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Abstract. We present a high-order discontinuous Galerkin (DG) scheme to solve the
system of helically symmetric Navier-Stokes equations which are discussed in [28].
In particular, we discretize the helically reduced Navier-Stokes equations emerging
from a reduction of the independent variables such that the remaining variables are:
t, r, ξ with ξ = az+bϕ, where r, ϕ, z are common cylindrical coordinates and t the
time. Beside this, all three velocity components are kept non-zero. A new non-singular
coordinate η is introduced which ensures that a mapping of helical solutions into the
three-dimensional space is well defined. Using that, periodicity conditions for the
helical frame as well as uniqueness conditions at the centerline axis r=0 are derived. In
the sector near the axis of the computational domain a change of the polynomial basis
is implemented such that all physical quantities are uniquely defined at the centerline.

For the temporal integration, we present a semi-explicit scheme of third order
where the full spatial operator is splitted into a Stokes operator which is discretized
implicitly and an operator for the nonlinear terms which is treated explicitly. Com-
putations are conducted for a cylindrical shell, excluding the centerline axis, and for
the full cylindrical domain, where the centerline is included. In all cases we obtain the
convergence rates of order O(hk+1) that are expected from DG theory.

In addition to the first DG discretization of the system of helically invariant Navier-
Stokes equations, the treatment of the central axis, the resulting reduction of the DG
space, and the simultaneous use of a semi-explicit time stepper are of particular nov-
elty.
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1 Introduction

Helical flow structures appear in various natural phenomena and technological devices,
for example, in the wake of windmills [39], as wing tip vortices [32], in astrophysical plas-
mas (see e.g. [4]) and in laboratory applications, including “straight tokamak” plasma
flow approximations, (see e.g. [27, 35]) and other experiments. In particular, helical vor-
tex structures were observed by [34] in experiments with swirling flows in a cylindrical
tube, and as such, they are part of the various flow structures observed in the known
vortex breakdown.

Various groups have worked on the theoretical description of helical flows in recent
decades. The simplest approach here is to introduce a helical coordinate ξ = az+bϕ,
a, b = const. 6= 0 and to assume that all physical quantities depend on the cylinder ra-
dius r and the helical coordinate ξ. Helically invariant flows include translationally and
axially invariant ones as special cases. For both steady Euler equations describing in-
compressible fluid flows and for plasma equilibrium equations in the magnetohydro-
dynamics (MHD) framework, the helical invariance requirement allows to reduce the
governing equations to a single partial differential equation (PDE) known as the JFKO
equation [27]. This important equation generalizes the famous Bragg-Hawthorne-Grad-
Rubin-Shafranov equation [7, 23, 36] describing steady axisymmetric inviscid flows onto
the helically invariant case. Families of exact solutions of JFKO equations are known,
including those derived by [6] (see also [5, 10]). In the more general context of heli-
cal geometry, several works focused on twisted pipes following a given spatial curve
(see [19, 20, 38, 41]). Using non-orthogonal and local-orthogonal coordinate systems, the
effects of pipe curvature and torsion on the flow were investigated. Special analytical
solutions of steady flows in helically symmetric pipes were found by [43]. In [12] a
DNS code for the helical invariant Navier-Stokes equations in a generalized vorticity-
streamfunction formulation has been developed. In [16] the three-dimensional Euler
equations are reduced to a linear equation, assuming that the flow has helical symmetry
and consists of a rigidly rotating basic part and a Beltrami disturbance part. Further, the
authors derived exact solutions for flows in a straight pipe of circular cross section. Exact
solutions for helical flows of a Maxwell fluid constrained between two infinite coaxial
circular cylinders were derived by [26]. The present introduction as well as additional
results on helical flows can be found in [14].

The full three dimensional system of incompressible constant-density Euler- and
Navier-Stokes equations under the assumption of helical symmetry have been derived
and analyzed in [28]. In particular, various new conservation laws admitted by the model
have been found in primitive variables and using the vorticity formulation. A general he-
lically symmetric setting was used, where all three velocity components and the pressure
are generally nonzero, and may depend on the time t, the cylindrical radius r, and the
helical variable

ξ= az+bϕ. (1.1)
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In a general helically symmetric setting, no restrictive assumptions are made concerning
the form of the velocity components or the pressure. The consideration is based exclu-
sively on the independence from the third spatial variable which changes along each
helix r=const., ξ=const.. Thus the flow has two spatial dimensions, and is called (2+1)-
dimensional in space-time. Since the spatial dimensions are reduced to two, but all three
components of the velocity vector are nonzero, helical flows are often referred to as “21

2 -
dimensional”. In turbulence research, a flow is denoted as a two-component flow if one of
the velocity components vanishes.

Helical invariance of the Navier-Stokes equations is a consequence of its admitted
Lie group of point symmetries, specifically, the invariance of the model with respect to
rotations and translations about the z-axis. The helical invariance thus generalizes and
includes the axial symmetry (achieved at a=1, b=0) and the z-translation symmetry (cor-
responding to a=0, b=1). In 2017, Dierkes and Oberlack extended the work [28] by intro-
ducing a more general, time-dependent helical coordinate system, based on rotation and
Galilei invariance of the Navier-Stokes model. The new approach used a time-dependent
helical variable ξ=z/α(t)+bϕ, with b=const., and α(t) is an arbitrary function of time t.
This coordinate system describes helical flows with a time-dependent helical pitch; both
Euler and Navier-Stokes equations admit a reduced invariant form with respect to this
extended helical coordinate system.

During the last decades, the discontinuous Galerkin (DG) method has been used to
solve the Stokes- and the incompressible Navier-Stokes equations in various works. Gi-
rault et al. derived an inf-sup condition for a velocity of degree k and a pressure of degree
k−1, for 1≤ k≤ 3 in two dimensions, for grids with hanging nodes and triangular ele-
ments [21]. Later they extended these results to instationary flows [22]. The stability of
equal-order discretizations for velocity and pressure requires an additional stabilization
term in the continuity equation, but can be shown for more general settings in 2D and 3D
with arbitrary polynomial orders, cf. the textbook of di Pietro and Ern [13].

For unsteady two-dimensional flows, a DG solver has been developed by Ferrer and
Willden [18], whereas in three dimensions a DG solver is presented in [37], in which a
semi explicit temporal discretization with explicit treatment of the nonlinear term and
implicit treatment of the Stokes operator is used. They both use the Interior Penalty (IP)
Galerkin formulation [1]. Recent development of the DG method for steady and unsteady
Navier-Stokes equations on arbitrary grids is proposed in [44], where a simplified artifi-
cial compressibility is used to discretize the inviscid term. The authors further discretized
the viscous term by the direct DG (DDG) method. An innovative possibility to combine a
high-order finite difference (FD) scheme with DG is shown in the work of [42], where the
DG method is used to treat the boundary conditions while a novel high-order FD scheme
is applied to simulate the flow. New developments of the DG method are proposed in [9]
where an adjoint-based h-adaptive high-order reconstructed DG method is introduced
and used to solve the two-dimensional steady-state compressible Euler equations.

In addition to that, an extended DG method has been developed for solving multi-
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phase problems [30]. The DG method has also been applied to PDE’s which are written
in non-cartesian coordinates, e.g. in [33] the shallow water equations are discretized on
a cubic sphere. There are also numerous works concerning a numerical discretization of
the incompressible Navier-Stokes equations in polar and cylindrical coordinates, most
applying spectral elements [31] and finite difference schemes [3, 24, 40] for the spatial
discretization. They all have in common that due to the singularities in the equations a
special treatment at the centerline axis, where the radial coordinate r is zero needs to be
taken into account. For instance, in [31] so-called essential and natural pole conditions are
discussed, which are necessary for the well-posedness and the regularity of the solutions
at the centerline, respectively. In [11] governing equations for the flow at the center-
line are derived using series expansions near r= 0, whereas in [29] the authors demand
smoothness of all physical variables along the centerline which results in constraints for
the velocity and the pressure.

In the current paper, we will present a DG formulation of the helically invariant
Navier-Stokes equations. This can also be seen as a discontinuous Petrov-Galerkin (DPG)
formulation since all equations are multiplied by a metric function in order to ensure
well-posedness, smoothness and regularity of the numerical solutions along the center-
line. An example of the development of a DPG method for different convection-diffusion
type problems may be found in [17].

In addition to that, we derive centerline conditions at the axis r = 0, combining the
periodicity condition in the helical setting (cf. Appendix B) and the condition for unique-
ness at the centerline, derived in Appendix C. The final centerline conditions presented
in Section 5 are realized using a reduced DG basis which is shown in Section 5.1. The
article is heavily based on a part of [14] which is the author’s PhD thesis. Since until to-
day there is no numerical discretization of the system of helically invariant Navier-Stokes
equations, the following contents of this publication are of particular importance for the
numerical investigation of helically symmetric flows: the derivation of the weak form
using the Petrov-Galerkin method, the formulation and implementation of suitable peri-
odicity and smoothness conditions at the centerline axis r=0 resulting in a reduction of
the DG space, and the use of a semi-explicit time stepper to solve the unsteady system of
PDEs.

The paper is organized as follows: In Section 2 the continuous setting of the helically
invariant Navier-Stokes equations is introduced and basic definitions are presented. Sec-
tion 3 focuses on the numerical discretization of the PDE system including the definition
of the reduced DG space as well as on the temporal discretization using a semi-explicit
time-stepping method. The Sections 4 and 5 show the results through a discussion of
convergence studies for simulations on a cylindrical shell and on the full cylindrical do-
main. The latter require the centerline conditions which are also presented and applied
in Section 5. In Section 6 the conclusion and an outlook for manifold applications of the
developed code is given.
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2 Helically invariant Navier-Stokes equations (the continuous

setting)

The helical coordinate system (r,η,ξ) has been introduced originally in [28]. It is given
by

r, ξ= az+bϕ, η= aϕ−bz/r2, (2.1)

where a,b = const., a2+b2
> 0 and (r,ϕ,z) are the usual cylindrical coordinates. In the

present work we use a new invariant coordinate η, given by

η=−bz+ar2 ϕ, (2.2)

which has two important advantages. First, the coordinate lines of η (lines where η =
const.) are orthogonal to lines where ξ=const. and second, the coordinate η is not singular
at the centerline r=0, i.e. η does not collapse to one single point at the origin z=0, r=0.
However, the choice of the invariant coordinate η is important for the formulation of
appropriate conditions at the centerline of the helix r=0, which we consider in Section 5.
The derivation of the coordinate (2.2) is provided in Appendix A.
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Figure 1: An illustration of the helix ξ=const. for a=1, b=−h/2π, where h is the z-step over one helical turn.
Basis unit vectors in the helical coordinates.

On each cylinder r = const., the lines ξ = const. and η = const. correspond to two
families of helices which are orthogonal to each other. By choosing the constants a, b one
obtains a specific helical frame. In the limiting case, if a=1, b=0, the helical coordinates
become cylindrical coordinates with η = r2 ϕ, ξ = z. Importantly, the curvilinear helical
coordinates (r, η, ξ) do not form an orthogonal triple. Although the unit direction vectors
of the coordinates (r, ξ) are orthogonal, it can be shown that there is no third coordinate
that is orthogonal to both r and ξ and that can be consistently introduced in any open
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ball B∈R
3. A locally orthogonal triple of unit vectors

er =
∇r

|∇r| , eξ =
∇ξ

|∇ξ| , e⊥η =
∇⊥η

|∇⊥η| = eξ×er (2.3)

is defined at every point for the purpose of expansion of vector quantities in a natural
basis.

We define a helically invariant function as a function which is independent of η, and
has the form F(t,r,ξ). We will assume that all physical variables are η-independent such
that we obtain exact solutions for helically invariant flows. Throughout the paper, upper
indices will refer to the corresponding components of vector fields (vorticity, velocity,
etc.), and lower indices will denote partial derivatives. For example,

u
η
ξ ≡

∂

∂ξ
uη(t,r,ξ).

We also assume summation in all repeated indices.
In nabla-based notation in Cartesian coordinates, the Navier-Stokes equations of in-

compressible viscous fluid flows without external forces are given by

∇·u=0, (2.4a)

ut+(u·∇)u+∇p−ν∇2 u=0, (2.4b)

where the fluid velocity vector u= u1ex+u2ey+u3ez and fluid pressure p, in which the
density has already been absorbed, are functions of x=(x,y,z) and t. The viscosity coef-
ficient ν=const.; the inviscid case ν=0 yields the Euler equations.

In order to rewrite the equations (2.4) in a helically symmetric setting, one may write
the velocity vector in the cylindrical and the helical basis:

u=urer+uϕeϕ+uzez =urer+uηe⊥η+uξeξ , (2.5)

where ur,uϕ,uz are the velocity components in cylindrical coordinates. The helical veloc-
ity components are related to the cylindrical velocity components by

uη =u·e⊥η =B

(
auϕ− b

r
uz

)
, uξ =u·eξ =B

(
b

r
uϕ+auz

)
, (2.6)

and backward,

uϕ=B

(
auη+

b

r
uξ

)
, uz=B

(
−b

r
uη+auξ

)
, (2.7)

where

B(r)=
r√

a2r2+b2
. (2.8)
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In what follows, for brevity, we will often write B(r)=B and dB(r)/dr=B′ .
By transforming the PDEs to helical coordinates, and assuming helical invariance

∂/∂η ≡ 0 for all velocity components and the pressure, one obtains the continuity equa-
tion and the three components of the vector momentum equation, which represent the
helically invariant Navier-Stokes system in primitive variables:

1

r
ur+ur

r+
1

B
u

ξ
ξ =0, (2.9a)

ur
t+urur

r+
1

B
uξur

ξ−
B2

r

(
b

r
uξ+auη

)2

=−pr+ν

[
1

r
(rur

r)r+
1

B2
ur

ξξ−
1

r2
ur− 2bB

r2

(
au

η
ξ +

b

r
u

ξ
ξ

)]
, (2.9b)

u
η
t +uru

η
r +

1

B
uξu

η
ξ +

a2B2

r
uruη

=ν

[
1

r
(ru

η
r )r+

1

B2
u

η
ξξ+

a2B2(a2B2−2)

r2
uη+

2abB

r2

(
ur

ξ−
(

Buξ
)

r

)]
, (2.9c)

u
ξ
t +uru

ξ
r +

1

B
uξu

ξ
ξ+

2abB2

r2
uruη+

b2B2

r3
uruξ

=− 1

B
pξ+ν

[
1

r
(ru

ξ
r )r+

1

B2
u

ξ
ξξ+

a4B4−1

r2
uξ+

2bB

r

(
b

r2
ur

ξ+

(
aB

r
uη

)

r

)]
, (2.9d)

where the velocity components ur,uη,uξ and the pressure p are functions of r,ξ and t and
the geometric factor B is given by (2.8). Due to the 2π-periodicity of the cylindrical polar
angle ϕ, in order to be globally defined, every component of a helically invariant solution
must be periodic in ξ with the period

τξ =2πb. (2.10)

The helically invariant reduction (2.9) of the Navier-Stokes equations has been exten-
sively investigated in Kelbin et al., where various new conservation laws, including
families of conservation laws, have been found for the viscous (ν 6= 0) and the invis-
cid (ν=0) case. As an example, for the inviscid case, conservation laws of kinetic energy
and z-projections of momentum and angular momentum have been discovered, as well
as a new infinite family of conserved generalized momenta/angular momenta. For the
viscous case, a z-projection of momentum and an additional momentum-like quantity
(r/B)uη are conserved.

3 The discontinuous Galerkin discretization of the helically

invariant Navier-Stokes equations

In this section we present the numerical discretization of the PDE system (2.9). After
some basic definitions in Section 3.1 the numerical fluxes of the spatial discretization
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are presented in Section 3.2 and a semi-explicit scheme for the temporal discretization
is discussed in Section 3.3. Subsequently, the computational domain will be restricted
to a cylindrical shell, i.e. the centerline axis is excluded and the radial coordinate will
be R0 ≤ r≤R1, where R0 ≥ 0. Afterwards, the full computational domain, including the
centerline axis at r = 0 will be included. For each computational domain spatial and
temporal convergence studies are conducted for a given test case discussed in Section
4.1.

3.1 Definitions

In order to keep the readability as simple as possible, we introduce some standard defini-
tions which we use for the DG discretization, cf. [30]. These are all well known and may
be found in similar form in common textbooks like [13, 25].

Definition 3.1 (basic notations). We define:

• the domain: Ω=(0,··· ,1)×(0,··· ,2π) is in all cases 2π-periodic (cf. Appendix B);

• the numerical grid: Kh={K1,··· ,KJ}, with h being the shorter edge of the rectangu-
lar cell;

• the set containing all edges of the grid: Γ :=
⋃

j ∂Kj. Furthermore, the set of all
internal edges: Γint :=Γ\∂Ω;

• a normal field nΓ on Γ. On ∂Ω, it represents an outer normal, i.e., on ∂Ω, nΓ=n∂Ω;

• At the mesh skeleton, the inner- resp. outer-value of a field u ∈ C0(Ω\Γint) are
defined as:

uin(x) := lim
ǫց0

u(x−ǫnΓ) for x∈Γ,

uout(x) := lim
ǫց0

u(x+ǫnΓ) for x∈Γint.

Then, the jump and average value operator are defined as

[[u]] :=

{
uin−uout on Γint,

uin on ∂Ω,
(3.1)

{u} :=

{
(uin+uout)/2 on Γint,

uin on ∂Ω;
(3.2)

• the broken polynomial space of total degree k:

Pk(Kh) :=
{

f ∈L2(Ω); ∀ K∈Kh : f |K is polynomial and deg( f |K)≤ k}; (3.3)



296 D. Dierkes, F. Kummer and D. Plümacher / Commun. Comput. Phys., 30 (2021), pp. 288-320

• the broken gradient ∇h: for u∈C1(Ω\Γ), ∇hu denotes the gradient on the domain
Ω\Γ; in analog fashion, the broken divergence divh(u);

• the standard-basis vector ed, for d∈{1,2}: e1= er =(1,0), e2= eξ =(0,1);

• the metric function f : R→R; r 7→ f (r) for which we choose f (r)= (B(r))2, where
B(r) is the geometric function (2.8), naturally arising from the transformation into
the helical system.

3.2 DG spaces and the spatial discretization

In the following, we first introduce DG spaces, which ensure the conditions at the center-
line axis r=0 given by

ur =0, uξ =0, u
η
ξ =0, pξ =0. (3.4)

Further details about the centerline conditions are presented in Section 5 and a deriva-
tion can be found in the Appendices B and C. After the definition of the DG spaces we
describe the spatial discretization of the helically invariant Navier-Stokes equations (2.9).

3.2.1 Reduced DG spaces ensuring the centerline conditions

In standard DG formulation, the velocity and pressure are discretized in DG spaces of
order k and k′= k−1, respectively, in order to comply the Ladyženskaja-Babuška-Brezzi
(LBB) condition [2, 8]. In this case, the DG space is usually given by

(u,p)∈Pk(K)3×Pk−1(K) :=Vk . (3.5)

In contrast to that, for the discretization helically invariant Navier-Stokes equations (2.9)
we need to introduce a reduced DG space V

0
k due to the centerline conditions at the cen-

tral axis r=0. We distinguish between two different spatial domains in the following. The
first domain is a cylindrical shell where the centerline axis r= 0 is omitted (domain #1).
Afterwards, we consider the full domain including the centerline axis which we denote
as the second case (domain #2). For both, we distinguish between a mixed-order and an
equal-order formulation of the DG discretization. For the DG discretization on the cylin-
drical shell we seek solutions in the DG space Vk where we additionally demand that the
integral of the pressure over one cell vanishes, i.e.

∫
K0

p=0. Here, K0 denotes the cell in
the computational domain where the latter condition holds. For the DG discretization in
the full domain, the underlying DG space is denoted as V

0
k. The different DG spaces for

the four distinct cases are presented in Table 1. The validation of the implementation in
the cylindrical shell is presented in Section 4 followed by the validation in the full domain
in Section 5.

For the DG discretization of the helically invariant Navier-Stokes equations (2.9), we
use the following boundary conditions (BCs)

u=uD on ΓD ,

u=uP on ΓP ,
(3.6)
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Table 1: DG spaces for different geometries and DG formulations. Pk(K) and Pk−1(K) are the spaces of
smooth polynomial functions up to order k and k−1, respectively.

Geometry mixed-order equal-order

D
o

m
a
in

#
1

r 0
≤

r
≤

1

V
0
k =
{
(u, p)∈Pk(K)3×Pk−1(K),

s.t.
∫

K0

p=0

}
V

0
k =
{
(u, p)∈Pk(K)3×Pk(K),

s.t.
∫

K0

p=0

}

D
o

m
a
in

#
2

0
≤

r
≤

1

V
0
k =
{
(u, p)∈Pk(K)3×Pk−1(K),

s.t. ur =uξ =0, u
η
ξ =0, pξ =0

}
V

0
k =
{
(u, p)∈Pk(K)3×Pk(K),

s.t. ur =uξ =0, u
η
ξ =0, pξ =0

}

where ΓD is the Dirichlet boundary and ΓP is the boundary where periodic BCs are as-
sumed. For the Dirichlet BC we distinguish between the two spatial domains (i) the
cylindrical shell and (ii) the full domain including r=0. In the case (i) we assume Dirich-
let BCs at the inner and the outer cylindrical walls, given by

ΓD =
{
(r,ξ)∈R

2 | r= r0 >0 ∨ r=1
}

, (3.7)

whereas in case (ii) Dirichlet BCs are assumed only at the outer cylindrical wall, i.e.

ΓD =
{
(r,ξ)∈R

2 | r=1
}

. (3.8)

At the inner axis r = 0 the centerline conditions (3.4) are used. In both cases periodic
boundary conditions are implemented on the following boundaries

ΓP =
{
(r,ξ)∈R

2 | ξ=0 ∨ ξ=2π
}

. (3.9)

3.2.2 The spatial discretization of the helically invariant Navier-Stokes equations

We propose the following discretization of the helically invariant Navier-Stokes equa-
tions (2.9), using the boundary conditions (3.6) in the DG space: find (u,p)∈V

0
k such that

for all (v,τ)∈V
0
k

Ns(u,(u,p),(v,τ))= rhsNs((v,τ)) , (3.10)

where the Navier-Stokes form Ns(−,−,−) is given by

Ns(u,(u,p),(v,τ))=N (u,u,v)−A(p,u,v) , (3.11)

which consists of a trilinear form N (−,−,−) representing the convective terms, and a
bilinear form A(p,u,v), representing the pressure gradient and the viscous terms of the
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Navier-Stokes equations (2.9). Note that (3.10) is the discrete spatial formulation of (2.9),
neglecting the transient term, which will be taken into account in Section 3.3. The right-
hand side of the discretized Navier-Stokes equations (2.9),

rhsNs((v,τ))= s(v)+q(v)+r(τ), (3.12)

is the sum of three linear forms, representing body forces by s(v), boundary conditions
for the momentum equations by q(v) and boundary conditions for the continuity equa-
tion by r(τ).

The momentum equations of the helically invariant Navier-Stokes equations (2.9)
are presented component-wise in radial direction as well as in the helical ”ξ” and ”η”-
direction. For brevity, we introduce the following naming for the DG space

V
0
k,i :=

{
ui | (u1,u2,u3,u4)=(u,τ)∈V

0
k

}
(3.13)

and using that, we write the system (3.10) component-wise as follows

C (u,τ)=0 ∀τ∈V
0
k,4 , (3.14a)

N1(u,u,v1)−A1(p,u,v1)=b1(v1) ∀v1∈V
0
k,1 , (3.14b)

N2(u,u,v2)−A2(u,v2)=b2(v2) ∀v2∈V
0
k,2 , (3.14c)

N3(u,u,v3)−A3(p,u,v3)=b3(v3) ∀v3∈V
0
k,3 , (3.14d)

where the index ”1” denotes the terms of the momentum equation in radial direction,
the index ”2” and ”3” represent terms of the η- and ξ-momentum equation. Note that
the η-momentum equation has no pressure. Furthermore, (3.14a) is the discrete form of
the continuity equation.

In the following, we present the DG discretization of each term in (3.14). The velocity
divergence (3.14a) is discretized as follows

C (u,τ)=−
∫

Ω

[
ur ·
(

d f

dhr
τ+ f ∂r,hτ

)
+

f

B
uξ∂ξ,hτ− f

r
urτ

]
dV

+
∮

Γ

[
{ur}er ·n+

1

B

{
uξ
}

eξ ·n
]

f [[τ]]dS, (3.15)

where f = f (r) is a metric function, which we introduce to remove singularities in the co-
efficients of the PDEs at the centerline axis r=0. In the present work we choose f =B2(r).
The convective terms are discretized in a ”super weak form”, by partially integrating
twice

N (w,u,v)=
∫

Ω
∇u·w f v dV+

∮

Γ
(ûwn−uwn) f v dS. (3.16)

The parameter w=
(
wr

0,w
η
0 ,w

ξ
0

)
is taken from the initial condition and linearizes the con-

vective part. The operator N is the sum of the convective terms of the component-wise
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discretization (3.14), i.e. N =N1+N2+N3. The scalar quantity u is the velocity compo-
nent for each momentum equation, e.g. u = ur for the r-momentum equation. For the
flux ûwn, we use the upwind formulation,

fupw(u,w,n) := ûwn=

{
u−w·n if w·n≥0,

u+w·n if w·n<0.
(3.17)

For brevity, we introduce the flux

fsw (u,w,n) := fupw−uwn, (3.18)

such that the convective terms in (3.14) read

N1(u,w,v1)=
∫

Ω

[
ur

0∂r,hur+
1

B
u

ξ
0∂ξ,hur− B2

r

(
b

r
u

ξ
0+au

η
0

)(
b

r
uξ+auη

)]
f v1dV

+
∮

Γ

(
fsw (u

r,wr
0er,n)+

1

B
fsw

(
ur,w

ξ
0eξ ,n

))
[[v1]] f dS, (3.19a)

N2(u,w,v2)=
∫

Ω

[
ur

0∂r,huη+
1

B
u

ξ
0∂ξ,huη+

a2B2

r
ur

0uη

]
f v2dV

+
∮

Γ

(
fsw (u

η,wr
0er,n)+

1

B
fsw

(
uη,w

ξ
0eξ ,n

))
[[v2]] f dS, (3.19b)

N3(u,w,v3)=
∫

Ω

[
ur

0∂r,huξ+
1

B
u

ξ
0∂ξ,huξ+2

abB2

r2
ur

0uη+
b2B2

r3
ur

0uξ

]
f v3dV

+
∮

Γ

(
fsw

(
uξ ,wr

0er,n
)
+

1

B
fsw

(
uξ ,w

ξ
0eξ ,n

))
[[v3]] f dS. (3.19c)

To discretize the viscous terms, we employ a non-standard symmetric interior penalty
(SIP) method to receive

A1(p,u,v1)=−ν
∫

Ω

[
(−p+∂r,hur)

(
d f

dr
v1+ f ∂r,hv1

)
+ur

(
d f
dr ·r− f

r2
v1+

f

r
∂r,hv1

)

+

(
1

B2
∂ξ ur+Cr,ηuη+Cr,ξuξ

)
f ∂ξ,hv1−

f

r
urv1

]
dV

+ν
∮

Γ

[(
−p+

1

r
{ur}+{∂r,hur}

)
er ·n

+

(
1

B2

{
∂ξ,hur

}
+Cr,η{uη}+Cr,ξ

{
uξ
})

eξ ·n
]
· f [[v1]]dS
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+ν
∮

Γ

(
{∂r,hv1}er+

1

B2

{
∂ξ,hv1

}
eξ

)
·n f [[ur]] dS

+ν
∮

Γ
ηSIP [[u

r]][[v1]] dS, (3.20a)

A2(u,v2)=
∫

Ω

[
∂r,huη

(
d f

dr
v2+ f ∂r,hv2

)
+uη

(
d f
dr r− f

r2
v2+

f

r
∂r,hv2

)

+∂ξ,huη∂ξ,hv2
f

B2
+urCη f ∂ξ,hv2−Buξ

(
∂r,hCη f v2+Cη d f

dr
v2+Cη f ∂r,hv2

)

− a2B2
(
a2B2−2

)

r2
uη f v2

]
dV

+
∮

Γ

[(
{∂r,huη}+ 1

r
{uη}−B

{
uξ
})

er ·n

+

(
1

B2

{
∂ξ,huη

}
+Cη{ur}

)
eξ ·n

]
· f [[v2]]dS

+ν
∮

Γ

(
{∂r,hv2}er+

1

B2

{
∂ξ,hv2

}
eξ

)
·n f [[uη ]] dS

+ν
∮

Γ
ηSIP [[u

η]][[v2]] dS, (3.20b)

A3(p,u,v3)=−
∫

Ω

[(
− 1

B
p+

1

B2
∂ξ,huξ+Cξ,rur

)
f ∂ξ,hv3

+∂r,huξ

(
d f

dr
v3+ f ∂r,hv3

)
+uξ

(
d f
dr r− f

r2
v3+

f

r
∂r,hv3

)

+
aB

r
uηCξ,η

(
∂r,h f v3+

d f

dr
v3+ f ∂r,hv3

)
− a4B4−1

r2
uξ f v3

]
dV

+
∮

Γ

[({
∂r,huξ

}
+

1

r

{
uξ
}
+Cξ,η aB

r
{uη}

)
er ·n

+

(
1

B2

{
∂ξ,huξ

}
+Cξ,r{ur}− 1

B
p

)
eξ ·n · f [[v3]]

]
dS

+ν
∮

Γ

(
{∂r,hv3}er+

1

B2

{
∂ξ,hv3

}
eξ

)
·n f

[[
uξ
]]

dS

+ν
∮

Γ
ηSIP

[[
uξ
]]
[[v3]] dS, (3.20c)

where, for brevity, we use the following abbreviations for the coefficients

Cr,η :=−2abB

r2
, Cξ,r :=

2b2B

r3
=−Cr,ξ , Cη :=

2abB

r2
=−Cr,η ,

Cr,ξ :=−2b2B

r3
, Cξ,η :=

2bB

r
. (3.21)
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The first upper index corresponds to the momentum equation, whereas the second index
indicates the corresponding velocity component. For example, Cr,η is the coefficient of
the uη term in the r-momentum equation.

3.3 The temporal discretization

For the temporal discretization we use a semi-explicit scheme, given in [37]. The main
idea is to split the full spatial operator into a Stokes operator, which is discretized im-
plicitly and the nonlinear term, which we implement explicitly. The reason for such a
treatment of the temporal discretization is the time-independent uniform grid. Using
that, we have a great advantage in performance: we need to solve the Stokes system only
once and can compute many time steps with low computational costs by evaluating the
convective terms explicitly. We use first and third order BDF scheme for the transient
term and a third-order extrapolation (EX3) for the nonlinear term in case of the third or-
der BDF scheme. For the uniform timestep size ∆t the Navier-Stokes equations (2.4) are
discretized as follows

C
(

un+1,τ
)
=0 ∀τ∈V

0
k,4 , (3.22a)

β0

∆t

∫

Ω
un+1v dV+A

(
pn+1,un+1,v

)

=
∫

Ω

(
β1

∆t
un+

β2

∆t
un−1+

β3

∆t
un−2

)
v dV−

(
γ1 n(un,wn,v)+γ2 n

(
un−1,wn−1,v

)

+γ3 n
(
un−2,wn−2,v

)) ∀v∈V
0
k,i, i=1,···3, (3.22b)

where A is the bilinearform (3.20), V
0
k,i is the DG space defined in (3.13) and C is the

discretized velocity divergence, given by (3.15). For a BDF scheme of first order the co-
efficients are given by β0 =1, β1 = β2 = β3 =0 and γ1 =1, γ2 =γ3 =0, whereas for a BDF
scheme of third order the coefficients are given by β0 =

11
6 , β1 = 3, β2 =− 3

2 , β3 =
1
3 and

γ1 = 3, γ2 =−3, γ3 = 1 for the third-order extrapolation (EX3). The key advantage of
this method is that the left-hand-side of (3.22b) is constant in time. Thus, we can use a
direct solver and save the factorization which means that a computationally expensive
factorization must be done only once.

4 Convergence studies on a cylindrical shell and results

We first discretize the helically invariant Navier-Stokes equations on a cylindrical shell,
which obviously avoids singularities at r= 0. A cylindrical shell means that we restrict
the radial coordinate r to be non-zero and hence the computational parameter domain
is given by Ω= [r×ξ] = [0.1···1×0···2π]. In this case, we restrict the metric function to
f (r)=1 such that a natural DG discretization may be implemented. The discretization on
a full cylindrical domain including the centerline axis will be presented in Section 5.
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4.1 Test setup

As a test case for the numerical implementation of the helically invariant system of
Navier-Stokes equations we consider the following time-dependent manufactured so-
lution, which is given by

ur =
(

1−e−r2
)

sin(ξ) cos(t), (4.1a)

uξ =

(
2rBe−r2

cosξ+
B

r

(
1−e−r2

)
cos(ξ)

)
cos(t) , (4.1b)

uη =
(

1−e−r2
)

cos(ξ) cos(t) , (4.1c)

p=
(

1−e−r2
)

sin(ξ) cos(t) . (4.1d)

The present solution is periodic in ξ-direction and thus fulfills the periodicity condition

uj(r,ξ)=uj(r,ξ+2π) (4.2)

and

p(r,ξ)= p(r,ξ+2π). (4.3)

Note that the manufactured solution (4.1) is divergence-free, i.e. the continuity equation
is fulfilled. For this ansatz residual terms arise, which are implemented as source terms
in the helically invariant Navier-Stokes system. For testing the steady Navier-Stokes sys-
tem, we reduce the manufactured solution (4.1) by assuming cos(t) = 1, which leads to
the following expressions for the velocity and pressure

ur =
(

1−e−r2
)

sin(ξ) , (4.4a)

uξ =2rBe−r2
cosξ+

B

r

(
1−e−r2

)
cos(ξ) , (4.4b)

uη =
(

1−e−r2
)

cos(ξ) , (4.4c)

p=
(

1−e−r2
)

sin(ξ) . (4.4d)

4.2 Grid refinement study

In this section we first consider the spatial convergence of the steady helically invariant
Navier-Stokes equations, using the manufactured solution (4.4) at t = 0. Furthermore,
we perform a temporal convergence study for the transient case, for which we use the
time-dependent manufactured solution (4.1).
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4.2.1 Spatial convergence study

For the spatial convergence study we consider a uniform Cartesian grid with 4×4 cells
for the coarsest and 64×64 cells for the finest one. Since the computational domain is
rectangular, each cell also has a rectangular shape and we choose the shortest edge as the
cell size, i.e. h=min(dr,dξ). The convergence study has been driven for each component
of the helical velocity vector u as well as for the pressure p. We investigate different poly-
nomial orders, varying form k=1 to k=3 for the velocity and k′=0,··· ,2 for the pressure.
For each DG degree and each velocity component we obtain the convergence rate of k+1,
which we expect from theory. For the pressure p we observe super-convergence due to a
highly regular mesh on the whole fluid domain and the fact that we use the exact solution
(4.4) of the problem on all boundaries (cf. Fig. 2).

In addition to that, we present an equal order formulation of the spatial discretization
of the system (2.9). In order to control pressure jumps across interfaces, we add a sta-
bility term to the continuity equation (3.14a), as proposed in [13]. Hence, the continuity
equation reads

c(u,τ)+λ(p,τ)=0 ∀τ∈V
0
k , (4.5)

Figure 2: L2 norm errors, measured with respect to the manufactured solution (4.4) for the velocity u and
pressure p v.s. the grid size h. For comparison the solid lines are plotted to show the slopes m=(3,4,5) for the
velocity and m=(2,3,4) for the pressure, respectively. Computations for 4×4,··· ,64×64 cells and DG degrees

k=1,··· ,3 and k′=0,··· ,2 on a domain Ω=[r×ξ]= [0.1,··· ,1×0,··· ,2π]. Mixed order formulation.
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Figure 3: L2 norm errors, measured with respect to the manufactured solution (4.4) for the velocity u and
pressure p v.s. the grid size h. Computations for 4×4,··· ,64×64 cells and DG degrees k= k′= 2,··· ,4 on a

domain Ω=[r×ξ]= [0.1,··· ,1×0,··· ,2π]. Equal order formulation with pressure stabilization in the continuity
equation (4.5).

where the stabilization term is given by

λ(p,τ) :=
∮

Γ
hΓ [[p]][[τ]] f (r) dS. (4.6)

Herein, hF is a local length scale for which we choose the longest edge of each cell, i.e.
max(∆r,∆ξ). As before, f (r) is the metric function, which is set to f (r)= 1 for compu-
tations on the cylindrical shell. Fig. 3 shows the results for a h-convergence study, anal-
ogously to the studies for the mixed-order DG formulation in Fig. 2. Comparing both
convergence studies, the results for the velocity components are rather similar. Concern-
ing the pressure the mixed-order formulation shows better results for low DG degrees,
whereas for DG degree k=3 also the equal order formulation reaches approximately the
expected convergence rate. Due to these results, we subsequently will keep the focus on
the mixed-order formulation.

4.2.2 Temporal convergence study

For the temporal discretization we consider a BDF scheme of third order with time step
sizes from ∆t = 3.125×10−2 to ∆t = 0.25. The polynomial order is chosen to k = 4 for
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Figure 4: Temporal convergence studies, using the test case (4.1). The L2 norm errors are plotted for the
velocity u and pressure p v.s. the time step size ∆t. Computations for 32×32 cells and DG degrees k=4 and

k′=3 on a domain Ω=[r×ξ]= [0.1,··· ,1×0,··· ,2π]. Mixed order formulation.

the velocity and k′ = 3 for the pressure and all computations are conducted on a grid
of 32×32 cells, such that the temporal error dominates the error of the spatial operator.
For all physical quantities, i.e. all velocity components and the pressure the expected
convergence rate of three is approximately obtained (cf. Fig. 4).

The L2 norm errors for the velocity eu and the pressure ep are calculated as follows

eu =‖uns−uh (ns∆t)‖2
L2(Ω) , ep=‖pns−ph (ns∆t)‖2

L2(Ω) , (4.7)

where uns , pns is the exact solution at t=ns∆t.

5 Convergence studies on the full cylindrical domain and

results

In this section we consider the DG discretization of the helically invariant Navier-Stokes
equations (2.9) on the full cylindrical domain, including the centerline axis at r = 0. In
this part of the fluid domain two additional conditions have to be considered. The first
condition is obtained from the periodicity in ξ-direction of the helical flow. Consider-
ing the invariant coordinate (2.2), for both helical coordinates ξ and η periodicity condi-
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tions ξp =2πb, ξl =
2πr2a2

b and ηp =−2πr2a can be derived which is shown in Appendix
B. The geometrical length of the helix p depends on the radial coordinate and is given by
p=2πbB which becomes zero at the centerline, since (2.8) holds. A zero length of the helix
would mean that there are infinitely many helical turns at the centerline axis. Hence, we
conclude that all velocity components and the pressure must be ξ-independent, i.e. ∂

∂ξ =0
at r = 0. The second condition that we need is one for the uniqueness of all dependent
variables at r=0. For that, we follow [29] who considered the following conditions at the
centerline in cylindrical coordinates, given by

lim
r→0

∂u

∂ϕ
=0, lim

r→0

∂p′

∂ϕ
=0. (5.1)

For r>0, one may consider a ring around the z-axis where different velocities in circum-
ferential direction arise at each point. For r→0 this circle reduces to a point at the z-axis,
where a unique velocity must be given. This leads to the condition that the velocity must
not change in circumferential direction for r→0, which implies (5.1). A transformation of
the conditions (5.1) into the helical frame leads to the following conditions for the helical
variables

bur
ξ =uξ , bu

ξ
ξ =−ur, u

η
ξ =0, pξ =0. (5.2)

The derivation of the conditions (5.2) is presented in Appendix C. Combining the pe-
riodicity and uniqueness conditions finally leads to the following centerline conditions,
given by

(a) ur =0, (b) uξ =0, (c) u
η
ξ =0, (d) pξ =0, (5.3)

which means that the radial and helical velocity components vanish whereas the velocity
component in invariant direction and the pressure are constant with respect to spatial
coordinates. In the following section we present a method to reduce the DOFs of the DG
discretization at r=0, which is equivalent to a change of the DG basis and arises from the
conditions (5.3).

5.1 Implementation of the reduced DG space V
0
K

In each timestep the evaluation of the spatial operator and the matrix assembly rely on
the DG space Vk. Since the reduced DG space V

0
k is a linear subspace of the DG space

Vk, i.e. V
0
k ≤R Vk, a basis Ψ

B of V
0
k can readily be written as Ψ

B =Φ
B ·A, where Φ

B is a

basis of Vk and A∈R
dim(Vk)×dim(V

0
k) is a non-quadratic matrix. The reduction of the DG

space can be done component-wise for each component of the velocity vector u as well as
for the pressure p. In the following we distinguish two different cases of DG space reduc-
tions. In the first case we discuss the DG space reduction using the conditions (5.3a,b),
which are cell-local conditions. The second case is a global DG space reduction where
the conditions, given by (5.3c,d) are used. Hence the first case is more restrictive and is
implemented locally on each cell at the centerline, whereas the second case represents a
global relation connecting the neighboring cells in ξ-direction at r=0.
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5.2 Case 1: Cell-local reduction of the DG space Vk

In this first case the two centerline conditions ur = 0 and uξ = 0 are implemented. Let(
ΦB

j,1,··· ,Φj,Nk

)
be a basis of a DG space of degree k in cell Kj which is located at the

centerline r=0, i.e. Kj∩
(
{0}×R

)
6=0. For both velocity components ui, with i={r,ξ}, we

consider the ansatz ui(r,ξ)=∑
Nk
n=1ΦB

j,n (r,ξ) ũi
j,n

!
=0 for r=0 and the nodes at the centerline

in Kj which are ξ= ξ1,ξ2,··· ,ξNk+1, where ξ1 < ξ2< ···< ξNk+1 and (0,ξk)∈Kj. The ansatz
leads to a system of equations, given by




ΦB
j,1(0,ξ1) ··· ΦB

j,Nk
(0,ξ1)

...
...

ΦB
j,1(0,ξNk+1) ··· ΦB

j,Nk
(0,ξNk+1)




︸ ︷︷ ︸
B




ũi
j,1
...

ũi
j,Nk


=0, (5.4)

for the velocity components ur and uξ . Eq. (5.4) is a linear system of the form B ũ= 0,
where B denotes the matrix of the basis functions, evaluated at the centerline r = 0. In

a next step we need to find a matrix A ∈ R
dim(Vk)×dim(V

0
k) such that the columns of A

represent a solution of (5.4), i.e. B·A=0. Using that, it follows that

(
Ψj,1,··· ,Ψj,l

)
=
(
Φj,1,··· ,Φj,Nk

)
A (5.5)

is a basis which fulfills the centerline conditions (5.3a,b). The matrix A can be obtained
e.g. from the row echelon form of B, which is a generalized Gaussian elimination.

5.3 Case 2: Global reduction of the DG space Vk

In the second case the centerline conditions, given by (5.3c,d) are implemented. The
implementation is divided into two steps. In the first step we proceed in analogy to the
first case. The DG space is locally reduced in each cell at the centerline but this time using
the ξ-derivative of the basis functions ∂ξΦB

j,k. Hence, in this case the system of equations

B ũ=0 is given by




∂ξΦB
j,1(0,ξ1) ··· ∂ξΦB

j,Nk
(0,ξ1)

...
...

∂ξΦB
j,1(0,ξNk+1) ··· ∂ξΦB

j,Nk
(0,ξNk+1)







ũi
j,1
...

ũi
j,Nk


=0. (5.6)

From that, a matrix A∗ can be obtained in analogy to the proceeding in Section 5.2. In the
second step we connect the neighboring cells at r=0. For that, we consider two cells Kj

and Kl and demand that

uη (0,ξ1)=uη (0,ξ2) , (5.7)
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for nodes (0,ξ1)∈Kj and (0,ξ2)∈Kl. The same condition is used for the pressure p. Using
the polynomial DG ansatz, (5.7) can be written as


ΦB

j,1(0,ξ1),··· ,ΦB
j,Nk

(0,ξ1) ,−ΦB
l,1(0,ξ2) ,··· ,−ΦB

l,Nk
(0,ξ2)︸ ︷︷ ︸

[B∗
1 , −B∗

2 ]


·




ũ
η
j,1
...

ũ
η
j,Nk

ũ
η
l,1
...

ũ
η
l,Nk




=0. (5.8)

Just as before, a matrix R needs to be determined such that the following transformation
holds

[
I 0

R21 R22

]

︸ ︷︷ ︸
R




ũ
η
j,1
...

ũ
η
j,Nk

ũ
η
l,1
...

ũ
η
l,Nk




=




ũ
∗η
j,1
...

ũ
∗η
j,Nk

ũ
∗η
l,1
...

ũ
∗η
l,Nk




, (5.9)

where ũ
∗η
j,1,··· ,ũ∗η

l,Nk
are the DG coordinates in the reduced DG space. The transformation

is constructed as such that the coordinates in cell Kj are maintained. Similar to Section 5.2
we find the solution space of [B∗

1, −B∗
2 ] through a solution of

[B∗
1, −B∗

2 ]

[
I 0

R21 R22

]
=0. (5.10)

It follows that the block R22 is determined by the solution space of B∗
2 and R21 can be

obtained by the solution of

B∗
2 ·R21=B∗

1 , (5.11)

using the least squares method for underdetermined systems. The final transformation
matrix Q that combines both steps (i) the cell-local reduction by evaluation of the ξ-
derivatives of the basis functions and (ii) the reduction connecting neighbor cells is given
by

Q=A∗ ·R. (5.12)

5.4 Grid refinement study

As before for the cylindrical shell domain, we present a spatial and temporal convergence
study for our test case (4.4). Since in the full cylindrical domain the helically invariant
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Navier-Stokes equations (2.9) are solved using a Petrov-Galerkin method, we introduce
the following norm, given by

‖ui−ui
exact‖B :=‖B(r)

(
ui−ui

exact

)
‖2, (5.13)

where the numerical errors are scaled by the metric function B(r) defined in (2.8) and the
ui denote the components of the velocity vector, i.e. ur, uξ and uη.

Since the pressure is only unique up to a constant c, we need to find c such that
∫

Ω
(perr−c)2 B(r)2 dΩ → min, (5.14)

where perr = p−pexact. A quick calculation shows that

c=

∫
Ω

perrB(r)2 dΩ∫
Ω

B(r)2 dΩ
. (5.15)

5.4.1 Spatial convergence study

In Fig. 5 convergence plots for the mixed order formulation are presented. In particular
for DG degrees k= 3 and k= 4, the convergence rates are very close to what we expect

Figure 5: Numerical errors, measured in the B-norm defined by (5.13) with respect to the manufactured solution
(4.4). The errors for the velocity u and pressure p are plotted v.s. the grid size h. Computations for 4×
4,··· ,64×64 cells and DG degrees k=2···4 and k′=1,··· ,3 on the full domain Ω=[r×ξ]= [0,··· ,1×0,··· ,2π].
Mixed order formulation.
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Figure 6: Numerical errors, measured in the B-norm defined by (5.13) with respect to the manufactured solution
(4.4). The errors for the velocity u and pressure p are plotted v.s. the grid size h. Computations for 4×
4,··· ,64×64 cells and DG degrees k= k′ = 2,··· ,4 on the full domain Ω= [r×ξ] = [0,··· ,1×0,··· ,2π]. Equal
order formulation.

from the theory. Fig. 6 shows convergence plots for the equal order formulation. Here,
also for DG degrees k=3 and k=4 reach approximately the expected convergence rate.

5.4.2 Temporal convergence study

As before in Section 4.2.2, we consider the temporal convergence rates of the transient
numerical discretization using the semi-explicit BDF3 scheme introduced in Section 3.3.
For time step sizes from ∆t=3×10−2 to ∆t=0.25, the polynomial order k=4 and k′=3 for
the velocity and pressure and a spatial grid consisting of 32×32 cells, we obtain the ex-
pected convergence rate for a third-order time integration scheme on the full cylindrical
domain, which is shown in Fig. 7.

6 Conclusions and outlook

In this article, a numerical code to solve the helically invariant Navier-Stokes equations
has been developed. The numerical discretization is based on the high-order discontin-
uous Galerkin method on a structured quadrilateral mesh. The computational domain
is a reduced parameter set consisting of the radial coordinate r and the helical coordi-
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Figure 7: Temporal convergence studies, using the test setup (4.1). The numerical errors are measured in the
B-norm, defined by (5.13). The velocity u and pressure p is plotted v.s. the time step size ∆t. Computations

for 32×32 cells and DG degrees k= 4 and k′= 3 on a full cylindrical domain Ω= [r×ξ] = [0,··· ,1×0,··· ,2π].
Mixed order formulation.

nate ξ which describes a helical line. Considering a grid refinement study, we show that
the present spatial discretization using a high order polynomial approximation up to or-
der k = 4 reaches an accuracy of O

(
hk+1

)
, which is expected from DG theory. For the

time integration, a semi-explicit time-stepper has been implemented where a third order
BDF scheme for the transient term and a third-order extrapolation (EX3) for the nonlin-
ear term has been used. Temporal convergence studies show the expected convergence
rates. The numerical tests have been conducted on a cylindrical shell as well as on the
full cylindrical domain where the centerline axis at r=0 is included. On the full domain
additional conditions for uniqueness are implemented resulting in a reduction of degrees
of freedom at r=0 and hence a change of the DG basis at the origin.

The central application of the newly developed code is vortex dynamics and turbu-
lence research where numerical simulations of dimensional reduced flows are of highest
interest. It is well-known that in two-dimensional turbulence physical mechanisms are
significantly different to those in three dimensions. For example, in three dimensional
turbulence energy is transferred from the large to the small eddies and a stretching of
the vortices appears, whereas in two dimensions the vortex stretching vanishes and the
energy is transferred in opposite direction. As introduced at the beginning of this arti-
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cle, helically reduced flows are placed between two and three dimensions and to date
it is not known in which direction energy is transferred. Using the present numerical
discretization, simulations with high Reynolds numbers will lead to energy spectra that
give answers to the question of energy transport of helically symmetric flows and to
many other questions concerning the behavior of two and three dimensional turbulence.

Acknowledgments

The authors are grateful to the Germany Research Foundation (DFG) under grant no. OB
96/41-1 for financial support and to M. Oberlack for his helpful comments and various
inspiring discussions.

A Derivation of a new orthogonal helically invariant coordinate

Due to the singular behaviour of the helical coordinate η̃ at the origin r = 0, originally
introduced by KCO, a new third coordinate is derived in the following. This coordinate
is needed to formulate well-defined periodicity conditions at the centerline axis r = 0,
that are necessary for the implementation of periodic boundary conditions in the DG
discretization of the helically invariant Navier-Stokes equations.

We use the two helical coordinates introduced in [28]

r̃= r, ξ= az+bϕ (A.1)

and attend to find a third coordinate η in the invariant direction. From (A.1) one may
determine the Jacobian matrix

J=




∂r̃
∂r

∂r̃
∂ϕ

∂r̃
∂z

∂ξ
∂r

∂ξ
∂ϕ

∂ξ
∂z

∂η
∂r

∂η
∂ϕ

∂η
∂z


=




1 0 0
0 a b
∂η
∂r

∂η
∂ϕ

∂η
∂z


. (A.2)

The inverse relation reads

J−1=




∂r
∂r̃

∂r
∂ξ

∂r
∂η

∂ϕ
∂r̃

∂ϕ
∂ξ

∂ϕ
∂η

∂z
∂r̃

∂z
∂ξ

∂z
∂η


, (A.3)

which can be obtained by inverting (A.2). We have

J−1=
1

b
∂η
∂z −a

∂η
∂ϕ




1 0 0

a
∂η
∂r

∂η
∂z −a

−b
∂η
∂r

∂η
∂ϕ b


. (A.4)
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Comparing (A.3) and (A.4) leads to

∂ϕ

∂ξ
=

∂η
∂z

b
∂η
∂z −a

∂η
∂ϕ

,
∂ϕ

∂η
=

−a

b
∂η
∂z −a

∂η
∂ϕ

, (A.5a)

∂z

∂ξ
=

− ∂η
∂ϕ

b
∂η
∂z −a

∂η
∂ϕ

,
∂z

∂η
=

b

b
∂η
∂z −a

∂η
∂ϕ

. (A.5b)

The derivatives are given by

∂η =
∂r

∂η
∂r+

∂ϕ

∂η
∂ϕ+

∂z

∂η
∂z, (A.6a)

∂ξ =
∂r

∂ξ
∂r+

∂ϕ

∂ξ
∂ϕ+

∂z

∂ξ
∂z. (A.6b)

For the helical and cylindrical coordinates we know that

∂r

∂η
=0,

∂r

∂ξ
=0, ∂ϕ = reϕ, ∂z = ez. (A.7)

For orthogonality of the coordinate lines ξ= const. and η= const. the condition ∂ξ ·∂η =0
must be fulfilled. That leads to a determining PDE for the coordinate η, given by

∂ξ ·∂η =
∂ϕ

∂ξ

∂ϕ

∂η
r2+

∂z

∂ξ

∂z

∂η

=
−ar2 ∂η

∂z(
b

∂η
∂z −a

∂η
∂ϕ

)2
+

−b
∂η
∂ϕ(

b
∂η
∂z −a

∂η
∂ϕ

)2
=0. (A.8)

The solution of the PDE can be derived using the method of characteristics

dz

ar2
=

dϕ

b
, dη=0, (A.9)

which leads to

η=F(r,ϕ,z), (A.10a)

C1=−bz+ar2 ϕ. (A.10b)

Finally, the coordinate η reads

η=F(C1)=−bz+ar2 ϕ. (A.11)

We further show that, even though the coordinate lines of constant ξ and η are orthogo-
nal, the three unit vectors er,eξ and eη are not orthogonal.
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The gradient operator in cylindrical coordinates is given by

∇S=
∂S

∂r
er+

1

r

∂S

∂ϕ
eϕ+

∂S

∂z
ez , (A.12)

where S is a scalar quantity. Using that, we obtain

er =
∇r

‖∇r‖ , eξ =
∇ξ

‖∇ξ‖ (A.13)

for the unit vectors er and eξ . The gradient of the coordinate η is given by

∇η=
∂η

∂r
er+

1

r

∂η

∂ϕ
eϕ+

∂η

∂z
ez

=2arϕer+areϕ−bez. (A.14)

The absolute value reads

‖∇η‖= r

√
4a2 ϕ2+

1

B2
, (A.15)

from which the unit vector of the invariant coordinate is determined:

eη =
∇η

‖∇η‖ =
1

r
√

4a2 ϕ2+ 1
B2




2arϕ
ar
−b


. (A.16)

For orthogonality of the unit vectors, the condition that er×eη
!
= eξ must hold. However,

the cross product of both unit vectors is given by

er×eη =




1
0
0


× 1

r
√

4a2 ϕ2+ 1
B2




2arϕ
ar
−b




=
1

r
√

4a2 ϕ2+ 1
B2




0
b
ar


 6= eξ , (A.17)

which is only in the case of ϕ=0 equal to the unit vector eξ .

B Derivation of periodicity conditions for helical coordinates

The transformation from helical to cylindrical coordinates is given by

(
rϕ
z

)
=
[
v w

](ξ
η

)
=

[
v1 w1

v2 w2

](
ξ
η

)
(B.1)
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Figure 8: An illustration of the geometric correlations for one helical turn. The coordinate lines of constant ξ
are presented in the rϕ−z-plane. β is the pitch of the helix and h the distance of two points on two helical
turns.

and the inverse relation
(

ξ
η

)
=

[
b
r a

ar −b

]

︸ ︷︷ ︸
M

(
rϕ
z

)
, (B.2)

where

M−1=
1

− b2

r −a2r

[−b −a

−ar b
r

]
.

That leads to
(

rϕ
z

)
=

[
b
r B2 a

r B2

aB2 − b
r2 B2

](
ξ
η

)
. (B.3)

We now compute the point ξ1 after one helical turn ϕ=2π

v1 ·ξ1 =2πr, (B.4)

which is given by

ξ1 =
2πr2

bB2
. (B.5)

Using that, the pitch of the helix reads

β=v2 ·ξ1 = aB2 · 2πr2

bB2
=2

a

b
πr2 . (B.6)

From Fig. 8, one may observe that

h2+p2=4π2r2 (B.7)
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and further, using h2 = l ·p, defining x := l+p and employing both into (B.7) leads to

p=
4π2r2

x
=2πbB, (B.8)

where we employed the trigonometric relation x2 = β2+4π2r2 and (B.6). From (B.8) it
follows that for the case when r→0 the length p vanishes, which means that there will be
no ξ-dependence at the centerline. Similarly, knowing that p= x−l we obtain

l=
β2

√
β2+4π2r2

. (B.9)

Finally, we compute the periodic conditions ξp, ξl , ηp considering the following relations
of distances for one helical pitch

p : (l+p)= ξp : ξ1, (B.10a)

l : (l+p)= ξl : ξ1, (B.10b)

ξl ·v+ηp ·w=

(
0

ξ1v2

)
, (B.10c)

which are given by

ξp=
8π3r4

(β2+4π2r2)bB2
=2πb, (B.11a)

ξl =
2πβ2r2

(β2+4π2r2)bB2
=

2πr2a2

b
, (B.11b)

ηp=− 8π3r4

(β2+4π2r2)bB2

ar2

b
=−2πr2a. (B.11c)

C A condition for uniqueness at the centerline

Expanding (5.1), we obtain

lim
r→0

∂u

∂ϕ
= lim

r→0

(
∂ur

∂ϕ
er+ur ∂er

∂ϕ
+

∂uϕ

∂ϕ
eϕ+uϕ ∂eϕ

∂ϕ
+

∂uz

∂ϕ
ez+uz ∂ez

∂ϕ

)
. (C.1)

The derivatives w.r.t. circumferential direction of the three cylindrical unit vectors are
given by

∂ez

∂ϕ
=0,

∂er

∂ϕ
= eϕ,

∂eϕ

∂ϕ
=−er. (C.2)

Hence, we obtain

lim
r→0

∂u

∂ϕ
= lim

r→0

((
∂ur

∂ϕ
−uϕ

)
er+

(
∂uϕ

∂ϕ
+ur

)
eϕ+

(
∂uz

∂ϕ

)
ez

)
. (C.3)
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The components must vanish for r→0. This leads to

lim
r→0

(
∂ur

∂ϕ
−uϕ

)
=0, lim

r→0

(
∂uϕ

∂ϕ
+ur

)
=0, lim

r→0

(
∂uz

∂ϕ

)
=0. (C.4)

Next, we express the derived conditions (C.4) in helical coordinates derived in [28]. Em-
ploying the velocity components (2.7) and the derivative

∂

∂ϕ
=b

∂

∂η
+b

∂

∂ξ
. (C.5a)

Imposing helical invariance, i.e.
(

∂
∂η ≡0

)
, leads to

lim
r→0

(
bur

ξ−B

(
b

r
uξ+auη

))
=0, (C.6a)

lim
r→0

(
B

b2

r
u

ξ
ξ−Bbau

η
ξ +ur

)
=0, (C.6b)

lim
r→0

(
Bbau

ξ
ξ−

b2

r
Bu

η
ξ

)
=0. (C.6c)

B(r) is the geometric function, for which limr→0 B(r)=0 hold. If we now assume

lim
r→0

ur
<±∞, lim

r→0

∂uξ

∂ξ
<±∞, lim

r→0

∂uη

∂ξ
<±∞, (C.7)

i.e. ur is limited and uη and uξ are smooth with respect to ξ for r→0, we obtain

lim
r→0

(
bur

ξ−
b√

a2r2+b2
uξ

)
=0, (C.8a)

lim
r→0

(
b2

√
a2r2+b2

u
ξ
ξ−ur

)
=0, (C.8b)

lim
r→0

(
b2

√
a2r2+b2

u
η
ξ

)
=0. (C.8c)

Finally, the centerline conditions are given by

bur
ξ =uξ , bu

ξ
ξ =−ur, u

η
ξ =0 (C.9)

for r=0. For the pressure, the condition is given by

lim
r→0

∂p

∂ϕ
=

∂p

∂ξ
=0. (C.10)
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