC on ΓC,

Tf (u,p)n·τ=0, Ts(d)n·τ−ϕC=0 on ΓC.

Remark 2.2. We point out that the definitions of Σno-slip, Σslip and ΓC are valid also in
the case of a non-convex solid domain Ωs, where each of these regions may be non-
connected.

The resulting contact problem in presence of FSI reads as follows: for any t∈ (0,T],
find the fluid velocity u, the fluid pressure p, the solid displacement d, and the contact
force λC, such that

Fluid equations:

ρ f ∂tu+ρ f u·∇u−∇·Tf (u,p)= f f in Ω f , (2.3a)

∇·u=0 in Ω f , (2.3b)

u=0 on Γ f ∪Γw; (2.3c)

Structure equation:

ρs∂ttd̂−∇·T̂s(d̂)= f̂s in Ω̂s; (2.3d)

No-slip conditions at FSI interface Σno-slip:

u=∂td on Σno-slip, (2.3e)

Tf (u,p)n=Ts(d)n on Σno-slip; (2.3f)

Slip conditions at FSI interface Σslip:

u·n=∂td·n on Σslip, (2.3g)

Tf (u,p)n·n=Ts(d)n·n on Σslip, (2.3h)

Tf (u,p)n·τ=0 on Σslip, (2.3i)

Ts(d)n·τ=0 on Σslip; (2.3j)
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Slip conditions in presence of contact on ΓC:

u·n=∂td·n on ΓC, (2.3k)

Tf (u,p)n·n=Ts(d)n·n−λC on ΓC, (2.3l)

Tf (u,p)n·τ=0 on ΓC, (2.3m)

Ts(d)n·τ−ϕC =0 on ΓC; (2.3n)

Contact conditions:

gC ≥ ε, λC ≤0, (ε−gC)λC =0 on ∂Ωs, (2.3o)

ϕC=0 on ∂Ωs, (2.3p)

where ρ f and ρs are the fluid and structure densities and f f and fs the forcing terms.

Problem (2.3) is supplemented with (regular enough) initial conditions u(x,0)=u0(x) in

Ω f (0), d̂(x,0)= d̂0(x) in Ω̂s, and ∂td̂(x,0)= v̂0(x) in Ω̂s.

3 Numerical discretization

In this section, we present the semi-discrete PolyDG formulation associated to the weak
form of problem (2.3) (Section 3.1), then we discuss the time discretization and the treat-
ment of the non-linearities and report the corresponding fully discrete formulation (Sec-
tion 3.2) and finally we describe how to extend the numerical formulation in the case of
two deformable structures (Section 3.3).

3.1 Polygonal Discontinuous Galerkin approximation

We introduce the background mesh Th and solid mesh Ts,h that cover the entire fixed
domain Ω and the structure domain Ωs, respectively, see Fig. 2 (top-left). Notice that,
while Th is fixed in time, Ts,h depends on time. We point out that the elements belonging
to Th and Ts,h may be polygonal elements of arbitrary shape. The intersection of the
background and structure meshes induces a set of background elements that are crossed
by the boundary of Ts,h, see Fig. 2 (bottom-left), defined as:

Gh ={K∈Th : ∅ 6=K∩Ωs(K}. (3.1)

Each element K∈Gh can be partitioned into elements of arbitrary shape {P
j
K}j resulting

from the intersection with the boundary of the structure mesh, see Fig. 2 (bottom-right).
The computational grid T f ,h associated with the fluid domain Ω f is obtained as the union
of the elements of Th that are not intersected by the structure domain, plus the cut ele-
ments that are partially covered by the structure domain, i.e.,

T f ,h={K∈Th : K∩Ks=∅∀Ks ∈Ts,h} ∪ {P
j
K ⊂K∈Gh : P

j
K∩Ω f 6=∅}, (3.2)
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Figure 2: Top-left: background mesh Th (gray) and structure mesh Ts,h (black). Top right: fluid mesh T f ,h.

Bottom-left: elements belonging to the set Gh defined as in (3.1) (blue). Bottom-right: detail of an element

K∈Gh that is cut into P1
K and P2

K (blue).

see Fig. 2 (top-right).
In what follows, we assume that µ f and Cs are piecewise constant over the mesh.
We denote by Fi,h, i={ f ,s,no-slip,slip,C}, the set of one-dimensional edges compos-

ing T f ,h, Ts,h, Σno-slip, Σslip and ΓC, respectively, and FΣ,h =Fno-slip,h∪Fslip,h∪FC,h.
In what follows, we introduce the DG Finite Elements spaces of order ℓ, defined as

V ℓ
f ,h(t)={v(t)∈ [L2(Ω f (t))]

2 : v|K ∈ [P ℓ(K)]2 ∀K∈T f ,h(t)},

Qℓ
h(t)={q(t)∈L2(Ω f (t)) : q|K ∈P ℓ(K)∀K∈T f ,h(t)},

V ℓ
s,h={w∈ [L2(Ω̂s)]2 : w|K ∈ [P ℓ(K)]2∀K∈T̂s,h},

(3.3)

where T̂s,h is the structure mesh in the reference (initial) configuration and P ℓ(K) denotes
the space of polynomials obtained over the polygon K of total degree at most ℓ≥1. Notice
that the polynomial space P ℓ(K) is based on a modal expansion that allows to easily
build high-order DG spaces. Moreover, the shape functions and the degrees of freedom
are directly generated on the (polygonal) physical element K with the “bounding box”
technique, as described in [32]. This simplifies the implementation with respect to the
Finite Elements methods. Indeed, for the XFEM the shape functions and the degrees
of freedom are defined on the original triangular/quadrilateral element K, yielding the

assembling of the local matrices corresponding to {P
j
K}j more tricky.
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Remark 3.1. Notice that in the present work, the fluid-structure interface is represented
as a piecewise linear interface, even if the polynomial approximation degree ℓ may be
greater than one. This choice is motivated to simplify the computation of the inter-
sections between the fluid and structure meshes. A possible extension to a high-order
isoparametric mapping with Cut-FEM is proposed in [63] for elliptic problems, while
in [7] a high-order isoparametric representation of the interface with the DG methods is
proposed for elliptic problems on surfaces.

Remark 3.2. Notice that the total degree ℓ for the polynomials in the space P ℓ can be in
general chosen differently for the fluid velocity, fluid pressure and solid displacement. To
ease the exposition, in what follows and in the numerical experiments we consider the
same order for all the three spaces.

On any interior edge F∈Fi,h, i={ f ,s,no-slip,slip,C}, and for regular enough vector-
valued and symmetric tensor-valued functions v and T , respectively, we define the aver-
age and jump operators as

{T}=
1

2

(
T++T−

)
, JvK=v+⊙n++v−⊙n−,

where v± and T± denote the traces of v and T on any edge F between elements K± and
where v⊙n=(vnT+nvT)/2. Notice that JvK is a symmetric tensor-valued function. On a
boundary edge F∈F f ,h where an homogeneous Dirichlet condition is prescribed, we set
analogously

{T}=T , JvK=v⊙n.

We also introduce the L2-inner products over the domain Z and edges Fi,h with the short-
hand notation (·,·)Z and (·,·)Fi,h

, respectively.
The semi-discrete PolyDG approximation reads as follows: given δ∈[0,1], σf∈L∞(F f ,h),

σ̂s ∈ L∞(F̂s,h), σΣ ∈ L∞(FΣ,h), σC ∈ L∞(FC,h), f f ∈ [L2(Ω f )]
2 and f̂s ∈ [L2(Ω̂s)]2, for any

t∈ (0,T], find (uh(t),ph(t),d̂h(t))∈V ℓ
f ,h(t)×Qℓ

h(t)×V ℓ
s,h, such that

A f ,h(uh,uh,ph;vh,qh)+As,h

(
d̂h,ŵh

)
+Ano-slip,h(uh,ph,dh;vh,qh,wh)

+Aslip,h(uh,ph,dh;vh,qh,wh)

+AC,h(uh,ph,dh;vh,qh,wh)=Fh(vh,wh), (3.4)

for all (vh,qh,ŵh)∈V ℓ
f ,h(t)×Qℓ

h(t)×V ℓ
s,h. Here, we have set

A f ,h(uh,uh,ph;vh,qh)=ρ f (∂tuh,vh)Ω f
+a f (uh,vh)+b(ph,vh)−b(qh,uh)+c(uh,uh,vh)

−
({

Tf (uh,ph)
}

,JvhK
)
F f ,h

−
(
JuhK ,

{
Tf (vh,−qh)

})
F f ,h

+
(
σf JuhK ,JvhK

)
F f ,h

+sh (ph,qh); (3.5)



S. Zonca, P. F. Antonietti and C. Vergara / Commun. Comput. Phys., 30 (2021), pp. 1-33 11

As,h

(
d̂h,ŵh

)
=ρs

(
∂ttd̂h,ŵh

)
Ω̂s

+as

(
d̂h,ŵh

)

−
({

T̂s(d̂h)
}

,JŵhK
)
F̂s,h

−
(r

d̂h

z
,
{

T̂s(ŵh)
})

F̂s,h

+
(

σ̂s

r
d̂h

z
,JŵhK

)
F̂s,h

; (3.6)

Ano-slip,h(uh,ph,dh;vh,qh,wh)=−
(
δTf (uh,ph)n+(1−δ)Ts(dh)n,vh−wh

)
Fno-slip,h

−
(
uh−∂tdh,δTf (vh,−qh)n+(1−δ)Ts(wh)n

)
Fno-slip,h

+(σΣ(uh−∂tdh),vh−wh)Fno-slip,h
; (3.7)

Aslip,h(uh,ph,dh;vh,qh,wh)=−
(
δTf (uh,ph)n·n+(1−δ)Ts(dh)n·n,vh ·n−wh ·n

)
Fslip,h

−
(
uh ·n−∂tdh ·n,δTf (vh,−qh)n·n+(1−δ)Ts(wh)n·n

)
Fslip,h

+(σΣ(uh ·n−∂tdh ·n),vh ·n−wh ·n)Fslip,h
; (3.8)

AC,h(uh,ph,dh;vh,qh,wh)=−
(
δTf (uh,ph)n·n+(1−δ)Ts(dh)n·n,vh ·n−wh ·n

)
FC,h

−
(
uh ·n−∂tdh ·n,δTf (vh,−qh)n·n+(1−δ)Ts(wh)n·n

)
FC,h

+(σΣ(uh ·n−∂tdh ·n),vh ·n−wh ·n)FC,h

−(σC gC (dh) ,wh ·n)FC,h

−
(
δ
(
Tf (uh,ph)n−Ts(dh)n

)
·n,wh ·n

)
FC,h

−
(
(1−δ)

(
Tf (uh,ph)n−Ts(dh)n

)
·n,vh ·n

)
FC,h

; (3.9)

Fh(vh,wh)=
(

f f ,vh

)
Ω f

+
(

f̂s,ŵh

)
Ω̂s

−(σC ε,wh ·n)FC,h
.

In (3.5)-(3.6) the bilinear forms a f : V ℓ
f ,h×V ℓ

f ,h→R, b : Qℓ
h×V ℓ

f ,h→R and as : V ℓ
s,h×V ℓ

s,h→R

are defined as

a f (u,v)=2µ f (D(u),D(v))Ω f
, b(p,u)=−(p,∇·u)Ω f

,

as

(
d̂,ŵ

)
=
(

T̂s(d̂),∇ŵ
)

Ω̂s

=λs

(
∇·d̂,∇·ŵ

)
Ω̂s

+2µs

(
D(d̂),D(ŵ)

)
Ω̂s

,

whereas the trilinear form c : V ℓ
f ,h×V ℓ

f ,h×V ℓ
f ,h→R is defined as in [42] and is given by

c(w,u,v)=ρ f (w·∇u,v)Ω f
+

ρ f

2
(∇·w,u·v)Ω f

−ρ f ({{w}} ·n,JuK ·{{v}})F f ,h
−

ρ f

2
(JwK ·n,{{u·v}})F f ,h

.

In (3.5), sh : Qℓ
h×Qℓ

h →R is the Interior Penalty term for pressure stabilization [42] with
parameter γp, that allows us to use equal order elements for velocity and pressure. A
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theoretical study on possible pairs of spaces that satisfy the in f −sup condition for the
proposed method on arbitrary polygonal/polyhedral meshes is under investigation. See
[3, 22, 43] and [5, 16, 17, 33] for a study of the Stokes problem on general meshes with the
Hybrid High-Order and the Virtual Element methods, respectively.

In (3.5)-(3.9), σf , σ̂s,σΣ,σC are the four positive penalty functions which are piecewise
constant over the edges F belonging to Fi,h, i = { f ,s,Σ,C}. Their definition over F is as
follows:

σf |F =γ f max
K+,K−

{
2ℓ2µ f

hK

}
, F=∂K

+⋂
∂K

−
∈F f ,h,

σ̂s|F =γs max
K+,K−

{
ℓ2C s,K

hK

}
, F=∂K

+⋂
∂K

−
∈F̂s,h,

σΣ|F =γΣ max
K+,K−

{
ℓ2

hK

(
2δµ f +(1−δ)C s,K

)}
, F=∂K

+⋂
∂K

−
∈FΣ,h,

σC|F =γC
ℓ2

hK
C s,K, F∈FC,h.

Here, hK is the diameter of the element K and Cs,K = ‖Cs|K‖ℓ2 . Moreover, γ f , γs, γΣ and
γC are positive constants that will be chosen later on.

Remark 3.3. The parameter δ arises from the weighted average operator at the fluid-
structure interface in the consistency and symmetry terms. This parameter allows to
unbalance the contributions of the fluid and solid stresses at the interface. In [11], in
the case of a FSI problem without contact, the stability analysis shows that the PolyDG
method is stable for the choice δ=1, while there is no theoretical result for δ 6=1. At the
best of our knowledge, there is no stability analysis for the PolyDG method in the case of
a FSI problem with contact; the stability analysis for this case is under investigation.

Remark 3.4. Notice that the last two terms in (3.9) arise as a consequence of consistency.
Indeed, after the integration by parts in the fluid and solid bilinear forms, a term depend-
ing on λC appears on ΓC which can be replaced by exploiting equations (2.3l) and (2.3p).
Thus, in fact the contact force λC does not appear as an explicit unknown of the discrete
problem.

Remark 3.5. We point out that in the PolyDG formulation (3.4) the inequalities appearing
in Eq. (2.3o) are “hidden” in the definition of ΓC. Indeed, if gC (x)>ε for all x, then ΓC=∅

and the term AC,h is zero and does not introduce any force to the system, i.e. λC = 0;
otherwise, if gC (x)= ε for some points x∈∂Ωs, we have ΓC={x : gC (x)= ε} and the term
AC,h prescribes a repulsive force λC <0 on ΓC.

3.2 Time discretization

Let ∆t be the constant time discretization parameter, let tn = n∆t, n ≥ 0, be the n−th
time step, and, given the unknown z(t), let zn be the approximation of z(tn). The same
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notation is used for domains and spaces.

Given r∈N
+, to discretize in time the semi-discrete problem (3.4), we apply a Back-

ward Difference Formula (BDF) scheme [55] of order r both for the fluid and the solid
subproblems. We introduce the BDF scheme for approximating the time derivatives, i.e.

∂tz(t
n)≈

β0

∆t
zn− z̃n, z̃n =

r

∑
i=1

βi

∆t
zn−i,

∂ttz(t
n)≈

ζ0

∆t2
zn−˜̃zn, ˜̃zn=

r

∑
i=1

ζi

∆t2
zn−i,

where βi and ζi, for i=0,··· ,r, are the coefficients of the BDF scheme for the discretization
of the first and second time derivatives, respectively, see e.g. [55].

The fully-discrete PolyDG approximation reads as follows: given δ ∈ [0,1], σf ∈

L∞(Fn
f ,h), σ̂s ∈ L∞(F̂s,h), σΣ ∈ L∞(Fn

Σ,h), σC ∈ L∞(Fn
C,h), f f ∈ [L2(Ωn

f )]
2 and f̂s ∈ [L2(Ω̂s)]2,

for n>0, find (un
h ,pn

h ,d̂n
h)∈V ℓ,n

f ,h ×Qℓ,n
h ×V ℓ

s,h, such that

An
f ,h(u

n
h ,un

h ,pn
h ;vh,qh)+An

s,h

(
d̂n

h ,ŵh

)
+An

no-slip,h(u
n
h ,pn

h ,dn
h ;vh,qh,wh)

+An
slip,h(u

n
h ,pn

h ,dn
h ;vh,qh,wh)

+An
C,h(u

n
h ,pn

h ,dn
h ;vh,qh,wh)=Fn

h (vh,wh), (3.10)

for all (vh,qh,ŵh)∈V ℓ,n
f ,h ×Qℓ,n

h ×V ℓ
s,h. Here, we have defined

An
f ,h(u

n
h ,un

h ,pn
h ;vh,qh)=ρ f

(
β0

∆t
un

h ,vh

)

Ωn
f

+an
f (u

n
h ,vh)

+bn (pn
h ,vh)−bn (qh,un

h)+cn (un
h ,un

h ,vh)

−
({

Tf (u
n
h ,pn

h)
}

,JvhK
)
F n

f ,h

−
(
Jun

hK ,
{

Tf (vh,−qh)
})

F n
f ,h

+
(
σf Jun

hK ,JvhK
)
F n

f ,h
+sn

h (pn
h ,qh); (3.11)

An
s,h

(
d̂n

h ,ŵh

)
=ρs

(
ζ0

∆t2
d̂n

h ,ŵh

)

Ω̂s

+as

(
d̂n

h ,ŵh

)

−
({

T̂s(d̂
n
h)
}

,JŵhK
)
F̂s,h

−
(r

d̂n
h

z
,
{

T̂s(ŵh)
})

F̂s,h

+
(

σ̂s

r
d̂n

h

z
,JŵhK

)
F̂s,h

;
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An
no-slip,h(u

n
h ,pn

h ,dn
h ;vh,qh,wh)=−

(
δTf (u

n
h ,pn

h)n+(1−δ)Ts(d
n
h)n,vh−wh

)
F n

no-slip,h

−

(
un

h−
β0

∆t
dn

h ,δTf (vh,−qh)n+(1−δ)Ts(wh)n

)

F n
no-slip,h

+

(
σΣ(u

n
h−

β0

∆t
dn

h),vh−wh

)

F n
no-slip,h

; (3.12)

An
slip,h(u

n
h ,pn

h ,dn
h ;vh,qh,wh)=−

(
δTf (u

n
h ,pn

h)n·n+(1−δ)Ts(d
n
h)n·n,vh ·n−wh ·n

)
F n

slip,h

−

(
un

h ·n−
β0

∆t
dn

h ·n,δTf (vh,−qh)n·n+(1−δ)Ts(wh)n·n

)

F n
slip,h

+

(
σΣ(u

n
h ·n−

β0

∆t
dn

h ·n),vh ·n−wh ·n

)

F n
slip,h

; (3.13)

An
C,h(u

n
h ,pn

h ,dn
h ;vh,qh,wh)=−

(
δTf (u

n
h ,pn

h)n·n+(1−δ)Ts(d
n
h)n·n,vh ·n−wh ·n

)
F n

C,h

−

(
un

h ·n−
β0

∆t
dn

h ·n,δTf (vh,−qh)n·n+(1−δ)Ts(wh)n·n

)

F n
C,h

+

(
σΣ(u

n
h ·n−

β0

∆t
dn

h ·n),vh ·n−wh ·n

)

F n
C,h

−(σC gC (d
n
h),wh ·n)F n

C,h

−
(
δ
(
Tf (u

n
h ,pn

h)n−Ts(d
n
h)n
)
·n,wh ·n

)
F n

C,h

−
(
(1−δ)

(
Tf (u

n
h ,pn

h)n−Ts(d
n
h)n
)
·n,vh ·n

)
F n

C,h

; (3.14)

Fn
h (vh,wh)=ρ f (ũ

n
h ,vh)Ωn

f
+ρs

( ˜̃̂
dh

n,ŵh

)
Ω̂s

+
(

d̃h
n,δTf (vh,−qh)n+(1−δ)Ts(wh)n

)
F n

no-slip,h

−
(

σΣd̃h
n,vh−wh

)
F n

no-slip,h

+
(

d̃h
n ·n,δTf (vh,−qh)n·n+(1−δ)Ts(wh)n·n

)
F n

slip,h∪F
n
C,h

−
(

σΣd̃h
n ·n,vh ·n−wh ·n

)
F n

slip,h∪F
n
C,h

+
(

f f ,vh

)
Ωn

f

+
(

f̂s,ŵh

)
Ω̂s

−(σC ε,wh ·n)F n
C,h

. (3.15)
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In (3.11) the bilinear forms an
f : V ℓ,n

f ,h ×V ℓ,n
f ,h → R, bn : Qℓ,n

h ×V ℓ,n
f ,h → R, the trilinear form

cn : V ℓ,n
f ,h ×V ℓ,n

f ,h ×V ℓ,n
f ,h →R and the Interior Penalty term for pressure stabilization sn

h : Qℓ,n
h ×

Qℓ,n
h →R are the ones given in Section 3.1 evaluated on the approximation of the fluid

domain at time tn, Ωn
f .

Remark 3.6. The domain Ωn
f is computed as the set difference between the domain Ω and

Ωn
s , i.e. Ωn

f =Ω\Ωn
s , where Ωn

s is the solid domain in the current configuration obtained

by applying the displacement d̂n
h to Ω̂s via the discrete Lagrangian map L

n
h : Ω̂s → Ωn

s

defined as Ln
h = I

Ω̂s
+d̂n

h . The sets Σn
no-slip, Σn

slip and Γn
C are then obtained by restricting Ωn

f

to the corresponding interfaces.

We point out that in the fully discrete problem two sources of non-linearities are
present: the convective term in the Navier-Stokes equations and the fact that the fluid
domain Ωn

f and the interfaces Σn
no-slip, Σn

slip, Γn
C are unknown.

To deal with all these non-linearities, we use a fixed point scheme. We denote by
k=0,··· ,Kmax, with Kmax≥0 chosen a priori, the index for the fixed point loop. At time tn

and iteration k>0:

a) the convection term in (3.11) is approximated by cn(u
n,(k−1)
h ,u

n,(k)
h ,vh);

b) the fluid domain and the interfaces in (3.11), (3.12), (3.13), (3.14), (3.15) are approxi-

mated by Ω
n,(k−1)
f , Σ

n,(k−1)
no-slip ,Σ

n,(k−1)
slip and Γ

n,(k−1)
C , respectively.

The fixed point scheme stops when two consecutive structure displacements differ

up to a prescribed tolerance, i.e.
∥∥d

n,(k)
h −d

n,(k−1)
h

∥∥
L2 < tol, with tol chosen a priori, or the

maximum number of iterations is reached, i.e. k=Kmax. In Algorithm 1, we detail the
fixed point scheme. The choice of an exact (up to the tolerance) treatment of the non-
linearities has been mainly driven by the contact non-linearity, since an inexact treatment
would provoke inaccuracies and possibly numerical instabilities.

The resulting linear system corresponding to the linearized FSI problem with contact
arising at each fixed point iteration is solved by means of a direct method.

As initial guess (k=0) of the fixed point scheme, we use extrapolations of order r for

u
n,(0)
h and d

n,(0)
h obtained by solutions at previous time steps.

3.3 Extension to two deformable immersed structures

In this section, we describe the main changes needed when extending the numerical for-
mulation presented in Section 3.1 to the case of two immersed and deformable structures
that may come into contact. In particular, Ωs is the secondary body while Ωm is the main
one. In what follows, index m refers to quantities in the main body. We denote by nα the
normal unit vectors to Ωα, for α= s,m.
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Algorithm 1. Fixed point scheme at time tn.

Given u
n,(0)
h , p

n,(0)
h , d̂

n,(0)
h , Kmax∈N

+, tol∈R
+ and set k=1:

while k≤Kmax and
∥∥d

n,(k)
h −d

n,(k−1)
h

∥∥
L2 < tol do

1. Solve problem given by Eq. (3.10) for u
n,(k)
h , p

n,(k)
h and d̂

n,(k)
h with

a) cn(u
n,(k−1)
h ,u

n,(k)
h ,vh);

b) Ω
n,(k−1)
f ,Σ

n,(k−1)
no-slip ,Σ

n,(k−1)
slip ,Γ

n,(k−1)
C ;

2. Update the solid domain Ω
n,(k)
s by applying d̂

n,(k)
h to Ω̂s via L

n,(k)
h ;

3. Update the fluid domain Ω
n,(k)
f =Ω\Ω

n,(k)
s and its interfaces Σ

n,(k)
no-slip, Σ

n,(k)
slip , Γ

n,(k)
C ;

4. Update k−→ k+1.

end while

Referring to Fig. 3, the boundary of the solid domain ∂Ωα is partitioned into Σno-slip,α,
Σslip,α and ΓC,α, α= s,m, as done in Section 2. While for the secondary body these regions
are defined as in Section 2, for the main one they are defined as the projection of the
secondary regions onto the main boundary, i.e.

ΓC,m={x∈∂Ωm : x=Πs→m(y) ∀y∈ΓC,s},

Σslip,m={x∈∂Ωm : x=Πs→m(y) ∀y∈Σslip,s},

Σno-slip,m=∂Ωm\
(
Σslip,m∪ΓC,m

)
,

Figure 3: Contact between two deformable structures: sketch of the domains. ∂Ωα is partitioned in Σno-slip,α

(solid line), Σslip,α (dash line) and ΓC,α (bold line), α= s,m.
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where Πs→m : ∂Ωs →∂Ωm is the projection from the secondary domain to the main one
defined as

Πs→m(x)=argmin
y∈∂Ωm

|(x−y)·nm (y)| ∀x∈∂Ωs.

The gap function gC is now defined as follows

gC (x)=(Πs→m(x)−x) ·nw (x),

where nw(x)=−nm◦Πs→m (x).
The main difference with respect to the formulation presented in Section 2 is the pres-

ence of the main body Ωm that requires to introduce:

1. an elastodynamics equation for the body Ωm;

2. interface conditions on Σno-slip,α and Σslip,α,α=s,m, for both the structures, i.e. stan-
dard FSI conditions and (2.2), respectively;

3. a “contact force” on ΓC,m to balance the one acting on ΓC,s. Accordingly, the balance
of stresses on the contact regions ΓC,s and ΓC,m reads:

Tf (u,p)n·n=Ts(ds)n·n−λC on ΓC,s,

Ts(ds)n·τ−ϕC =0 on ΓC,s,

Tf (u,p)n·n=Tm(dm)n·n+λC on ΓC,m,

Tm(dm)n·τ+ϕC=0 on ΓC,m.

The corresponding PolyDG formulations are derived as done in Sections 3.1 and 3.2,
where all the terms involving Ωs and its interfaces are duplicated for Ωm. We point out
that, according to a main/secondary approach, the contact conditions (2.3o)-(2.3p) are
applied only on the secondary body Ωs. Accordingly, in the form AC,h corresponding to
the contact regions, the contact penalty term reads

−(σC gC (ds,h,dm,h),ws,h ·n−wm,h ·n)FC,s,h
,

where FC,s,h is the set of edges of ΓC,s and again we have highlighted the dependence of
gC on the structure displacements.

3.4 Implementation details

One of the most difficult tasks for the methods employing elements of arbitrary shape is
the construction of the quadrature rules over the polygonal elements. Often, quadrature
is carried out based on employing sub-tessellation: each polygon is divided into trian-
gle/quads where classical Gaussian rules are employed. Recently, efficient quadrature
formulae that do not require the decomposition of the polygonal element into simplices
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Figure 4: A possible general intersection between an element (blue) of the background mesh (white) and three
structure meshes (gray).

have been proposed in [9] for the efficient computation of integrals involving polyno-
mial functions. This technique does not require the definition of quadrature nodes and
weights, often referred as “quadrature-free” method, but only the evaluation of the inte-
grand polynomial together with its derivatives on the vertices of the polygon thanks to a
recursive application of the Stokes’ theorem.

Another important aspect is the robustness of the proposed method with respect to
the shape of the polygonal elements. As shown in the numerical tests in [11], the PolyDG
method seems to be robust even in presence of very small elements and with respect to
possible anisotropy. We point out that the polygonal elements generated by the intersec-
tion of the fluid and structure meshes, see e.g. Fig. 2 (bottom-right), might lead to patho-
logical configurations: each element K of the background mesh Th can be intersected by
an arbitrary number of structure meshes, each face of K can be crossed an arbitrary num-
ber of times, sharp corners within an element are allowed and the resulting polygonal
element can be non-convex, see Fig. 4 for an example of a possible configuration. The
proposed PolyDG method seems to be robust also in these cases.

A special issue concerning the methods involving a moving interface that requires to
update the discrete space at each time step is the computation of the integrals involving
function defined on different computational domains. For instance, the term

ρ f (ũ
n
h ,vh)Ωn

f
,

appearing in Eq. (3.15), requires the evaluation of vh, defined in V ℓ,n
f ,h , and of ũn

h , which

is a combination of functions defined in V ℓ,n−i
f ,h , for i = 1,··· ,r. For this reason, in order

to numerically evaluate the integral, it is necessary to project the function ũn
h on V ℓ,n

f ,h . In

what follows, for the sake of exposition, we consider r = 1, i.e. the implicit Euler time

scheme, so that we have ρ f

(
un−1

h ,vh

)
Ωn

f
, and we define Πn−1

n un−1
h ∈V ℓ,n

f ,h the extension of
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Figure 5: Generation of Πn−1
n un−1

h on an element K (white). The shaded region represents the portion of
the original background element covered by the structure, while the bold and the dashed lines are the current

and previous positions of the interface Σ, respectively. Left: original solution un−1
h defined on V ℓ,n−1

f ,h . Center:

solution Πn−1
n un−1

h restricted on the new (shortened) element K(tn). Right: solution Πn−1
n un−1 extended to

the new (elongated) element K(tn).

un−1
h on V ℓ,n

f ,h , where Πn−1
n : V ℓ,n−1

f ,h →V ℓ,n
f ,h is the L2 projection operator. For each element K

in the computational domain associated with the domain V ℓ,n
f ,h , the L2 projection operator

Πn−1
n is defined as follows:

• if the element K remains the same from time tn−1 to tn, the extension operator is the
identity operator, i.e. Πn−1

n un−1
h |K =un−1

h |K;

• if the element K shortens from time tn−1 to tn due to the moving of the interface Σ,
see Fig. 5 (left and center), the extension operator is actually a restriction of un−1

h on

the new element K at time tn, i.e. Πn−1
n un−1

h |K(tn)=un−1
h |K(tn);

• if the element K elongates from time tn−1 to tn due to the moving of the interface
Σ, see Fig. 5 (left and right), the extension operator computes an extrapolation of
order ℓ of the function un−1

h on the new element K at time tn.

After the generation of Πn−1
n un−1

h , the actual integral to compute is

ρ f

(
Πn−1

n un−1
h ,vh

)
Ωn

f

.

Similar approaches have already been proposed in [4, 88].

4 Numerical examples

We present here two numerical experiments in two-dimensions: in the first one (test
I), cf. Section 4.1, we study the dynamics of a falling elastic ball immersed in a fluid
and bouncing on the ground. With this test case, we aim at investigating the sensitivity
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on the contact parameters introduced in the numerical formulation and at showing the
reliability of the method for a high order discretization. In the second example (test II),
cf. Section 4.2, we consider a more complex geometry and at high Reynolds regime. In
particular, we consider the case of two immersed structures that come into contact, see
Section 3.3.

For all the numerical tests, we set r=1, δ=1 and γ f =γs =γΣ =10. The tolerance for

the stopping criterion in the fixed point scheme is set to tol=10−6.

4.1 Ball falling to the ground

In this example we consider an elastic ball Ωs of radius 0.05cm, initially centered at
(0.25,0.175), falling in the air towards the rigid ground Γw = {(x,y) : y = 0} due to the
acceleration g=(0,−980.655) cm/s2. The size of the fluid domain Ω f is 0.5cm×0.325cm
with the bottom-left corner placed in the origin O=(0,0). The bottom boundary of the
fluid domain corresponds to the rigid ground Γw, see Fig. 6 (left). The physical parame-
ters for the fluid and solid are summarized in Table 1.

Table 1: Physical parameters for the fluid and the structure for the two test cases.

Fluid parameters Test I Test II

ρ f

(
g/cm2

)
density 1.2·10−3 1.0

µ f (g/s) viscosity 0.2·10−3 0.035

Structure parameters

ρs
(
g/cm2

)
density 0.1 1.2

E (dyne/cm) Young’s module 103 4·106

ν Poisson’s ratio 0.45 0.45

The air and the ball are initially at rest. On the upper boundary of the fluid domain we
impose a homogeneous Neumann condition, while on the left, right and lower bound-
aries we set u=0. We consider a final time T=0.03s.

The fluid and structure meshes are composed of about 1.6·103 and 80 elements, re-
spectively, with a characteristic mesh size h=1.6·10−2 cm, see Fig. 6 (right). The contact
parameters are set to γC = 1, ε = 0.1h = 1.6·10−3 cm, gslip = 1.5h = 2.4·10−2 cm and we

consider a time step ∆t= 10−4 s. Regarding the fixed point scheme, we set a maximum
number of iterations Kmax =20. Next, we present a series of tests to demonstrate the ro-
bustness of our scheme with respect to the contact parameters γC, ε and gslip, and to the
discretization parameter ∆t, by comparing the y-position of the ball at the point A. For
these tests, we set ℓ=2.

In Fig. 7 (top-left), we report the results obtained by considering γC =
{0.1,0.6,0.8,1,2,4}. We notice that by increasing the penalty parameter the bouncing of
the ball is reduced, yielding the ball to remain in contact with the ground for the largest
value of the parameter, namely γC=4. In Fig. 7 (top-right), we show the results obtained
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Figure 6: Left: sketch of the domains for the falling ball test case (test I). Right: the fluid and structure meshes
T f ,h and Ts,h, respectively.
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Figure 7: y-position of the ball in the point A as a function of time t by varying γC (top-left), gslip (top-right),
∆t (bottom-left) and ε (bottom-right). For the γC (top-left), gslip (top-right) and ∆t (bottom-left) plots, the
continuous horizontal line denotes the distance ε=0.1h to the ground. For the case of varying ε (bottom-right),
the horizontal lines denote the different distances ε to the ground according to the legend (test I).
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Figure 8: Velocity field and position of the ball at time t=0.0179s (left) and t=0.0190s (right) (test I).

by changing the threshold distance gslip={1,1.5,2,2.5,3}h. As the value of gslip increases,
we notice as expected that the height reached by the ball after bouncing increases. In
Fig. 7 (bottom-left), we show the dependence of the dynamics of the ball on the time
discretization, taking ∆t= {0.5,1,2,4}·10−4 s. We notice that if the time step is not small
enough, e.g. ∆t≥ 2·10−4 s, the numerical method is not able to properly detect the con-
tact by hampering the bounce of the ball, for ∆t = 2·10−4s, or completely missing the
releasing phase, for ∆t=4·10−4 s, and leading to a wrong dynamics. As soon as the time
step is reduced the bouncing of the ball becomes more evident and the method is able
to capture the high frequency oscillations of the ball. In Fig. 7 (bottom-right), we plot
the results for different values of ε={0.075,0.0875,0.1,0.1125,0.125}h. During the contact
phase, we notice that, for increasing values of ε, as expected the position of the ball at
point A increases, though it may go below the prescribed threshold distance ε. For the
smallest value, i.e. ε=0.075h, the method is not able to reproduce the bounce of the ball,
while for ε≥0.1h the results are similar.

In Fig. 8, we plot the velocity field and the position of the ball at time t=0.0179s where
it exhibits the maximum compression on the ground (left), and at time t=0.0190s where
the ball starts to move away from the ground (right).

By considering the following parameters, ∆t= 10−4 s, γC = 1, ε= 0.1h= 1.6·10−3 cm,
gslip = 1.5h = 2.4·10−2 cm and Kmax = 20, we plot in Fig. 9 the number of iterations
of the fixed point scheme at each time (left) and the corresponding residual defined

as
∥∥d

n,(k)
h −d

n,(k−1)
h

∥∥
L2 , see Algorithm 1. We notice that outside the contact phase, the

fixed point scheme requires about 5 iterations to converge, while during the contact, i.e.
t∈[0.015,0.02], 20 iterations may be not enough to achieve convergence, though the resid-
ual is of order 2·10−3.

In Fig. 10, we show a comparison of the y-displacement of the ball in the point A for
different choices of the polynomial degree, i.e. ℓ=1,2,3. We notice that the falling and the



S. Zonca, P. F. Antonietti and C. Vergara / Commun. Comput. Phys., 30 (2021), pp. 1-33 23

0 0.005 0.01 0.015 0.02 0.025 0.03

t [s]

0

2

4

6

8

10

12

14

16

18

20

fix
ed

 p
oi

nt
 it

er
at

io
ns

0 0.005 0.01 0.015 0.02 0.025 0.03

t [s]

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

re
si

du
al

Figure 9: Number of iterations of the fixed point scheme (left) and residual (right) at each time step (test I).
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Figure 10: y-position of the ball in the point A as a function of time t for ℓ=1 (continuous line), ℓ=2 (dotted
line) and ℓ=3 (dashed line). The continuous horizontal line denotes the distance ε=0.1h to the ground. Left:
evolution on the entire simulation. Right: detail at the contact and bouncing phases (test I).

contact phases of the ball are very similar, see Fig. 10 (left). However, the bouncing phase
of the ball is very different, see Fig. 10 (right): compared to the case ℓ=1, for ℓ=2 and ℓ=3
the ball reaches a higher (and comparable) height. This phenomenon is not reproduced
in the case ℓ= 1 probably due to the dissipative error and the stiffness characterizing a
low accuracy in space; on the other hand, the cases ℓ=2 and ℓ=3 are very similar.

Finally, we set the polynomial degree ℓ=4 and we carry out a numerical test to show
the capability of the method to perform simulations at high-order degree. We consider
the same physical and numerical parameters as in the previous experiment but a smaller
fluid domain to limit the computational cost. In Fig. 11, we plot the numerical velocity
and the position of the ball at time t = 0.0071s (left) and the evolution in time of the
y-position of the ball at the point A (right).
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Figure 11: Case ℓ=4. Left: Velocity field and position of the ball at time t=0.0071s. Right: y-position of the
ball in the point A as a function of time t. The continuous horizontal line denotes the distance ε=0.1h to the
ground (test I).

This test showed that the proposed method is able to simulate the contact between an
immersed structure with a rigid boundary in a fluid-structure interaction context, pos-
sibly also with a high order method. However, we notice the importance to properly
choose the values of the numerical parameters. In particular, as expected the time step
∆t has to be small enough to capture the physics of the problem. Moreover, as expected
the contact parameters γC, gslip and ε may significantly affect the dynamics of the system.
For this test, we notice that a good choice for these parameters seems to be:

• γC∈[0.6,1]; for smaller and greater values, the bouncing is enhanced and hampered,
respectively, and for the largest value, i.e. γC = 4, the ball never releases from the
ground by indicating that the penalty parameter is too large;

• gslip ∈ [1.5h,2.5h]; for smaller and greater values the solution does not change sig-
nificantly, meaning that the parameter has no influence outside the range;

• ∆t≤ 10−4 s to capture the correct dynamics and the high frequency oscillations of
the structure;

• ε≥ 0.1h; for smaller values the dynamics changes significantly yielding a too low
bounce of the ball.

4.2 Dynamics in an idealized immersed valve

Referring to the formulation and notation described in Section 3.3, we consider the ide-
alized axisymmetric 2D valve shown in Fig. 12 (left) with two immersed leaflets. The
geometry of the fluid domain Ω f and the solid ones, Ωs and Ωm, are defined according
to [56].



S. Zonca, P. F. Antonietti and C. Vergara / Commun. Comput. Phys., 30 (2021), pp. 1-33 25

Figure 12: Left: sketch of the domain for the valve test case. Right: detail of the domain close to the two
immersed structures. The points A and V are the probes location for measuring the pressure (test II).

The material properties in this case are taken from the hemodynamic regime, see Ta-
ble 1. The system is initially at rest, and the dynamics is driven by an idealized time-
dependent pressure profile at the inlet Γin, see Fig. 13 (top-left). At the outlet Γout we im-
pose Tf n=0, while on the remaining fluid boundary we impose u=0. On the structures
boundaries Γs and Γm, we impose ds =dm=0, see Fig. 12 (right). We consider T=0.8s.

For the numerical simulation, we consider ℓ=2, ∆t=0.0025s, Kmax=5, the fluid mesh
size h f =0.13cm that corresponds to 2.1·103 elements, the solid mesh size hs=hm=0.02cm

that corresponds to 3·102 elements, ε = 0.1h, γC = 6·10−4 and gslip = 1.5h. To prevent
instabilities at the outlet due to the backflow, we prescribe a backflow stabilization term,
see e.g. [70], at Γout.

In Fig. 13, top-left, we plot the evolution of the pressure in time in the points V and
A reported in Fig. 12, right, while in Fig. 13, top-right, we report the distance between
the leaflets, representing the aperture of the valve, computed as the minimum value over
x∈ ∂Ωs of the gap function gC(x). A zoom during the contact phase is shown in Fig. 13,
bottom-left and bottom-right, for the pressure and the minimum distance, respectively.
In Fig. 14, we report the velocity and pressure fields of the fluid at time t= 0.375s (top)
and t=0.675s (bottom). We see the complex fluid-dynamics developed in the valve and
the configuration of the valve during the closing phase.

In Fig. 13 (top-left), we notice that during systole, i.e. for 0≤ t≤ 0.2, the ventricular
pressure is higher than the aortic one and hence the leaflets open. For time 0.2≤t≤0.4, the
pressure at the inlet drops to zero and the blood flow starts to decelerate. As time tends
to 0.4s, the difference between the ventricular and aortic pressure decreases. Notice that,
downstream of the leaflets, two vortices appear and propagate towards the outlet Γout,
see Fig. 14 (top), causing an oscillation of the tips of the leaflets.

In Fig. 13 (top-left), during diastole, i.e. for 0.4≤ t≤ 0.6, the pressure difference be-
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Figure 13: Left: plot of the pressure profile over time prescribed at the inlet Γin and computed at points V
(ventricle) and A (aorta) for the full simulation (top) and the detail during the contact phase (bottom). Right:
plot of the minimum distance between the leaflets for the full simulation (top) and the detail during the contact
phase (bottom). The continuous horizontal line denotes the distance ε=0.1h between the leaflets (test II).

comes zero for t≃0.5s, and then the aortic pressure becomes higher than the ventricular
one. As a consequence, the leaflets start to move closer. Finally, in the time interval
0.6≤ t≤ 0.8, the leaflets come into contact, see Fig. 14 (bottom), and as time approaches
0.8s the ventricular and aortic pressures return to zero, allowing the leaflets to return to
the initial configuration. In Fig. 13 (bottom-left), we plot a zoom of the pressure during
the contact phase: the ventricular and aortic pressures present some oscillations due to a
local numerical instability arising near the contact region. In Fig. 13 (bottom-right), we
plot the behaviour of the minimum distance during the contact phase, showing that it
remains near the threshold distance ε. The maximum velocity reached by the fluid is
about 41cm/s corresponding to a Reynolds number Re= 1600. Notice that, though we
have employed an idealized inlet profile and a simple linear elastic model for the leaflets,
the method is able to reproduce the basic opening and closing mechanism of a valve, see
e.g. [56, 81].
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Figure 14: Plot of the velocity (left) and pressure (right) fields at time t=0.375s (top) and t=0.675s (bottom)
(test II).

This test demonstrates that the proposed method can be successfully employed to
simulate complex dynamics as in the case of cardiac valves, where the immersed struc-
tures undergo large displacements and may come into contact. Moreover, we notice that
the proposed PolyDG method seems to be robust with respect to high Reynolds numbers.

5 Conclusions

We have proposed a new method that is able to simulate fluid-structure interaction prob-
lems in the case of immersed structures that exhibit large displacements and come into
contact. In particular, we have introduced a consistent Discontinuous Galerkin method
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on polygonal/polyhedral grids that incorporates naturally the contact conditions in the
formulation via the DG paradigm and that can handle naturally polygonal/polyhedral
grids in any space dimension and for any approximation order. The results showed the
effectiveness of the method to deal with the FSI contact problem also in complex config-
urations such as valve dynamics and for high-order discretizations.

We observe that we have employed a DG paradigm also far from the fluid-solid inter-
face in order to be able in the future to locally tune the discretization parameters, namely
the mesh size and the polynomial approximation degree, in an elementwise manner. This
allows to save the total number of degrees of freedom and thus improve efficiency, which
is mandatory in view of three-dimensional applications. Regarding the contact in a FSI
framework, this could be a limit of the method compared to others, such as the Cut-
FEM in [2] and the fully-Eulerian approach in [24], which allow the possibility to use the
continuous Finite Element method far from the interfaces and thus reducing the compu-
tational cost.

Further research on the development and the analysis of algorithms for the self-
contact and the extension to the 3D case are under investigation. Another issue in the
context of polygonal elements methods is the analysis of in f -sup stable discrete spaces
for the velocity and pressure in the fluid saddle-point problem that guarantee the in f -sup
stability under mild geometric requirements. Also this point is under investigation.
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