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1 Introduction

In affine differential geometry, the classification of complete hyperbolic affine hyperspheres
has attracted the attention of many geometers. By a Legendre transformation, the classifica-
tion of Euclidean-complete hyperbolic hyperspheres is reduced to the study of the following
boundary value problem

det (gi“;g) = (—u(z))™™2 i 0,

u(z) =0 on 0{2,

where 2 € R" is a bounded convex domain. Calabilll conjectured that there is a unique

(1.1)

convex solution to (1.1). Loewner and Nirenberg!? solved (1.1) in the cases of domains in
R? with smooth boundary. Cheng and Yaul® showed there always exists a convex solution
u € C(2) N C%2), and the uniqueness follows from the maximum principal.

When 2 = B"(1), the unit ball in R™, the convex solution of (1.1) is

ug = — 1-— E (Ei (12)
1<k<n
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When 2 is projectively homogeneous, Sasakil¥ found that the convex solution of (1.1)
and the characteristic function x of domain {2 have the following relation:

u = C’ox_ﬁ for a constant Cj.

Also, Sasaki and Yagil® obtained an expansion of derivatives of the characteristic function
x along the boundary of the smooth convex bounded domain. Referring the Fefferman’s
expansion of the Bergman kernel on smooth strictly pseudoconvex domains (see [6]), Sasakil”
obtained an asymptotic expansion form of x with respect to the solution u:

x = Cou™("+1) [1 + Fu? + the higher orders of u}, (1.3)

24(n—1)
where F is a smooth function on f2.

In this paper, we confine ourselves to the case that (2 is a strictly convex bounded domain
with smooth boundary. By the barrier functions on the balls, the convex solution of (1.1)
has the bound: )

g0t < —u(x) < Cd(2)?, (1.4)

where d(z) =: dist(z, 912), and C is a positive constant depending on {2 and n.
By (1.4) and the convexity of u, the gradient estimate is given by:
1
ad(x)*% < |gradu| < Cd(z)" 2. (1.5)

Loewner and Nirenberg(? first obtained the sharp second order estimates in dimension
two. Their methods and Pogorelov’s calculations also gave bound for the higher dimensions
(see [8]):

lug| < Cd(z)~%,  1<i, j<n. (1.6)
Now we introduce the basic notations. For a multi-index o = (a1, g, -+, ), where
a;, i =1,2,---  n, are non-negative integers with || = > «y, we define
1<i<n
0 _ 0%
D; M= — i=1,2,---,n,

o 8:@-’ i al'?’ ’

D® = D¢ ... Don :L.
" ox{t - Oxp™

In this paper, by the finite geometry of complete hyperbolic affine sphere as stated in
Lemma 2.1, we obtain derivative estimates of any order:

Theorem 1.1  For n =2, the convex solution of (1.1) satisfies
D¥(u)] < Cd(@):71* ol = 0,12, (17)

where C' is a constant depending on 2 and |a|.

Remark 1.1  For |a| = 3, the estimate (1.7) holds for any dimension n > 2. The sharp-

b2

1
ness of exponent “5 — |a|” can be seen in the case that §2 is projectively homogeneous (see

[5])-
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1
Remark 1.2  As in [7], the function v = —§u2 satisfies a real analogue of Fefferman
equation
Vij U4 .
det =-1 in £,
vj  2v (1.8)
v=20 on 012,

where v;, v;; are the usual first and second derivatives. For the boundary behaviors of
derivatives of the solution wu, it is necessary to study the smoothness of v on the closure of

£2, and to derive a complete description of the boundary singularity.

2 Formulas for Hyperbolic Affine Hyperspheres

Let M be a locally strictly convex affine hypersurface in R"*!, given by a convex function
f defined in a domain D C R"™:

M ={(y1, - Yny Ynt1) [ Yngr = F(y, - yn)y y = (Y1, -+ yn) € D}
The Blaschke metric is given by (see [9])
G= > pfydydy;, (2.1)
1<ij<n

where f,; (1 <4,j <n) are the second derivatives of f with respect to y, (£) is the inverse

of matrix (f;;), and
p = (det(f,)) 7.

The Fubini-Pick form is given by (see [10])

1 ap dp dp Ofi;
Ai‘kz—*( kin - tlika—+fiig—+ ]). 2.2
iv =5 (fug, +Fagy + g 40 (2:2)
Consider the Legendre transformation relative to f
of
T; = ayl (yla Ty yn)a
of
U(I‘l, T2, =0, I‘n) = Z ylai(yla T yn) _f(y17 T yn>
1<i<n Yi
The Legendre transformation domain {2 of f is defined by
0
n= {x:(xl,x27 7xn)|xi:87fa (y17y27 7yn) GD}
Yi
In the terms of coordinates (x1, @2, - - , ), the Blaschke metric G is given by
1
G = —UW;j i i
Z au,]dx,dxj
1<ij<n
Here and later we denote by wu;, wi;, wijk, -+ the derivatives of u with respect to z, (i)

the inverse of matrix (u;;), and
0%u

8xi8xj '

u= (det(uij))n%rl‘z, Uij =
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By a direct calculation, the Fubini-Pick form can be represented in the following form:
A=Y Agrdyidy;dys

1<i,j,k<n
1 ou ot ou
— 1<2€< 372 (u,»jaxk + uzka + ujka + uu”k>dxzdwjdxk (2.3)
<i,j,k<n

Suppose that M = {(y, f(y))} is a hyperbolic affine hypersphere with center at the
origin. Then the Legendre function u of f satisfies (see [11])

det(uij) = (—u)iniQ. (24)
It follows from (2.4) that the Blaschke metric and the Fubini-Pick form are given respectively:
1
G = _—— .. . . .
Z uu”dxldxj, (2.5)
1<i,j<n
1
A= Z —ﬁ(uijuk + Uit + Wikt + uugg)de;dejdeg. (2.6)
1<i,j,k<n

By using (2.4), the Laplacian with respect to the metric G is given by

= — ij ij
A u Z u 8116% Z u ula% (2.7)

1<ij<n

There exist two notions of completeness on affine hypersurfaces in R"*!: (1) Euclidean
completeness, that is the completeness of the Riemannian metric induced from a Euclidean
metric on R"T1; (2) Affine completeness, that is the completeness of the Blaschke metric
G. But for hyperbolic affine hyperspheres, these two completeness are equivalent (see [11]).
Now we state a corollary of Theorem 2 of [9].

Lemma 2.1 Let M be a Euclidean-complete hyperbolic affine sphere in R®. Then M
has finite geometry:

[Allc + IVA[l + -+ |[VFAlle <C,  k=0,1,2,---, (2.8)

where C' is a constant depending on k and V is the covariant differentiation with respect to
the Blaschke metric G.

We remark here every Euclidean-complete hyperbolic affine hypersphere in R"*! has

bounded Pick invariant ||A||g (see [11]). Next, we give a Lemma due to Yaul'?.

Lemma 2.21"21  Let (M, g) be a complete Riemannian manifold with Ricci curvature bounded
from below. If a smooth positive function ¢ on M satisfies

Ad = \o, (2.9)
where X is a constant and A is the Laplacian with respect to g, then there exists a constant
C such that

Vol
¢

<C. (2.10)
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3 The Third Order Derivative Estimates

In this section, we give the third order derivative estimates for any dimension. Let u be
the convex solution of boundary value problem (1.1) in a smooth strictly convex bounded
domain 2. Then the Blaschke metric

1
1<i,j<n 1<i,j<n
is a complete Riemannian metric, and the Pick invariant
lAIG=" D> GTCECM A A

1<i,j, k5,6 <n
is bounded. For any point x € {2, we assume uij (x) = Xid%. Tt follows from (2.6) that

1 .
1<7,,j,k<n
-1 ’LL2 2]k Uk Uiik
_ - 2 6u
4u<29/\i+ P v WD D s ww
1<i<n 1<i,5,k<n 1<i,k<n
<cC. (3.2)

Here and later we use the same C for different constants. Differentiating equation (1.1) with

> = Y A=) 33

respect to x, one has

1<i,j<n 1<i<n ¢
Inserting (3.3) into (3.2), we get
u? 2
ik o 40 6n + 3 Sk 3.4
1<2c< AiAj Ak +(”+) 1@2 Ak o4
LRSS SRS
Combining (1.1) and (2.7), we have
A(—ub) = n(—u™t). (3.5)

Recall that the Ricci curvature of hyperbolic affine hypersphere is bounded from below (see
[11]), by (3.5) and Lemma 2.2, we get
IV(—uDlle _ || Vu e

— <C. (3.6)
—u —u
It follows that
HVUHG =— Z uuu; = —— Z uk <C. (3.7
1<z,7<n 1<k<n
By using (1.4), (3.4) and (3.7), we have
gkl gyt (3.8)
VAN
Applying (1.6), we have proved
uggn| < Cd(x)™3, 1<, j,k<n. (3.9)
Formula (3.7) gives a lower bound of the maximal eigenvalue of Hessian (u;;). In fact,
|grad ul? 1 Z
< —=— uuu; < C. (3.10)
—u Amax(uzj 1<z,]<n
It follows from (1.4) and (1.5) that
)\max(ui]) > Cd( ) % (311)
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Hence, by (1.6), we get

Corollary 3.1  The convex solution of (1.1) satisfies

%d(xr% < A (1153) () < Cd(z)~ %, (3.12)

where C' is a constant depending on {2 and n.

4 The Higher Order Derivative Estimates

In this section, we show (1.7) under the condition (2.8). Hence our theorem follows from
Lemma 2.1.
Let u be the convex solution of (1.1) in a smooth strictly convex bounded domain {2, the
Blaschke metric is given by (3.1). Then, by (2.6), the Christoffel symbols of G are given by
1 0Gs;  0Gg  0Gy;
t __ ts sj S1 (%]
Ij=5 2 G < * - >

o0x; o0x; ox
1<s<n v J s

1 U Ui
= % Z uts(uusij + usuij) - ﬁ(5§ - ﬁéf
1<s<n
t Uit  Ujot
= —U Z u sAsij - i(sj - ZJ(SZ (41)
1<s<n
We write
VkA: Z Ai1-~ik+3d$i1 -~-d!L‘ik+3, k:07172a"' )

1<in iz, myin 13 <n
and assume that u;;(z) = A\id}.
To obtain (1.7), it suffices to prove the following estimates:
D" () -

< Cd(z) 3, —3,4,5,--- 4.2
N (z) | (4.2)
where = (1, -+, pn) and C' is a constant depending on 2, n and |ul.

We proceed by introduction on |u|. For |u| = 3, (4.2) is obtained in Section 3. Suppose
that these estimates hold for |u| < m — 1. To prove (4.2) for |u| = m, we first prove

Lemma 4.1  For multi-index o = (o, -+, o) with 1 < |a| <m — 3,
_ ketlal
4

a1‘D (f“lk” < Cd(l‘) ) k= 3747 T (43)
\/)\1 '..)\nn ')\il >\Zk

where C' is a constant depending on 2, n, k and m.

Proof. 'We proceed by introduction on |«|. For o = (1, 0, -- -, 0), it is obvious that
Di(Aiyiy) = Aigisr + D Aiyecigpivinin - Ty (4.4)
1<p<n
Noting that for any integral [ > 0, || V!4 ||¢ is bounded, we have
Ai iy 2
I = (s Y M) g (45)
Aiv Niys

1<i1,i2,...,t143<n
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Hence, by the estimate (1.4), we get

Aii k1
M <C-d(z)” . (4.6)
Ay e Ay
(4.1) gives
E,,.,Pf,EPt.,.,,,,
A11~"lsPZs+1~~~1kFisl - u u Atlsl Al1~~1sms+1“'lk
1<p<n 1<p,t<n
1
— Wi Aid i i
1
— a s U7 - Ail'“is—lisis+1"'ik' (47)

By (1.4) and (4.5) we have

t
Y P A1 Ay i i i

1<p,t<n

NP VRIS
|Ati51 ‘A11~~i571tis+1“'ik|

< —
-~ u Z \/)\t)\is)\l \/)\t ll~..)\, )\ >\1

1<t<n Ts—17 s 41

k

< Cod(x)? d(x)"1 - d(x)F

= C-d(z) T (4.8)
From (1.4), (3.7) and (4.5) we also have
L | Bir-doatiens iy <C-da) T (4.9)
/\ \/)\1 PAETED VD VERERED W

Combining the above estlmates we have

Dy (Asy-ii)l Sc.d(x)*%. (4.10)
PYPURED)

This proves (4.3) for |a| = 1.

Now suppose that the estimate (4.3) holds for multi-index a with |«| < ¢. We need to
prove that for |a| = t+1 (4.3) holds. Without loss of generality, we assume that D® = D® Dy,
where 8 = (81, B2, -+, Bn) = (1 — 1, g, -+, ). Then

DOA;,.y = DPDi A,y = DB(Ail...ikl + 3 Aii i Y ) (4.11)

11 s—1Pls+1 "tk T 451
1<p<n

By using the Leibniz formula we have

DB( Z Ail"'is—lpis+1"'itF’Zl) Z Z( )Dﬂ ’y 11 "isflpis#»l"'ik)D’Y(Fipi,l)'

1<p<n 1<p<n~y<pB
Noting the assumption that for |a| < ¢ the estimate (4.3) holds, we have
B=7(A, . ) X iy
‘D (Ail"'le—lpis+1"'1k)| < C d( ) L‘l (412)
\//\/131—’)’1 . )\,Bn Tn iy - /\i571)‘p/\i5+1 e Ay
Applying (4.1) we have
uis ul
DI(I?,) = DV( —u Y W A — 8 - ;55’5). (4.13)
1<t<n
Noting that |y| < |8] =t < m — 3 and the assumption for || < m — 1, we have
DY (uq -u™t 5
D7 w” )l _ o gy =42 (4.14)

A AT A
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For multi-index p = (p1, - pn) with |p| <t < m — 3, the same reason gives
VAA D] -4 (4.15)
NOVEEYE ’ ’
It follows from (4.15) and the assumptions for |a| < ¢ and |p| < m — 1 that
/\ .D’Y L Pt 'Atisl)
\/)\71 K )\%L )‘is
=00 s
R R
)\ )\t D”(upt) 1)7-_p(14“Q )
2 \/)\“ SN VS VY
< C-d(m)HwiHTl -d(m)_% .d(x)_sﬂvi—m
= C-d(z)" (4.16)
By the assumption for |a| <t we have
DB 111 t
D7 (Aiy i) <C-d(z)~ T (4.17)
\//\/31. VLY Aip o Ay s A
Combining (4.11)—(4.14) and (4.16)—(4.17) we have
D« SRERE _ktt+1
| ( 1° k)| SOd(:C) k+4+1' (418)
\/)\al A& Ny
Now we prove that for |u| = (4.2) holds. By (4.3) we get
‘DI‘L( ijk)| _ 3+lnul
< Cd(x EI <m-—3. 4.19
\/A/Ll . /Ln )\ )\ )\k ( ) ‘lu’| ( )
From (2.6), we get
1 WUiik 1 WUiiUk + UipUi + Uikl
(A, )= ——_DH(ZHE) _ ZpH J J J
DH(Ayge) = =5 D" (FH5) — 2o ( = ). (4.20)
By using (1.4), (3.7) and the assumption for || < m — 1, we have
DH(u;4 2| DH(A;; m
(igh) < DAL L caeyt, p=m—3 (421)
/NN N A VAT AR N A
It follows from (1.4) and (4.19) that
D'u uzyk) 2=-m
<Cd(z) =, =m— 3. 4.22
‘Wl-- | < cute) 1 (122)

This proves (4.2), furthermore, by using (1.6), we obtain (1.7).

References
[1] Calabi E. Complete affine hyperspheres I. Sympos. Math., 1972, 10: 19-38.

[2] Loewner C, Nirenberg L. Partial Differential Equations Invariant Under Conformal Or Pro-
jective Transformations. in: Ahlfors L. V, Kra I, Maskit B, Nirenberg L. Contributions to

Analysis. New York: Academic Press, 1974: 245-272.

[3] Cheng S Y, Yau S T. On the regularity of the solutions of the Monge-Ampere equation

2
det( O’u ) = F(wz, u). Comm. Pure Appl. Math., 1977, 30: 41-68.
axial‘j



COMM. MATH. RES. VOL. 31

Sasaki T. A note on characteristic functions and projectively invariant metrics on a bounded
convex domain. Tokyo J. Math., 1985, 8: 49-79.

Sasaki T, Yagi T. Sectional curvature of projective invariant metrics on a strictly convex
domain. Tokyo J. Math., 1996, 19: 419-433.

Fefferman C. Parabolic invariant theory in complex analysis. Adv. Math., 1979, 31: 131-262.
Sasaki T. On the characteristic function of a strictly convex domain and the Fubini-Pick
invariant. Results Math., 1988, 13(3): 367-378.

Wu Y D. Asymptotic behaviors of hyperbolic hypersurfaces with constant affine Gauss-
Kronecker curvature. Results Math., 2011, 59(1): 173-183.

Li A M, Jia F. Euclidean complete affine surfaces with constant affine mean curvature. Ann.
Global Anal. Geom., 2003, 23: 283-304.

Li A M, Zhao G S. Projective Blaschke manifolds. Acta Math. Sinica (English Ser.), 2008,
24(9): 1433-1448.

Li A M, Simon U, Zhao G S. Global Affine Differetial Geometry of Hypersurfaces. Berlin:
Walter de Gruyter, 1993.

Yau S T. Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math.,
1975, 28: 201-228.



