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Abstract. A non-intrusive reduced order model (ROM) that combines a proper or-
thogonal decomposition (POD) and an artificial neural network (ANN) is primarily
studied to investigate the applicability of the proposed ROM in recovering the solu-
tions with shocks and strong gradients accurately and resolving fine-scale structures
efficiently for hyperbolic conservation laws. Its accuracy is demonstrated by solv-
ing a high-dimensional parametrized ODE and the one-dimensional viscous Burg-
ers’ equation with a parameterized diffusion coefficient. The two-dimensional single-
mode Rayleigh-Taylor instability (RTI), where the amplitude of the small perturbation
and time are considered as free parameters, is also simulated. An adaptive sampling
method in time during the linear regime of the RTI is designed to reduce the number of
snapshots required for POD and the training of ANN. The extensive numerical results
show that the ROM can achieve an acceptable accuracy with improved efficiency in
comparison with the standard full order method.
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1 Introduction

In recent years, the Rayleigh-Taylor instability (RTI) [35, 40] phenomenon has gained in-
creasing attention in many areas of scientific research, including interstellar medium and
galaxy clusters [33], accretion onto the magnetospheres of neutron stars [43, 44], and fila-
mentary structure on the Sun [26]. Due to the practical importance, a number of numeri-
cal methods have been developed to simulate the RTI, including the flux-corrected trans-
port method [47], the level set method [29], the front tracking method [41], the smoothed
particle hydrodynamics method [39], the boundary integral method [14], direct numeri-
cal simulations [13], large-eddy simulations [8], and the phase-field method [11, 38]. Be-
sides, Zhang et al. [48–50] studied the weakly nonlinear incompressible single-mode RTI
and the multi-mode RTI in spherical and planar geometries, and a two-dimensional thin
shell model for the nonlinear RTI in spherical geometry is proposed by Zhao et al. [51].

Previous methods are prohibitively expensive when one seeks to reproduce the fine-
scale structures of RTI, because they require repeatedly solving a high dimensional sys-
tem of partial differential equations (PDEs) at a fine grid resolution. To seek alternatives
to solve the full problem many times, one can regard the governing equations of RTI as
a parameterized time-dependent PDE with parameterized initial conditions. The ampli-
tude of the initial perturbation waves (A) and time (t) are considered as the parameters
in two-dimensional parameter space. In this light, the reduced order modeling (ROM)
methods [6, 27] have been taken into consideration due to its effectiveness in solving the
parameterized problems. The main goal of the ROM is to replace the full-order system
with a reduced-order model with a significantly smaller size, which results in a great de-
crease in the computational cost in CPU times and memory storages, with a controlled
loss of accuracy [23].

Featuring an offline-online operational framework, the reduced basis method (RBM)
[22, 34] is a powerful technique for the ROM methods of the parameterized problems.
In general, RBM aims to approximate any member of the solution manifold with a low
number of basis functions, the so-called reduced basis (RB), which are extracted from
snapshots of the full-order solutions during the offline stage. The full-order system is
projected onto the linear subspace spanned by the RB through a projection approach,
such as Galerkin projection [17, 36]. Although the Galerkin procedure brings high accu-
racy, it also faces some challenges in computing the projection coefficients for complex
nonlinear problems with a non-affine parametric dependence. To avoid this problem, a
non-intrusive ROM method [9], in which the original system is only used to generate
the snapshots and does not require the projection process [12], is proposed. Necessary
techniques have been developed for the non-intrusive ROM methods, among which the
proper orthogonal decomposition (POD) [30] is usually applied to extract the RB from
the snapshots. In the last decade or so, a variety of methods based on the POD are intro-
duced. In [2, 3], Audouze et al. proposed the non-intrusive ROM method based on the
POD and radial basis functions (RBFs), where RBFs are used for approximating the so-
lutions in the parameter domain. Guo and Hesthaven [20, 21] used the Gaussian process
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regression to approximate the coefficients of the ROM for nonlinear structural analysis.
Meanwhile, Hesthaven and Ubbiali [23] employed the artificial neural network (ANN)
to compute the coefficients of the ROM, but their work focused on the parameterized
steady-state partial differential equations. Then Wang et al. [42] employed this approach
to solve the one-dimensional parametrized Euler/Navier-Stokes equations to simulate
the quasi-1D continuously variable resonance combustor flow. As for the ANN archi-
tecture and setup, they used the feed-forward network in the TensorFlow. Readers are
referred to [19, 37, 46] for the detailed discussion on the approximation bounds by the
ANN for many-variate, real-valued functions f .

In this work, we primarily study a non-intrusive ROM based on the POD and ANN
in recovering the solutions with shocks and strong gradients accurately and resolving
fine-scale structures efficiently for the two-dimensional hyperbolic conservation laws.
To construct the ROM, which is a linear combination of the RB functions, the POD is
applied to generate the RB functions from the snapshots. The corresponding coeffi-
cients of the RB functions are then computed by training with the ANN, which is the
cascade-forward network in the MATLAB. Once the ROM is built, the desired solu-
tion with a given parameter can be recovered online efficiently with a slight loss of ac-
curacy. The good performance of the proposed method is demonstrated by solving a
high-dimensional parametrized ODE and the one-dimensional Burgers’ equation. Then,
the simulations of the two-dimensional single-mode compressible RTI are conducted by
the proposed method to examine its performance in the early linear and weakly nonlin-
ear (quasi-linear) temporal development of the increasingly complex small scale vortical
rollup structures due to the instability of the fluid flow with a large Atwood number. The
uniform and adaptive sampling methods are put forward under the consideration of the
appearance of the mushroom shaped vertical structures with the increasing time. The
number of snapshots required during the early development of the perturbation space
(linear regime) of the adaptive sampling method is two times less than the uniform sam-
pling method with equivalent accuracy. Therefore, the adaptive sampling method in
time is proposed to decrease the number of samples for POD in the linear regime and the
training of the ANN.

The paper is organized as follows. The RBM is presented in Section 2, where the
construction of the RB using POD is introduced. In Section 3, the theory and the design of
ANN are briefly reviewed. Section 4 illustrates how to construct the ROM based on POD
and ANN. Several numerical results are discussed in Section 5 to highlight the accuracy
and efficiency of the proposed method. Finally, Section 6 gives conclusions.

2 Reduced basis method (RBM)

The general d-dimensional formulation of the well-posed parameterized time-dependent
problem is given by

L[Q(x,t;ν)]+N [Q(x,t;ν)]=S(x,t;ν), (x,t,ν)∈Ω×T ×W , (2.1)
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Table 1: Three cases of parameter µ and parameter domain P .

Case Parameter µ Parameter domain P
I ν W
I I t T
I I I (ν,t) W×T

with some properly defined initial and boundary conditions. Here Ω⊂R
d (d = 1,2,3),

T ⊂ [0,T] andW⊂R
m, with m being the number of parameters characterizing the model,

represent the space, time and parameters domains, respectively. {Q, S} : Ω×T ×W→R
n

denote the parameterized time-dependent solution and the source term, respectively,
where n is the dimension of the system (the number of the dependent variables). More-
over, L[•;ν] and N [•;ν] are the linear and nonlinear operators, respectively, both associ-
ated with x and t and characterized by the parameter ν.

After discretizing Eq. (2.1) in Ω by some stable and accurate spatial discretization
schemes, one has a system of parameterized ODEs

Lh[Qh(t;ν)]+Nh[Qh(t;ν)]=Sh(t;ν), (t,ν)∈T ×W , (2.2)

where Qh : T ×W→R
M is the discrete solution, M is the number of degrees of freedom

(DOFs), Lh, Nh and Sh : T ×W→R
M are the discrete counterparts of the linear operator

L, nonlinear operatorN , and source term S, respectively. In many situations, one has to
repeatedly solve the full-order high dimensional nonlinear system of partial differential
equations (PDEs) in high resolution with the variation of one or more parameters µ, such
as the three cases shown in Table 1. It is clear that one needs to seek an efficient alterna-
tive to solve the full-order problem repeatedly, which is a time consuming and laborious
task for every different parameter in µ. This is the place where a reduced basis model can
play an important role by reducing the size of PDEs in exchange for an acceptable loss
of accuracy. Particularly, RBM seeks an approximate solution to Eq. (2.1) as a linear com-
bination of the parameter-independent reduced basis (RB) functions {ψl}1≤l≤L. They are

built from a collection of high-fidelity snapshots {~Qh(µ1),··· ,~Qh(µN)}, where the discrete
and finite set of given parameters PN = {µ1,··· ,µN}⊂P may consist of either a uniform
lattice or a randomly generated points over the parameter domain P [22]. The RB func-
tions {ψl}1≤l≤L can be generated from several strategies, such as the proper orthogonal
decomposition (POD), which will be briefly reviewed in the following Section 2.1. For
now, we assume that the RB functions are available and define

Vrb=span{ψ1,··· ,ψL}⊂Vh, (2.3)

as the associated RB space of dimension L, where Vh is a suitable finite element subspace
of the Hilbert space V over Ω. A RB solution Qrb(x;µ) is sought in the linear subspace
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Vrb, that is,

Q(x;µ)≈Qrb(x;µ)=
L

∑
i=1

ci(µ)ψi(x)∈Vrb, (2.4)

where ~c(µ) = [c1(µ),··· ,cL(µ)]
T ∈R

L is the vector of the coefficients of the ROM. For
simplicity, we denote the column vector gathering the nodal values of ψi, ~Ψi = ψi(xj),
j=1,··· ,M, i=1,··· ,L and introduce a finite-dimensional RB matrix

Φ=[~Ψ1,··· ,~ΨL]∈R
M×L. (2.5)

2.1 Proper orthogonal decomposition (POD)

Let us introduce the notion of a solution manifold [22], i.e., the set of all solutions to
the parameterized problem Eq. (2.1) under a continuous variation of the parameter, i.e.
M= {Q(µ) : µ ∈ P} and its discrete form Mh = {Qh(µ) : µ ∈ P} ⊂R

M. By collecting

N snapshots of the discrete solution with N different parameters {~Qh(µ1),··· ,~Qh(µN)},
corresponding to the finite and discrete parameter set PN = {µ1,··· ,µN} ⊂ P , one can
define the associated subspace

MΞ =span{~Qh(µ1),··· ,~Qh(µN)}. (2.6)

We shall assume thatMΞ provides a good approximation of the discrete solution man-
ifold Mh, as long as the number of snapshots N is sufficiently large (but is still typ-
ically much smaller than the dimension M of the full-order space). Then, we seek to
find a parameter-independent RB function for MΞ, i.e., a collection of RB functions
{ψ1,··· ,ψL} ⊂MΞ, with L≪ M, so that the associated linear space constitutes a low-
rank approximation ofMΞ. To this end, let us recall the way to construct the RB by POD
introduced in [7]. Analogous decompositions such as the principal component analysis
and the Karhunen-Loeve expansion of a parametric/random field are alternative ways.
The first step is to arrange the nodal values of the N snapshots of the discrete solutions

{~Qh(µ1),··· ,~Qh(µN)} column-wise into a snapshot matrix

Q=[~Qh(µ1),··· ,~Qh(µN)]∈R
M×N . (2.7)

Then each column vector of Q can be expanded as a linear combination of the RB func-
tions ~Ψj (j=1,··· ,L) in the RB matrix Φ, i.e.,

~Qh(µi)≈Φ~c(µi), i=1,··· ,N, (2.8)

with ~c(µi) = [c1(µi),··· ,cL(µi)]
T. The next step is to find the set of orthonormal basis

{~Ψ1,··· ,~ΨL} that in the least square sense minimizes the error,

e=
N

∑
i=1

∣

∣

∣

∣

∣

∣

~Qh(µi)−
L

∑
j=1

cj(µi)~Ψj

∣

∣

∣

∣

∣

∣

2
. (2.9)
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Once the basis functions ~Ψj are found for any given µi, the coefficients cj(µi) can be easily
found as

cj(µi)= ~Qh(µi)
T~Ψj =~ΨT

j
~Qh(µi). (2.10)

To generate the RB function ~Ψj, one can regard the j-th principal component ~Ψj as a
linear combination of each row vector of Q with the normalized unknown coefficients
vector ~vj∈R

N , which is the j-th eigenvector of the correlation matrix D=QTQ with the
λ1≥λ2≥···≥λL, i.e.

D~vj =λj~vj, (2.11)

then the RB function can be expressed as

~Ψj =λ−1/2
j Q~vj, (2.12)

where L, the number of RB functions, is determined according to the following criteria

∑
L
j=1λj

∑
N
j=1λj

≥C, (2.13)

where 0<C<1 is a user-defined threshold ratio, which can be interpreted as the amount
of energy of the PDEs system being retained by the RB functions. C= 0.99999 (Sections
5.1 and 5.2) and C=0.9999 (Section 5.3) are used in this work.

3 Artificial neural networks

An artificial neural network (ANN) [25] is a network of simple elements called neurons,
which receive input, change their internal state (activation) according to the input, and
produce output depending on the input and activation. It mimics the working of a bio-
physical neuron with inputs and outputs but is not a biological neuron model. The net-
work forms a directed, weighted graph by connecting the output of certain neurons to the
input of other neurons. The weights can be modified by a learning process, as described
below. In this work, we will focus on a multi-layer perceptron (MLP) feed-forward net-
work.

3.1 MLP neural networks

The MLP neural network [32], which is one of the most widely used neural network
models, can learn an input-output mapping without needing to express the mathematical
equations that describe the mapping explicitly. For easy discussion of the MLP ANN, a
five-layer MLP neural network model including an input layer, three hidden layers, and
an output layer is shown in Fig. 1, which also demonstrates several notations as

• ~X= {xj, j=1,··· ,M}T, ~O= {ok, k=1,··· ,L}T: The input and output vectors of the
input and output layers, respectively;
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Figure 1: A five-layer MLP neural network model.

• ~bn, (n=1,2,3,4): The vectors of the bias term of the hidden layers and output layer;

• an, (n=1,2,3,4): The activation functions of the hidden layers and output layer;

• W: The weight matrix between any two layers.

Remark 3.1. The purpose of introducing the activation function is to introduce non-
linearity into the model. If there is no activation function, no matter how many layers
the neural network has, it will eventually be a linear mapping. The commonly used ac-
tivation functions are sigmoid function, tanh function, ReLU function, etc. In this work,
we use the activation functions that come with the neural network package of MATLAB.
For example, the sigmoid function

fsig(x)=
1

1+e−x

is used for the output of the hidden layer. The tanh function

ftan(x)=
ex−e−x

ex+e−x

performs better when the characteristics of the solution are significantly different. Be-
sides, it continuously expands the characteristic effect during the iterations. Usually, the
activation function of the output layer (a4 in Fig. 1) is an identification function. Thus the
activation and output of a neural coincides, i.e. a4(x)=x. Based on our extensive numer-
ical experiments, the activation functions a1(x)= a3(x)= ftan(x), a2(x)= fsig(x) generally
perform better than other choices.

3.2 Algorithms of MLP neural networks

Given the MLP output vector ~O= {ok, k= 1,··· ,L}T and the expected output vector ~T=
{tk,k=1,··· ,L}T of P training samples, the goal of the MLP neural network is to minimize



104 Z. Gao et al. / Commun. Comput. Phys., 30 (2021), pp. 97-123

the total error

E=
1

L

P

∑
p=1

∣

∣

∣

∣

∣

∣

~Tp−~Op
∣

∣

∣

∣

∣

∣

2

2
=

1

L

P

∑
p=1

L

∑
k=1

(t
p
k−o

p
k )

2, (3.1)

by adjusting the elements of the weight matrix W in a feedback loop until the error
reaches an acceptable accuracy ε≤10−5.

In order to achieve the objective, two processes are employed in the learning rule
of the neural network: the forward calculation process and the error back propagation
process.

• The forward calculation process of signals.

This process describes how to obtain the output ~O= {ok, k= 1,··· ,L}T through the
hidden and output layers from the given input ~X.

In general, the output of the (n+1)-th layer can be expressed as

~On+1= an+1(Wn,n+1
~On+~bn+1),

where an+1 is the activation function of the (n+1)-th layer, Wn,n+1 is the weight

matrix between the n-th and (n+1)-th layers,~bn+1 is the vector of the bias term of

the (n+1)-th layer. The initial output of the input layer is ~O1 = ~X. Note that the

weight matrix W, and the vector of the bias terms~b are initialized randomly by the
system.

• The error back propagation process.
If the error E (3.1) does not reach the specified user-defined tolerance error ǫ, then

the weight matrix W and vector of the bias terms~b of each layer will be adjusted
via the steepest descent method backwardly until reaching the input layer. The
changes of the weight wij and bias term bi, for example, can be expressed as

∆wij =−η
∂E

∂wij
, ∆bi =−η

∂E

∂bi
,

where η>0 is the learning rate which is employed to control the convergence speed
of the training. The weight will then be adjusted as wij←wij+∆wij for the next
forward calculation process. The training is performed for a sufficient number of
epochs to obtain a converged network.

These two processes are carried out iteratively until the tolerance error ε or the desired
output has been reached. Then the learning process is completed.

3.3 The design of MLP neural networks

In 1989, Robert Hecht-Nielsen [15] proved that a continuous function in any closed inter-
val could be approximated by a MLP neural network with one hidden layer. In theory,
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Figure 2: The cascade-forward network with three-layers.

any function from one finite-dimensional space to another can be represented by a feed-
forward network with at least one hidden layer, but it can be shown that some functions
can only be learned with a single hidden layer and an infinite number of neurons, mean-
ing it is more efficient to learn them with two (or more) hidden layers. Thus, to improve
the accuracy of the simulations, a MLP neural network with three hidden layers is used
in Sections 5.1 and 5.3 respectively.

Moreover, the number of nodes of the hidden layers could influence the performance
of the neural network once the number of layers is determined. Enough neurons of the
hidden layer are the premise to ensure that the nonlinear network approximates any
curve, but too many neurons of the hidden layer will slow down the convergence rate.
According to [16], the number of the nodes of the hidden layer can be estimated by

l=
√

n+m+b, (3.2)

where n and m are the numbers of nodes of the input and output layers, respectively, and
b∈ [1,10] is a constant.

The feed-forward network and the cascade-forward network are the most commonly
used in function approximation. As mentioned in [4], the difference between them is
that the cascade-forward network includes a weight connection from the input to each
layer and from each layer to the successive layers, which might improve the speed of
learning the desired mapping relationship of the network. The cascade-forward model
is similar to the feed-forward network, but the main element of this network is that each
layer of neurons relates to all previous layer of neurons. In Fig. 2, the cascade-forward
network [18, 24] created by the MATLAB command newcf is used in this work. We refer
to [1] for the detailed discussion on the approximation theory of DNNs and their practical
performance of different widths and depths on a variety of test functions.

4 Reduced basis methods using neural networks

As for approximating the ROM coefficients, one can use the alternative methods, e.g.,
Gaussian process regression [20, 21], radial basis function (RBF) approximations [2], and
Galerkin projection method [17,36]. The advantage of an ANN over Gaussian process re-
gression is the much higher expressibility of the ANN. When the problem is sufficiently
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Table 2: The training input and the target output of the three cases.

Case Training input µtr Target output

I νtr ={νj : j=1,··· ,m} Φ
T ~Qh(ν)

I I ttr ={ti : i=1,··· ,n} Φ
T ~Qh(t)

I I I Dtr={(ν,t) : ν∈νtr,t∈ ttr} Φ
T ~Qh(t;ν)

simple, a Gaussian process regression may indeed work well and is often more efficient.
However, for sufficiently complex problems, e.g., in the time-dependent fluid dynamics,
our experience is that only ANN has sufficiently strong resolution power. RBF based
techniques are, in many ways, a simpler version of a Gaussian regression approach, and,
like the Gaussian regression, require a larger number of nodes to be efficient, having
an adverse impact on the computational efficiency while having known conditioning is-
sues that may impact the overall accuracy. The classical Galerkin projection method usu-
ally faces some challenges in computing the projection coefficients for complex nonlinear
problems with a non-affine parametric dependence, which can be solved efficiently by
the ANN method [23]. Furthermore, the ANN method is convenient for users due to the
“plug-and-play” aspect.

The computational efficiency of the RBM relies on the decoupling of the offline and
online stages of calculation. As discussed earlier, the RB functions are prepared offline
from the high-fidelity snapshots of the full-order solutions and are independent of the pa-
rameters µ. The reduced-order solution for a new given parameter value can be recovered

quickly in the online stage. To realize this purpose, one aims to seek a function ~d(µ) that
approximates the RB coefficients~c(µ), such that,

~d(µ)≈~c(µ)∈R
L, µ∈P . (4.1)

In this work, a MLP neural network in Fig. 2 with the input µ and the target output~c(µ)

is trained to obtain the mapping function ~d(µ) for recovering the reduced-order solutions
~Qrb. The resulted network can output an approximated coefficients ~d(µ∗) online for any
given parameter µ∗∈P . Finally, the associated reduced-order solution is computed by

~Qrb(µ
∗)=Φ~d(µ∗). (4.2)

For clarity, Table 2 presents the training data set used for the training of the ANN. It is
worth mentioning that the discrete training inputs Dtr={(ν,t)} in Case III are generated
by the tensor product between a point-set in the parameter and time domains. Therefore,
Case III is computationally expensive. To reduce this cost, an adaptive sampling method
is proposed in this study. An alternative way (such as two-step POD method) can be
found in [42].

Armed with the approximated reduced basis solution of size L, which is much smaller
than the size of the full solution N, that is, L≪ N, ANN can be trained with a much
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greater efficiency, especially in a large dataset generated by many full solution snapshots
in the high dimensional parameter space µ. Since we are interested in solving a solution
with discontinuities and fine-scale structures, it is typically required that N be a large
number in order to capture shocks essentially non-oscillatory and to resolve the fine-scale
structures efficiently.

5 Numerical results

In this section, the accuracy of the proposed method is verified first by a high-dimensional
ordinary differential equation (ODE) and the one-dimensional viscous Burgers’ equation,
respectively. Finally, the gravitation forced single-mode compressible Rayleigh-Taylor in-
stability (RTI) phenomenon, which has more complex convection dominated flow struc-
tures such as high gradients or discontinuities and strong vorticity, is considered to show
the good performance of the proposed method with the uniform and adaptive sampling
methods. In this work, the following relative error is employed,

ǫ=
‖ ~Qh(µ)− ~Qrb(µ)‖∞

‖ ~Qh(µ)‖∞

. (5.1)

5.1 HIRES problem

To demonstrate the accuracy of the proposed method in the time domain, we consider
a high-dimensional system of ODE - HIRES problem, which originates in plant physiol-
ogy and describes how light is involved in morphogenesis. It is a stiff system of eight
nonlinear ODEs, which are given by

d~Q

dt
= f (~Q), 0≤ t≤5, ~Q(0)=(1,0,0,0,0,0,0,0.0057)T , (5.2)

with ~Q=(Q1,··· ,Q8)T ∈R
8, and f (~Q)=M~Q+~b, where~b=(µ10,0,0,0,0,−z,z,−z)T ∈R

8

with z=µ7Q6Q8,

M=

























−µ1 µ2 µ3 0
µ1 −µ4 0

−µ6 µ2 µ5 0
µ3 µ1 −µ8 0

−µ11 µ2 µ2 0
µ9 µ1 −µ2 µ9 0

−µ12 0
µ12 0

























∈R
8×8. (5.3)

Here ~µtr,i = 〈µi〉(1+0.1ξi), i = 1,··· ,12 are the random parameters. The expectation

values are 〈~µ〉= (1.71,0.43,8.32,8.75,0.035,10.03,280,1.12,0.69,0.0007,1.745,1.81) and ~ξ =
(ξ1,··· ,ξ12) are uniformly distributed random variables in [−1,1].
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Figure 3: (Color online) Comparison between the full-order solutions (solid lines) and the corresponding reduced-
order solutions (dashed lines) with three different parameters of µ.

Figure 4: (Color online) The percentage of relative error ǫ of Qk, (k=1,··· ,8) for three different parameters of
µ.

In this study, L=10 RB functions are generated by performing the POD on Ntr =1997
snapshots, which are the numerical solutions of Eq. (5.2) advanced in time by the Runge-
Kutta method (MATLAB command ode15s) over t ∈ [0,5]. We employ the Ntr = 1997
snapshots as the training data, and a five-layer MLP neural network with 15 neurons in

each hidden layer is constructed to obtain the approximated RB coefficients ~d.

The reduced-order solutions with three randomly chosen parameters of µ are recov-
ered and shown in Fig. 3, where the solid and dashed lines represent the full-order and
reduced-order solutions, respectively. The reduced-order solution agrees well with the
corresponding full-order solutions except for the solution of Q3. Furthermore, Fig. 4
shows the corresponding relative errors of the eight solutions Qk,(k = 1,··· ,8), one can
easily find that all the relative errors are less than 3%.
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5.2 One-dimensional viscous Burgers’ equation

To demonstrate the accuracy of the proposed method in the time and parameter domains,
the one-dimensional viscous Burgers’ equation with parameterized diffusion coefficient

Qt+

(

Q2

2

)

x

=
ν

50π
Qxx, (x,t,ν)∈ (−1,1)×(0,1]×[1,7.5],

Q(−1,t;ν)=Q(1,t;ν)=0, Q(x,0;ν)=−sin(πx),

is considered. In the offline stage, the full-order solutions are calculated by a finite
difference method (the first order Euler forward difference in time with ∆t = 0.001
and the second order finite difference scheme for the convection and diffusive terms)
with Nx = 201 uniformly spaced grid points (∆x = 0.01), and Nν = 27 uniformly dis-
tributed parameters ν, i.e. νtr = {1,1.25,1.5,··· ,7.25,7.5}. For the 1000 time steps saved,
Nt = 40 uniformly distributed samples are included in the training data set, i.e. ttr =
{0.025,0.05,0.075,··· ,0.975,1}. The corresponding Ntr = Nν×Nt = 1080 full-order solu-
tions are used as snapshots for constructing the RB functions and as training data for the
MLP neural network with two hidden layers with 12 neurons in each layer.

A set of L= 6 RB functions are extracted by the POD, as shown in Fig. 5. Since the
solution is anti-symmetric (see Fig. 8), the RB functions are also anti-symmetric. Away
from the high gradient of the solutions at around x=0, the solution is a piece-wise smooth
function; the corresponding RB functions are also smooth with slow variations in space.

Figure 5: (Color online) The first sixth RB functions for the parameterized viscous Burgers’ equation.
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Figure 6: (Color online) The reduced-order solutions with ν = 3.125 at time t = 0.52, which are recov-
ered by adding the first mode up to the sixth mode successively and the corresponding coefficients ~c =
(8.0411,−1.4144,−0.1354,0.1555,−0.0570,0.0142)T .

In the neighborhood of x = 0 where the solution exhibits a high gradient, however, the
corresponding RB functions are highly oscillatory in order to capture the high gradient.
The oscillatory nature of each mode tends to cancel each other out when a sufficient num-
ber of modes are summed together in order to obtain an essentially piece-wise smooth
function on each side of the high gradient.

To better illustrate the effect of the RB functions in approximating the full-order solu-
tions, the reduced-order solutions with ν=3.125 at time t=0.52, which are recovered by
adding the first mode up to the sixth mode successively, are given in Fig. 6. The coeffi-
cients ~c of the first six RB functions decrease sharply with the increasing mode number.
It is clear to observe that the recovered solutions with the first two modes already agree
quite well with the full-order solutions. To be more specific, the absolute point-wise er-
rors shown in Fig. 7 decrease with the increasing mode number even at the location of
the high gradient near x=0.

To further validate the accuracy of the reduced model, the reduced-order solutions
(dashed lines) recovered at four different times t={0.27,0.52,0.73,1.00} with four differ-
ent diffusion coefficients ν= {1.125,3.125,5.125,7.125} reach a good agreement with the
corresponding full-order solutions (solid lines) in Fig. 8, which are comparable to those
in [20], confirming the accuracy of the proposed method again. The corresponding L∞ er-
rors in the time domain [0,1] are shown in Fig. 9, which demonstrates that the maximum
point-wise error is less than 10−2.
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Figure 7: (Color online) The absolute point-wise errors |Qh−Qrb| between the full-order solutions and the
reduced-order solutions with ν=3.125 at time t=0.52, which are recovered by adding the first mode up to the
sixth mode successively.

ν=1.125 ν=3.125 ν=5.125 ν=7.125

Figure 8: (Color online) Comparison between the full-order solutions (solid) and the corresponding reduced-order
solutions (dashed) at times t={0.27,0.52,0.73,1.00} with four different parameters of ν.

Figure 9: (Color online) The L∞ error between the full-order solutions and the reduced-order solutions with
ν={1.125,3.125,5.125,7.125} in the time domain t∈ [0,1].
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5.3 RTI phenomenon

Finally, we consider the two-dimensional RTI phenomenon with a small single-mode
perturbation in the velocity field by the proposed method with uniform and adaptive
sampling methods. The governing equations are the two-dimensional hyperbolic con-
servation laws with source terms, given as
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, (5.4)

and the equation of state P=(γ−1)
(

E− 1
2 ρ(u2+v2)

)

with the specific heat ratio γ=5/3
in this work. The ρ, u, v, P and E are the density, velocity in x- and y-directions, pressure,
and total energy, respectively. The gravitation constant is normalized as g=1. The initial
conditions are

(ρ,u,v,P)=

{

(2,0,−Ac·cos(8πx),2y+1), y< 1
2 ,

(1,0,−Ac·cos(8πx), y+ 3
2), y> 1

2 ,

which results in the Atwood number Aτ=
1
3 , c=

√

γP/ρ is the sound speed, and A is the
amplitude of the perturbation wave which plays an important role in the evolution of
RTI phenomenon. The reflective boundary conditions are imposed on the left and right
boundaries. At the top boundary, the flow values are set as ρ=1, P=2.5, u= v=0, and
at the bottom boundary, ρ = 2, P = 1, u = v = 0. The computational domain is x×y =
[0, 1

4 ]×[0,1]. The final simulation time is T=1.95.

In this work, the densities of full-order solutions computed by the seventh order
WENO-Z scheme [10] with the mesh resolution Nx×Ny = 60×240 are used to train the
neural network and verify the accuracy of the proposed method. The key component
of the WENO-Z scheme is a polynomial reconstruction procedure that can adaptively
switch from a high order polynomial to a nonlinear weighted sum of low order polyno-
mials, where the nonlinear weights are designed based on the local smoothness of the
underlying low order polynomials (for details see [5]). Here, three cases are considered:

• Case (a): Take the amplitude A as a parameter, i.e., µ=A, and to recover the density
ρ at the final time T=1.95 with arbitrary amplitudes A∗∈ [0.025,0.05];

• Case (b): Take the time t as a parameter with a fixed amplitude A, i.e., µ= t, and to
recover the density ρ at any time t∗∈ [0,1.95];

• Case (c): Take both the amplitude A and time t as parameters, i.e., µ=(A,t), and
to recover the density ρ with arbitrary amplitudes A∗ ∈ [0.025,0.05] at any time
t∗∈ [0,1.95].
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The evolution of the small smoothly perturbed interface of the RTI phenomenon un-
dergoes three distinct regimes, which are the linear, quasi-linear (weakly nonlinear) and
fully nonlinear regimes. At the early time of the instability, the interface grows lin-
early while maintaining a smooth, simple structure (linear regime). At some point in
time, depending on the amplitude of the perturbation wave A and the Atwood number
Aτ, the growth of the interface forming spike and bubble and the mixing layer width
(distance between the spike and bubble) grows substantially faster than linear (quasi-
linear/weakly nonlinear regime). Soon afterward, the exponential growth of the vortic-
ity, due to the baroclinity of a stratified fluid (misalignment of the gradient of pressure
and the gradient of density), generates small scales vortical structures along the elon-
gated interface, and the flow becomes turbulence increasingly in nature (fully nonlinear
regime). The description of the three regimes can be visualized in Fig. 13.

As a result, the uniformly distributed samples with many snapshots during the early
linear regime are not needed to capture the essentially smooth and simple structures of
the solution in the early linear regime, while relatively more snapshots are needed to cap-
ture the essence of the highly developed complex structures in the quasi- and nonlinear
regimes. Therefore, for the time training set ttr in Case (b) and Case (c), an adaptive sam-
pling method is designed for the POD and training the ANN with an equivalent accuracy
by reducing the number of snapshots needed in the linear regime when the solution is
relatively simple and smooth.

Based on the temporal structures of the RTI, (5.5) obtained by the theory of Jacobs and
Catton [28, 31] is employed to judge whether the nonlinear structures are present or not,

L= Linit+a·λl , (5.5)

where a=0.1 is used in this study, Linit is the initial position of the peak of the spikes, λl

is the perturbation wavelength. For simplicity, we let S be the position of the peak of the
spike and take fewer samples when S< L. Otherwise, the same samples as the uniform
sampling method are used.

For easy comparison, we refer to the superscript ‘U’ and ‘A’ as the variables related
to the uniform and adaptive sampling methods. For example, the training data set of
the uniform and adaptive sampling methods are denoted as tU

tr and tA
tr , respectively. The

reduced-order solutions with the uniform and adaptive sampling methods are referred
to as the uniform and adaptive solutions, respectively.

• Case (a).

In this case, only the amplitude A of the initial perturbation wave is considered
as a parameter. A five-layer neural network is created with 12 neurons in each of
the three hidden layers. The number of snapshots used for constructing the RB
functions and training the coefficients is Ntr =57 with amplitudes

µtr =Atr ={(0.0205:∆A : 0.05)} except for {0.0250,0.0320,0.0495}, ∆A=5×10−4.
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A=0.0250 A=0.0320 A=0.0495 A=0.0500

Figure 10: (Color online) The comparison of the density contour lines of the RTI between the full-order solutions
(red) and the reduced-order solutions (blue) with amplitudes Atest={0.0250,0.0320,0.0495,0.0500}.

Remark : (x1 : ∆x : x2) means taking points with a uniform grid spacing ∆x in the
interval [x1,x2].

Here, L= 14 RB are selected to obtain the reduced-order solutions. For clarity, the
red (blue) titles in the figures below mean data is inside (outside) of the training
data set. The reduced-order solutions are recovered with amplitudes µtest= Atest=
{0.0250,0.0320,0.0495,0.05}, and shown in Fig. 10 to verify the accuracy of the ROM.
It is clear to find that the ROM can capture the large scale structures of the RTI and
maintain the symmetry regardless of the amplitude A is in the training data set
or not. But there are subtle differences in some small scale structures due to the
truncation of the RB functions.

• Case (b).

In this case, we fix the amplitude of the initial perturbation wave as Atest=0.025 and
regard time t as a parameter. The N=66 full-order solutions at times t={0:∆t:1.95}
with ∆t=0.03 are computed in the offline stage.

For the two sampling methods, the training data sets are

tU
tr ={0 :2∆t : 1.92}, tA

tr ={(0 :4∆t : St),(St+2∆t : 2∆t : 1.92)},

where St is the maximum time when S< L. As a result, the numbers of snapshots
used for the POD and the training of the neural network are NU = 33, NA = 29,
respectively. The numbers of RB function are LU =23, LA =15, respectively. A five-
layer MLP neural network with 13 neurons in each hidden layer is used.
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Figure 11: (Color online) (Left) Uniform sampling and (Right) adaptive sampling: The locations of the peak of
the spikes at different times ys(t). ’�’ represents the time that is outside of the training data set.

Figure 12: (Color online) (Left) The relative errors between the full-order and reduced-order solutions (black:
adaptive solution; red: uniform solution) in time t∈ [0,2]: solid circles represent the times that are outside of
the training data set. (Right) The comparison of the number of training samples between the uniform sampling
(red line) and adaptive sampling (blue line) of the amplitude A=0.025 in time t∈ [0,2].

The time dependent positions of the peak of the spikes ys(t) play a very impor-
tant role in analyzing the RTI phenomenon. Therefore, we recover the uniform
and adaptive solutions at times t = {0 : ∆t : 1.95} and compute the corresponding
peak of the spike ys(t), as drawn in Fig. 11. Clearly, the time-dependent peak of
the spike ys(t) recovered from the uniform solutions are comparable to the one
obtained by the full-order solutions. As for the adaptive sampling method, the dif-
ference between the full-order and adaptive solutions are slightly larger (≤ 10%)
than those obtained by the uniform sampling method when t≤ St≈ 0.5. The rel-
ative errors between the full-order and reduced-order solutions plotted in the left
of Fig. 12 confirm this observation. Furthermore, the adaptive results show a very
good agreement with the uniform results when t≥St. The number of uniform and
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Figure 13: (Color online) The recovered reduced-order density contour lines of ρ = 1.5 of the RTI and the
corresponding full-order solutions with Atest=0.025 at times t={0.27,0.57,1.77,1.95}.

adaptive samples distributed in the temporal domain is illustrated in the right of
Fig. 12. It is clear that the number of adaptive samples is only half of that needed in
the uniform samples when t≤0.5.

To further observe the large scale structures in detail, four recovered density con-
tour lines of ρ=1.5 at times ttest= t={0.27,0.57,1.77,1.95} using uniform and adap-
tive sampling methods are plotted in Fig. 13. One can observe that the large scale
structures of the adaptive solutions agree well with those of the full-order solu-
tions as well as the uniform solutions, even the predicted density ρ(x,y,t = 1.95)
estimated at time t=1.95, which is outside the upper bound of the training data set.

• Case (c).

With one more parameter considered, more snapshots must be added to the train-
ing data set to obtain more RB functions and the corresponding coefficients. Thus,
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A=0.0145 A=0.0285 A=0.0485

T
=

1.
17

T
=

1.
95

Figure 14: (Color online) Uniform sampling: The recovered reduced-order density contour lines of ρ=1.5 of the
RTI and the corresponding full-order solutions with parameters in {(A,t)test}.

NU =5518 and NA =5008 samples are prepared in the parameter domain in the of-
fline stage, which is the tensor product of Nµ = 89 amplitudes A and times t. The
samples Dtr ={(µtr ,ttr)} with

µtr =Atr ={(0.005 : ∆A : 0.05)} except for {0.0145,0.0285},
tU
tr ={(0 : ∆t : 1.95)} except for {0.57,1.17,1.77,1.95},

tA
tr ={(0 :2∆t : St),(St+∆t : ∆t : 1.92)},
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A=0.0145 A=0.0285 A=0.0485

T
=

1.
17

T
=

1.
95

Figure 15: (Color online) Adaptive sampling: The recovered reduced-order density contour lines of ρ= 1.5 of
the RTI and the corresponding full-order solutions with parameters in {(A,t)test}.

are used for the POD and training the MLP neural network. The adaptive training
data set is half of the size for t < St than those for t > St. LU = 32 and LA = 33
RB functions are generated through the POD respectively. A five-layer network
with 13 neurons in each hidden layer is created to approximate the coefficients. Six
recovered solutions with the parameters

{(A,t)test}={(0.0145,1.17),(0.0285,1.17),(0.0485,1.17),

(0.0145,1.95),(0.0285,1.95),(0.0485,1.95)},
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Figure 16: (Color online) Adaptive sampling: The comparison of the positions of the peak of the spikes, the
bottom of the bubbles and the mixing layer width between the full-order solutions (solid) and the adaptive
solutions (dashed) of the three amplitudes Atest = {0.0145,0.0285,0.0485}. ’•’ represents time that is outside
of the training data set.

Figure 17: (Color online) The comparison of the relative errors between the uniform sampling (dashed lines)
and the adaptive sampling (solid lines) of the three amplitudes Atest={0.0145,0.0285,0.0485}.

are shown in Fig. 14 (uniform sampling method) and Fig. 15 (adaptive sampling
method) respectively. One finds that the adaptive solutions are comparable to the
uniform solutions and the full-order solutions except for a minor difference at time
t=1.95.

In addition, to investigate the accuracy of the adaptive sampling method for
other parameters, the temporal history of the peak of the spike ys(t), the bub-
ble yb(t), and the mixing layer width h(t) with the three perturbation amplitudes
A = {0.0145,0.0285,0.0485} are drawn in Fig. 16. The adaptive solutions capture
the peak of the spikes and bubbles accurately. The corresponding relative er-
rors are also plotted in Fig. 17, which demonstrates that the adaptive solutions
are rather similar to the uniform solutions. Furthermore, the number of adap-
tive samples NA is proportional to the increasing amplitudes A, as shown in the
left of Fig. 18. However, NA (adaptive sampling) is always still less than NU (uni-
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Figure 18: (Color online) The number of training samples (Left) with respect to different amplitudes and (Right)
distributed in the temporal domain with respect to the three amplitudes Atest={0.005,0.0135,0.0405}.

form sampling), especially when A≤0.02. For a clearer comparison, the number of
samples distributed in the temporal domain corresponding to the three amplitudes
A={0.005,0.0135,0.0405} is shown in the right of Fig. 18. It allows that the number
of adaptive samples is only half of that needed in uniform samples when t≤St. The
reason for these results is that the larger the initial perturbation energy (amplitude)
is given, the more complex structures are generated.

6 Conclusion

In this study, we develop a non-intrusive reduced basis method for the Rayleigh-Taylor
instability by considering the governing equations as the time-dependent parameterized
partial differential equation with the parameterized initial conditions. The proposed
method extracts a small number of reduced basis functions from the snapshots via the
proper orthogonal decomposition to construct the reduced-order model. The undeter-
mined coefficients, which correspond to the reduced basis functions, are approximated
by a multi-layer perceptron neural network with two or three hidden layers. The snap-
shots used for the POD and the training of the neural network can be prepared in advance
during the offline stage. The proposed method can avoid the heavy computation of the
traditional methods, such that the approximated solutions for any reasonable parameters
can be easily recovered online.

The proposed method has been successfully tested on a high-dimensional ordinary
differential equation and the one-dimensional viscous Burgers’ equation. Furthermore,
the RTI phenomenon, where the amplitude and time are considered as the parameters,
is simulated by the proposed method with the uniform and adaptive sampling methods.
The adaptive method is designed to decrease the number of samples for the POD and
training with a minor loss of accuracy after considering the temporal development of
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the increasingly complex small scale vortical rollup structures. The results show that the
proposed method is able to reduce the model and the CPU time when recovering the
desired solution at a reasonable accuracy. In practice, we also find that the number of
reduced basis functions, the number of training data, and neurons in the hidden layers
of the neural network can affect the accuracy of the proposed method. However, it is out
of the scope of this work and will be studied in the future.
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