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Abstract: Let E be a real uniformly convex and smooth Banach space, and K

be a nonempty closed convex subset of E with P as a sunny nonexpansive retrac-

tion. Let T1, T2 : K → E be two weakly inward nonself asymptotically nonexpan-

sive mappings with respect to P with a sequence {k(i)
n } ⊂ [1,∞) (i = 1, 2), and

F := F (T1)
∩

F (T2) ̸= ∅. An iterative sequence for approximation common fixed

points of the two nonself asymptotically nonexpansive mappings is discussed. If E

has also a Fréchet differentiable norm or its dual E∗ has Kadec-Klee property, then

weak convergence theorems are obtained.
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1 Introduction and Preliminaries

Throughout this work, we assume that E is a real Banach space, E∗ is the dual space of E

and J : E → 2E
∗
is the normalized duality mapping defined by

J(x) = {f ∈ E∗ : ⟨x, f⟩ = ∥x∥∥f∥, ∥f∥ = ∥x∥}, x ∈ E,

where ⟨ · , · ⟩ denotes the duality pairing between E and E∗. A single-valued normalized

duality mapping is denoted by j. It is well known that if E is a smooth Banach space, then

J is single-valued.

A Banach space E is said to have a Fréchet differentiable norm (see [1]), if for all x ∈

U = {x ∈ E : ∥x∥ = 1}, the limit lim
t→0

∥x+ ty∥ − ∥x∥
t

exists and is attained uniformly in
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y ∈ U . In this case there exists an increasing function b : [0,∞) → [0,∞) with lim
t→0+

b(t)

t
= 0

such that
1

2
∥x∥2 + ⟨h, j(x)⟩ ≤ 1

2
∥x+ h∥2 ≤ 1

2
∥x∥2 + ⟨h, j(x)⟩+ b(∥h∥), x, h ∈ E. (1.1)

A subsetK of E is said to be retract of E if there exists a continuous mapping P : E → K

such that Px = x for all x ∈ K. Every closed convex subset of a uniformly convex Banach

space is retract. A mapping P : E → E is said to be a retraction if P 2 = P . It follows that if

a mapping P is a retraction, then Py = y for all y in the range of P . Let C and K be subsets

of a Banach space E. A mapping P from C into K is called sunny if P (Px+t(x−Px)) = Px

for x ∈ C with Px+ t(x− Px) ∈ C and t ≥ 0.

For any x ∈ K, the inward set IK(x) is defined as follows:

IK(x) = {y ∈ E : y = x+ λ(z − x), z ∈ K, λ ≥ 0}.
A mapping T : K → E is said to satisfy the inward condition if Tx ∈ IK(x) for all x ∈ K.

T is said to be weakly inward if Tx ∈ clIK(x) for each x ∈ K, where clIK(x) is the closure

of IK(x).

A Banach space E is said to have the Kadec-Klee property (see [2]) if for every sequence

{xn} in E, with xn → x weakly and ∥xn∥ → ∥x∥, it follows that xn → x strongly.

We denote by F (T ) the set of fixed points of T , i.e., F (T ) = {x ∈ K : Tx = x}, and by

F := F (T1)
∩
F (T2) the set of common fixed points of two mappings T1 and T2.

Definition 1.1 [3] Let E be a real normed linear space, and K be a nonempty subset of E.

Let P : E → K be the nonexpansive retraction of E onto K. A nonself mapping T : K → E

is said to be asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞) with

lim
n→∞

kn = 1 such that for any x, y ∈ K, ∥T (PT )n−1x − T (PT )n−1y∥ ≤ kn∥x − y∥, n ≥ 1.

T is said to be uniformly L-Lipschitzian if there exists a constant L > 0 such that for all

x, y ∈ K, ∥T (PT )n−1x− T (PT )n−1y∥ ≤ L∥x− y∥, n ≥ 1.

Let K be a nonempty closed convex subset of a real uniformly convex Banach space

E. Nonself asymptotically nonexpansive mappings have been studied by many authors (see

[3–8]). Chidume et al.[3] studied the following iteration scheme:{
x1 ∈ K,

xn+1 = P ((1− αn)xn + αnT (PT )n−1xn), n ≥ 1,
(1.2)

where {αn} is a sequence in (0, 1), and proved some strong and weak convergence theorems

of the iteration scheme (1.2).

Wang[4] studied the following iteration scheme:
x1 ∈ K,

xn+1 = P ((1− αn)xn + αnT (PT )n−1yn),

yn = P ((1− βn)xn + βnT (PT )n−1xn), n ≥ 1,

(1.3)

where {αn} and {βn} are two sequences in [0, 1), T1, T2 : K → E are two asymptotically

nonexpansive nonself mappings, and proved strong and weak convergence theorems of the

iteration scheme (1.3). Guo and Guo[5] completed the weak convergence theorems of the

iteration scheme (1.3).
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Remark 1.1 If T : K → E is an asymptotically nonexpansive mapping and P : E → K

is a nonexpansive retraction, then PT : K → K is asymptotically nonexpansive. Indeed, for

all x, y ∈ K and n ≥ 1, it follows that

∥(PT )nx− (PT )ny∥ = ∥PT (PT )n−1x− PT (PT )n−1y∥

≤ ∥T (PT )n−1x− T (PT )n−1y∥

≤ kn∥x− y∥.

Therefore, Zhou et al.[7] introduced the following generalized definition:

Definition 1.2 [7] Let E be a real normed linear space, and K be a nonempty subset of

E. Let P : E → K be the nonexpansive retraction of E onto K. A nonself mapping

T : K → E is said to be asymptotically nonexpansive with respect to P if there exists a

sequence {kn} ⊂ [1,∞) with lim
n→∞

kn = 1 such that for any x, y ∈ K,

∥(PT )nx− (PT )ny∥ ≤ kn∥x− y∥, n ≥ 1. (1.4)

T is said to be uniformly L-Lipschitzian with respect to P if there exists a constant L > 0

such that for all x, y ∈ K,

∥(PT )nx− (PT )ny∥ ≤ L∥x− y∥, n ≥ 1.

Furthermore, by studying the following iterative scheme:{
x1 ∈ K,

xn+1 = αnxn + βn(PT )nxn + γn(PT )nxn, n ≥ 1,
(1.5)

where {αn} and {βn} and {γn} are three sequences in [a, 1−a] for some a ∈ (0, 1), satisfying

αn + βn + γn = 1, Zhou et al.[7] obtained some strong and weak convergence theorems for

common fixed points of nonself asymptotically nonexpansive mappings with respect to P in

uniformly convex Banach spaces. As a consequence, the main results of Chidume et al.[3]

can be deduced.

Recently, Turkmen et al.[8] generalized the iteration process (1.5) as follows:
x1 ∈ K,

xn+1 = (1− αn)(PT1)
nyn + αn(PT2)

nyn,

yn = (1− βn)xn + βn(PT1)
nxn, n ≥ 1,

(1.6)

where {αn}, {βn} are two sequences in [0, 1), T1, T2 : K → E are two asymptotically

nonexpansive nonself mappings, and P is as in Definition 1.2, and obtained the following

weak convergence theorem:

Theorem 1.1 [8] Let K be a nonempty closed convex subset of a real uniformly convex

and smooth Banach space E satisfying Opial’s condition with P as a sunny nonexpansive

retraction. Let T1, T2 : K → E be two weakly inward and nonself asymptotically nonexpan-

sive mappings with respect to P with a sequence {kn} ⊂ [1,∞) satisfying
∞∑

n=1
(kn − 1) < ∞.

Suppose that {xn} is defined by (1.6), where {αn} and {βn} are two sequences in [a, 1 − a]

for some a ∈ (0, 1). If F ̸= ∅, then {xn} converges weakly to a common fixed point of T1

and T2.
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Only Theorem 1.1 has been obtained from the weak convergence problem for the sequence

defined by (1.6). The purpose of this paper is to prove some new weak convergence theo-

rems of the iteration scheme (1.6) for two asymptotically nonexpansive nonself-mappings in

uniformly convex and smooth Banach spaces.

2 Some Lemmas

Let T1, T2 : K → E be two nonself asymptotically nonexpansive mappings with respect to

P with sequences {k(i)n } ⊂ [1,∞) satisfying
∞∑

n=1
(k

(i)
n − 1) < ∞, i = 1, 2, respectively. Put

kn = max{k(1)n , k
(2)
n }. Then obviously

∞∑
n=1

(kn−1) < ∞. From now on, we take this sequence

{kn} for both T1 and T2.

In order to prove the main results, we need the following lemmas:

Lemma 2.1 [8] Let E be a real normed linear space, K be a nonempty closed convex subset

of E, and T1, T2 : K → E be two asymptotically nonexpansive mappings with respect to P

with a sequence {kn} ⊂ [1,∞) satisfying
∞∑

n=1
(kn − 1) < ∞. Suppose that {xn} is defined by

(1.6) and F ̸= ∅. Then lim
n→∞

∥xn − p∥ exists for all p ∈ F .

Lemma 2.2 [8] Let K be a nonempty closed convex subset of a real uniformly convex Ba-

nach space E, and T1, T2 : K → E be two asymptotically nonexpansive mappings with respect

to P with a sequence {kn} ⊂ [1,∞) satisfying
∞∑

n=1
(kn−1) < ∞. Suppose that {xn} is defined

by (1.6), where {αn} and {βn} are sequences in [a, 1− a] for some a ∈ (0, 1). If F ̸= ∅, then
lim

n→∞
∥xn − (PT1)xn∥ = lim

n→∞
∥xn − (PT2)xn∥ = 0.

Lemma 2.3 [9] Let X be a uniformly convex Banach space and C be a convex subset of X.

Then there exists a strictly increasing continuous convex function γ : [0,∞) → [0,∞) with

γ(0) = 0 such that for each S : C → C with Lipschitz constant L,

∥αSx+(1−α)Sy−S[αx+(1−α)y]∥ ≤ Lγ−1
(
∥x−y∥− 1

L
∥Sx−Sy∥

)
, x, y ∈ C, 0 < α < 1.

Lemma 2.4 [9] Let X be a uniformly convex Banach space such that its dual X∗ has the

Kadec-Klee property. If {xn} is a bounded sequence and f1, f2 ∈ Ww({xn}), where Ww({xn})
denotes the set of all weak subsequential limits of a bounded sequence {xn} in X such that

lim
n→∞

∥αxn + (1− α)f1 − f2∥ exists for all α ∈ [0, 1], then f1 = f2.

Lemma 2.5 [10] Let E be a uniformly convex Banach space, K be a nonempty closed convex

subset of E, and T : K → K be an asymptotically nonexpansive mapping with F ̸= ∅. Then

I − T is demiclosed at zero, i.e., for each sequence {xn} in K, if {xn} converges weakly to

q ∈ K and {(I − T )xn} converges strongly to 0, then (I − T )q = 0.

Lemma 2.6 [8] Let E be a real smooth Banach space, K be a nonempty closed convex subset

of E with P as a sunny nonexpansive retraction, and T : K → E be a mapping satisfying

weakly inward condition. Then F (PT ) = F (T ).
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3 Main Results

In this section, we prove weak convergence theorems for the iterative scheme (1.6) for two

asymptotically nonexpansive nonself-mappings in uniformly convex and smooth Banach

spaces.

Lemma 3.1 Let K be a nonempty closed convex subset of a real uniformly convex and

smooth Banach space, and T1, T2 : K → E be two nonself asymptotically nonexpansive

mappings with respect to P with a sequence {kn} ⊂ [1,∞) such that
∞∑

n=1
(kn − 1) < ∞ and

F ̸= ∅. Let {xn} be defined by (1.6), where {αn} and {βn} are sequences in [0, 1). Then for

all q1, q2 ∈ F, the limit lim
n→∞

∥txn + (1− t)q1 − q2∥ exists for all t ∈ [0, 1].

Proof. Set an(t) = ∥txn + (1− t)q1 − q2∥. Then lim
n→∞

an(0) = ∥q1 − q2∥, and from Lemma

2.1, lim
n→∞

an(1) = lim
n→∞

∥xn − q2∥ exists. It remains to prove that the Lemma 3.1 holds for

all t ∈ (0, 1).

Define the mapping Hn : K → K by

Hnx = (1−αn)(PT1)
n[(1−βn)x+βn(PT1)

nx]+αn(PT2)
n[(1−βn)x+βn(PT1)

nx], x ∈ K.

Then, for all x, y ∈ K, by (1.4) we have

∥Hnx−Hny∥ ≤ (1− αn)kn∥(1− βn)(x− y) + βn[(PT1)
nx− (PT1)

ny]∥

+ αnkn∥(1− βn)(x− y) + βn[(PT1)
nx− (PT1)

ny]∥

≤ kn(1− βn)∥x− y∥+ k2nβn∥x− y∥

≤ k2n∥x− y∥. (3.1)

Set

Rn,m = Hn+m−1Hn+m−2 · · ·Hn, m ≥ 1. (3.2)

From (3.1) and (3.2), we can obtain that

∥Rn,mx−Rn,my∥ ≤
( n+m−1∏

j=n

k2j

)
∥x− y∥, x, y ∈ K, (3.3)

and Rn,mxn = xn+m, Rn,mq = q for each q ∈ F . Let

bn,m = ∥tRn,mxn + (1− t)Rn,mq1 −Rn,m(txn + (1− t)q1)∥. (3.4)

Using (3.3), (3.4) and Lemma 2.3, we have

bn,m ≤
( n+m−1∏

j=n

k2j

)
γ−1

(
∥xn − q1∥ −

( n+m−1∏
j=n

k2j

)−1

∥Rn,mxn −Rn,mq1∥
)

≤
( ∞∏

j=n

k2j

)
γ−1

(
∥xn − q1∥ −

( ∞∏
j=n

k2j

)−1

∥Rn,mxn −Rn,mq1∥
)
. (3.5)

It follows from Lemma 2.1, (3.3), (3.5) and lim
n→∞

∞∏
j=n

k2j = 1 that lim
n→∞

bn,m = 0 uniformly

for all m. Observe that

an+m(t) ≤ ∥txn+m + (1− t)q1 − q2 +Rn,m(txn + (1− t)q1)− tRn,mxn − (1− t)Rn,mq1∥

+ ∥ −Rn,m(txn + (1− t)q1) + tRn,mxn + (1− t)Rn,mq1∥
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= ∥Rn,m(txn + (1− t)q1)− q2∥+ bn,m

= ∥Rn,m(txn + (1− t)q1)−Rn,mq2∥+ bn,m

≤
( n+m−1∏

j=n

k2j

)
∥txn + (1− t)q1 − q2∥+ bn,m. (3.6)

By lim
n→∞

∞∏
j=n

k2j = 1, lim
n→∞

bn,m = 0 and (3.6), we have

lim sup
n→∞

an ≤ lim
n,m→∞

bn,m + lim inf
n→∞

an(t).

That is, lim
n→∞

∥txn + (1− t)q1 − q2∥ exists for all t ∈ (0, 1). This completes the proof.

Lemma 3.2 Let E be a uniformly convex Banach space which has a Fréchet differentiable

norm, K be a nonempty closed convex subset of E, and T1, T2 : K → E be two nonself

asymptotically nonexpansive mappings with a sequence {kn} ⊂ [1,∞) such that
∞∑

n=1
(kn−1) <

∞ and F ̸= ∅. Let {xn} be defined by (1.6), where {αn} and {βn} are two real sequences in

[0, 1). Then for all q1, q2 ∈ F, the limit lim
n→∞

⟨xn, j(p − q)⟩ exists. Furthermore, if Ww(xn)

denotes the set of all weak subsequential limits of {xn}, then ⟨x∗ − y∗, j(q1 − q2)⟩ = 0 for

all q1, q2 ∈ F and x∗, y∗ ∈ Ww(xn).

Proof. This follows basically as in the proof of Lemma 4 in [1]. For completeness, we sketch

the details. Set x = q1 − q2 and h = t(xn − q1), 0 ≤ t ≤ 1 in (1.1). Since b is increasing, and

∥xn − q1∥ ≤ M for some M > 0 and all n ≥ 1, by Lemma 2.1, we have
1

2
∥q1 − q2∥2 + t⟨xn − q1, j(q1 − q2)⟩

≤ 1

2
∥txn + (1− t)q1 − q2∥2

≤ 1

2
∥q1 − q2∥2 + t⟨xn − q1, j(q1 − q2)⟩+ b(tM). (3.7)

It follows from (3.7) and Lemma 3.1 that
1

2
∥q1 − q2∥2 + t lim sup

n→∞
⟨xn − q1, j(q1 − q2)⟩

≤ 1

2
lim
n→∞

∥txn + (1− t)q1 − q2∥2

≤ 1

2
∥q1 − q2∥2 + t lim inf

n→∞
⟨xn − q1, j(q1 − q2)⟩+ b(tM). (3.8)

So by (3.8) we have

lim sup
n→∞

⟨xn − q1, j(q1 − q2)⟩ ≤ lim inf
n→∞

⟨xn − q1, j(q1 − q2)⟩+
b(tM)

t
, 0 < t ≤ 1. (3.9)

From (3.9) and

lim
t→0+

b(tM)

t
= lim

t→0+

Mb(tM)

tM
= 0,

we know that the limit lim
n→∞

⟨xn − q1, j(q1 − q2)⟩ exists. Furthermore, there exists a sub-

sequence {xnk
} of {xn} such that lim

k→∞
⟨xnk

− q1, j(q1 − q2)⟩ = ⟨x∗ − q1, j(q1 − q2)⟩, and
so

lim
n→∞

⟨xn − q1, j(q1 − q2)⟩ = ⟨x∗ − q1, j(q1 − q2)⟩, x∗ ∈ Ww(xn).
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This shows that ⟨x∗ − y∗, j(q1 − q2)⟩ = 0 for all q1, q2 ∈ F and x∗, y∗ ∈ Ww(xn). This

completes the proof.

Theorem 3.1 Let E be a real uniformly convex and smooth Banach space which has a

Fréchet differentiable norm, K be a nonempty closed convex subset of E with P as a sunny

nonexpansive retraction, and T1, T2 : K → E be two weakly inward nonself asymptotically

nonexpansive mappings with respect to P with a sequence {kn} ⊂ [1,∞) such that
∞∑

n=1
(kn −

1) < ∞ and F ̸= ∅. Let {xn} be defined by (1.6), where {αn} and {βn} are sequences in

[a, 1 − a] for some a > 0. Then {xn} converges weakly to a common fixed point of T1 and

T2.

Proof. By Lemma 2.1, {xn} is bounded. Since E is reflexive, there exists a subsequence

{xnk
} of {xn} which converges weakly to some q ∈ K. By Lemma 2.2, we have

lim
n→∞

∥xnk
− (PT1)xnk

∥ = lim
n→∞

∥xnk
− (PT2)xnk

∥ = 0.

It follows from Remark 1.1 and Lemma 2.5 that q ∈ F (PT1)
∩
F (PT2), where F (PTi) is the

set of fixed points of the asymptotically nonexpansive mapping PTi, i = 1, 2. By Lemma

2.6, we know that F (PTi) = F (Ti). So, we have q ∈ F .

Now, we prove that {xn} converges weakly to q. Suppose that there exists some subse-

quence {xnj} of {xn} such that {xnj} converges weakly to some q1 ∈ K. Then by the same

method as given above, we can also prove that q1 ∈ F . So q, q1 ∈ F
∩
Ww(xn). It follows

from Lemma 3.2 that

∥q − q1∥2 = ⟨q − q1, j(q − q1)⟩ = 0.

Therefore, q = q1 and so {xn} converges weakly to q. This completes the proof.

Theorem 3.2 Let E be a real uniformly convex and smooth Banach space E such that its

dual E∗ has the Kadec-Klee property, and K be a nonempty closed convex subset of E with

P as a sunny nonexpansive retraction. Let T1, T2 : K → E be two weakly inward nonself

asymptotically nonexpansive mappings with respect to P with a sequence {kn} ⊂ [1,∞) such

that
∞∑

n=1
(kn − 1) < ∞ and F ̸= ∅. Let {xn} be defined by (1.6), where {αn} and {βn} are

sequences in [a, 1− a] for some a > 0. Then {xn} converges weakly to a common fixed point

of T1 and T2.

Proof. Using the same method as given in Theorem 3.1, we can prove that there exists a

subsequence {xnk
} of {xn} which converges weakly to some q ∈ F .

Now, we prove that {xn} converges weakly to q. Suppose that there exists some subse-

quence {xnj} of {xn} which converges weakly to some p ∈ K. Then, for q, p ∈ F, it follows

from Lemma 3.1 that the limit lim
n→∞

∥txn + (1 − t)q − p∥ exists for all t ∈ [0, 1]. Again,

since q, p ∈ Ww(xn), and so p = q by Lemma 2.4, we know that {xn} converges weakly to a

common fixed point q. This completes the proof.

Remark 3.1 (1) It is well known (see, for example, [11]) that some Banach spaces,

such as Lp space with p ̸= 2, do not satisfy Opial’s condition. Also, it is well known that
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every Banach space, which is both uniformly convex and uniformly smooth, has a Fréchet

differentiable norm. In particular, Lp space, 1 < p < ∞, has a Fréchet differentiable norm.

That shows that a Banach space which has a Fréchet differentiable norm is different from

the Banach space satisfying Opial’s condition.

(2) It is also needed to point out that even if a Banach space neither has a Fréchet

differentiable norm nor satisfies Opial’s condition, its dual still may have the Kadec-Klee

property. For example, see [9], [12]. Take X1 = R2 with the norm defined by |x| =√
∥x∥22 + ∥x∥21 and X2 = Lp[0, 1] with 1 < p < ∞ and p ̸= 2. The Cartesian product of X1

and X2 furnished with l2-norm is uniformly convex, it does not satisfy Opial’s condition,

and its norm is not Fréchet differentiable, but its dual does have the Kadec-Klee property.
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