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1 Introduction

Rota-Baxter algebras or their corresponding Rota-Baxter relations came from [1], which

are on integral equations of fluctuation theory. After that, many mathematicians paid

attention to this concept, and especially, Rota[2] fundamental papers around 1970 brought

the subject into the areas of combinatorics and algebras. In fact, Rota-Baxter relation

may be regarded as one possible generalization of the standard shuffle relation in [2–3]. In

the case of Lie algebra, when the weight λ = 0, the Rota-Baxter relation is just the form

of classical Yang-Baxter equation (CYBE) and when the weight λ = 1, it corresponds to

the operator form of the modified classical Yang-Baxter equations. The broad connections

of Rota-Baxter algebras with many areas in mathematics and mathematical physics are

remarkable. However, the theoretical study of Rota-Baxter algebras is still in its early

stage of development. In recent years, some articles have been published about Rota-Baxter

algebras in [3–8]. Especially, An and Bai[7] have not only worked over Rota-Baxter operators

of weight 0 on pre-Lie algebras, but also computed all Rota-Baxter operators of weight 0 on

associative algebras of dimensions ≤ 3; Li and Hou[8] have given all Rota-Baxter operators

of weight 1 on associative algebras of dimensions ≤ 3.

In this paper, we study the Rota-Baxter operators of weight 1 on the associative algebra
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M2(F) consisting of 2×2-matrix over an algebraically closed field F. The paper is organized
as follows. In Section 2, we give all Rota-Baxter operators of weight 1 on M2(F). In Section

3, we analyze how to prove the previous theorem and establish the corresponding equations.

In Section 4, we give the proof of the main theorem. Throughout this paper, all algebras

are of finite dimensions and over an algebraically closed field F.

2 Main Results

We adopt the following definition from [3].

Definition 2.1 A Rota-Baxter algebra is an associative algebra A over F with a linear

operator R : A → A satisfying the Rota-Baxter relation:

R(x)R(y) + λR(xy) = R(R(x)y + xR(y)), x, y ∈ A, (2.1)

where λ ∈ F is a fixed element, which is called the weight of R.

If R is a Rota-Baxter operator of weight λ ̸= 0, then
1

λ
R is a Rota-Baxter operator of

weight 1. Thus, for the Rota-Baxter operators of nonzero weight, it suffices to determine

the ones of weight 1. From now on, RB(A) denotes the set of all Rota-Baxter operators on

A of weight 1.

Theorem 2.1 All the Rota-Baxter operators of weight 1 on 2× 2-matrix algebra M2(F)
are Ri and I −Ri ∈ RB(M2(F)), i = 1, 2, · · · , 31, shown in Table 2.1, where a, b, c ∈ F (any

denominator is nonzero and non-appeared parameters in matrices are zero).

Table 2.1 The Rota-Baxter operators set

Operators
number

Matrix representations of operators

1 r13 = −r21 = a, r14 = −r22 = b, r33 = −r41 = 1 + b, r34 = −r42 =
b+ b2

a

2 r11 = r33 = a, r21 = r43 = b, r22 = r44 = 1− a, r12 = r34 =
a− a2

b

3 r11 = −r41 = a, r21 = b, r22 = 1− a, r12 = −r42 =
a− a2

b
, r31 = −a2

b
,

r32 =
a3 − a2

b

4 r11 = a, r21 = b, r22 = r41 = 1− a, r12 = r31 = −r42 =
a− a2

b
, r32 =

a3 − a2

b2
,

r34 =
a

b
, r44 = 1

5 r11 = r22 = a, r13 = r24 = b, r31 = r42 =
a− a2

b
, r33 = r44 = 1− a

6 r14 = −r33 = a, r24 = −r43 = b, r22 = −r41 = 1 + a, r12 = −r31 =
a+ a2

b

7 r14 = −r44 = a, r22 = 1 + a, r24 = b, r12 = −r34 = −r42 =
a+ a2

b
, r31 =

1 + a

b
,

r33 = 1, r32 =
−a(1 + a)2

b2

(to be continued)
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(continued)

Operators
number

Matrix representations of operators

8 r14 = −r44 = a, r24 = b, r12 = −r42 =
a+ a2

b
, r22 = 1 + a, r32 = −a2 + a3

b2
,

r34 = −a2

b
9 0

10 r12 = −r42 = a, r22 = 1, r32 = −a2

11 r12 = −r31 = a, r22 = −r41 = 1

12 r12 = r34 = a, r22 = r44 = 1

13 r12 = r31 = r34 = −r42 = −a, r22 = r41 = r44 = 1, r32 = −a2

14 −r14 = r22 = 1, r34 = −r42 = a

15 −r14 = r22 = r44 = 1, r32 = a, r34 = b

16 r11 = r22 = 1, r31 = r42 = a

17 r11 = r22 = −r41 = 1, r31 = a

18 r11 = r22 = r44 = 1, r31 = a, r34 = b with ab = 0

19 r11 = r22 = r41 = r44 = 1, r34 = −r42 = a

20 r11 = r14 = r22 = 1, r12 = −r31 = −r34 = −r42 = a, r32 = −a2

21 r11 = r14 = r22 = r44 = 1, r12 = −r31 = a

22 r13 = −r43 = a, r14 = −r44 = b, r33 = 1 + b, r23 = − a2

1 + b
, r24 = − ab

1 + b
,

r34 =
b+ b2

a
with a ̸= 0, b ̸= 0,−1

23 r33 = r44 = −r14 = 1, r23 = a, r24 = b with a ̸= 0

24 r11 = 1, r44 = 1 + a, r14 = r33 = −a, r13 = −r43 = −r24 = b, r21 =
b

a
, r23 =

b2

a
,

r34 =
a+ a2

b
with a ̸= 0,−1; b ̸= 0

25 r11 = r33 = r14 = 1, r13 = −r21 = −r24 = −r43 = a, r23 = −a2 with a ̸= 0

26 r11 = −r41 = b, r13 = −r43 = a, r33 = 1− b, r21 =
ab

b− 1
, r23 =

a2

b− 1
, r31 =

b− b2

a
27 r11 = r33 = −r41 = 1, r21 = a, r23 = b with b ̸= 0

28 r11 = a, r44 = 1, r13 = r21 = −r43 = b, r33 = r41 = 1− a, r23 =
b2

a− 1
, r24 =

b

1− a
,

r31 =
a− a2

b
29 r11 = r33 = r44 = 1, r21 = a, r24 = b, r23 = −ab with ab ̸= 0

30 r12 = −r34 = −r42 = a, r13 = r21 = −r43 = b, r14 = −r44 = c, r22 = 1 + c,

r11 = −r41 =
ab

c
, r23 =

bc

a
, r24 =

c

a
+

c2

a
, r31 =

a

c
− a2b

c2
, r32 = −a2

c
,

r33 = 1− ab

c
with abc ̸= 0

31 r12 = −r42 = τ, r13 = −r43 = a, r14 = −r44 = b, r23 = c, r11 = −r41 =
τa

b
,

r21 =
τc

b
, r22 =

τc

a
,r24 =

bc

a
, r31 = −τa2

bc
, r32 = −τa

c
, r33 = −a2

c
,

r34 = −ab

c
with τ =

a3b+ ab2c+ abc

a2c+ bc2
, τabc ̸= 0
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3 Analysis

Lemma 3.1 [8] Let R be a linear operator on the algebra A. Then R ∈ RB(A) if and only

if I −R ∈ RB(A) (I is the identity mapping of A). In particular, 0, I ∈ RB(A).

Let A be an associative algebra with a basis {e1, e2, · · · , en}. Suppose that

eiej =

n∑
k=1

ckijek,

where ckij ∈ F are the structure constants. Then any Rota-Baxter operator R can be

presented by a matrix (rij), where R(ei) =
n∑

j=1

rijej . Moreover, rij satisfies the following

equations (see [7]):∑
k,l,m

[cmklrikrjl − clkjrikrlm − ckilrjlrkm] = 0, i, j = 1, 2, · · · , n. (3.1)

Let

e1 = e11, e2 = e12, e3 = e21, e4 = e22 (3.2)

be a basis of M2(F). Since eijekl = δjkeil,

e1e1 = e1, e1e2 = e2, e2e3 = e1, e2e4 = e2,
e3e1 = e3, e3e2 = e4, e4e3 = e3, e4e4 = e4

(3.3)

are all nonzero products on this basis. Let R(ei) =
4∑

j=1

rijej , i = 1, 2, 3, 4. That is,
R(e1)

R(e2)

R(e3)

R(e4)

 =


r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44




e1

e2

e3

e4

 . (3.4)

We need to compute 4× 4-matrix (rij) to obtain R ∈ RB(M2(F)). Because R is a linear

operator, we only check that all basis elements satisfy the following identity:

R(x)R(y) +R(xy) = R(R(x)y + xR(y)), x, y ∈ A. (3.5)

When x, y are substituted by e1, e2, e3, e4, respectively, we can obtain the following identities:

r12r13 + r11 = r211 + r12r21 + r13r31; (3.6)

r12r14 + r12 = r11r12 + r12r22 + r13r32; (3.7)

r13r14 + r13 = r11r13 + r12r23 + r13r33; (3.8)

r13r12 + r214 + r14 = 2r11r14 + r12r24 + r13r34; (3.9)

r12r23 + r21 = r21r11 + r21r22 + r13r41; (3.10)

r12r24 + r22 = r12r21 + r222 + r13r42; (3.11)

r14r23 + r23 = r11r23 + r22r23 + r13r43; (3.12)

r13r22 + r14r24 + r24 = r21r14 + r11r24 + r22r24 + r13r44; (3.13)
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r12r33 = r12r11 + r32r21 + r14r31; (3.14)

r11r32 + r12r34 = r212 + r31r12 + r32r22 + r14r32; (3.15)

r12r13 + r32r23 = 0; (3.16)

r13r32 = r12r14 + r31r14 + r32r24; (3.17)

r12r43 = r12r21 + r42r21 + r14r41; (3.18)

r11r42 + r12r44 = r41r12 + r12r22 + r42r22 + r14r42; (3.19)

r12r23 + r42r23 = 0; (3.20)

r13r42 = r41r14 + r12r24 + r42r24; (3.21)

r22r13 = r13r11 + r14r21 + r23r31; (3.22)

r13r12 + r23r32 = 0; (3.23)

r23r11 + r24r13 = r21r13 + r213 + r14r23 + r23r33; (3.24)

r23r12 = r21r14 + r13r14 + r23r34; (3.25)

r22r23 = r11r23 + r24r21 + r23r41; (3.26)

r23r12 + r23r42 = 0; (3.27)

r23r13 + r23r43 = 0; (3.28)

r23r22 = r23r14 + r21r24 + r23r44; (3.29)

r21r31 + r22r33 + r11 = r22r11 + r33r11 + r34r21 + r24r31; (3.30)

r21r32 + r12 = r22r12 + r33r12 + r24r32; (3.31)

r23r31 + r13 = r22r13 + r33r13 + r34r23; (3.32)

r23r32 + r14 = r22r14 + r33r14 + r34r24; (3.33)

r21r41 + r22r43 + r21 = r43r11 + r22r21 + r44r21 + r24r41; (3.34)

r21r32 + r22 = r22r12 + r33r12 + r24r32; (3.35)

r23r41 + r23 = r43r13 + r22r23 + r44r23; (3.36)

r23r42 + r24 = r43r14 + r22r24 + r44r24; (3.37)

r32r13 + r31 = r11r31 + r33r31 + r12r41; (3.38)

r32r14 + r32 = r11r32 + r33r32 + r12r42; (3.39)

r34r13 + r33 = r31r31 + r233 + r12r43; (3.40)
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r33r12 + r34r14 + r34 = r31r14 + r11r34 + r33r34 + r12r44; (3.41)

r32r23 + r41 = r21r31 + r22r41 + r33r41; (3.42)

r32r24 + r42 = r32r21 + r42r22 + r33r42; (3.43)

r34r23 + r43 = r31r23 + r22r43 + r33r43; (3.44)

r33r22 + r34r24 + r44 = r31r24 + r21r34 + r22r44 + r33r44; (3.45)

r32r33 = r32r11 + r34r31 + r32r41; (3.46)

r32r12 + r32r42 = 0; (3.47)

r32r13 + r32r43 = 0; (3.48)

r33r32 = r32r14 + r31r34 + r32r44; (3.49)

r32r43 = r32r21 + r34r41 + r42r41; (3.50)

r31r42 + r32r44 = r32r22 + r41r32 + r34r42 + r242; (3.51)

r32r23 + r42r43 = 0; (3.52)

r33r42 = r32r24 + r41r34 + r42r44; (3.53)

r42r13 = r13r31 + r43r31 + r14r41; (3.54)

r13r32 + r43r32 = 0; (3.55)

r43r11 + r44r13 = r41r13 + r13r33 + r43r33 + r14r43; (3.56)

r43r12 = r41r14 + r13r34 + r43r34; (3.57)

r42r23 = r23r31 + r43r41 + r24r41; (3.58)

r23r32 + r43r42 = 0; (3.59)

r43r21 + r44r23 = r41r23 + r23r33 + r243 + r24r43; (3.60)

r43r22 = r41r24 + r23r34 + r43r44; (3.61)

r41r31 + r42r33 + r31 = r42r11 + r33r31 + r44r31 + r34r41; (3.62)

r41r32 + r32 = r42r12 + r33r32 + r44r32; (3.63)

r43r31 + r33 = r42r13 + r233 + r34r43; (3.64)

r43r32 + r34 = r42r14 + r33r34 + r44r34; (3.65)

r241 + r42r43 + r41 = r42r21 + r43r31 + 2r44r41; (3.66)

r41r42 + r42 = r42r22 + r43r32 + r44r42; (3.67)
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r43r41 + r43 = r42r23 + r43r33 + r44r43; (3.68)

r43r42 + r44 = r42r24 + r43r34 + r244. (3.69)

4 Proof

Now, we prove Theorem 2.1. When r23 = 0, it can be obtained that r21r24 = 0 by (3.26).

In order to solve the equations (3.6)–(3.69), it suffices to compute (rij) in the following five

cases:

4.1 Case 1. r23 = r24 = 0, r21 ̸= 0.

Case 1.1. r13 ̸= 0. We have r43 = r12 = 0, r21 = −r13, r32 = 0, r22 + r33 = 1, r31 = 0,

r11 = 0 or 1 by (3.6), (3.7), (3.12), (3.16), (3.24), (3.32) and (3.42).

Case 1.1.1. r11 = 0. We have

r22 − r41 = 1, r44 = 0, r33 = 1 + r14, r22 + r33 = 1, r214 + r14 = r13r34,

r222 + r13r42 = r22, r34 = −r42, r21 = −r13 ̸= 0,

r11 = r12 = r23 = r24 = r31 = r32 = r43 = r44 = 0, −r41 = r33 = 1 + r14 = 1− r22

by (3.8)–(3.11), (3.32) and (3.34). Let r13 = a ̸= 0, r14 = b. We get R1 in Theorem 2.1,

where

R1 =



0 0 a b

−a −b 0 0

0 0 1 + b
b+ b2

a

−1− b −b+ b2

a
0 0


.

Case 1.1.2. r11 = 1. We conclude that I −R1 is in RB(M2(F)) by Lemma 3.1.

Case 1.2. r13 = 0. We get

r14 = 0, r11 + r22 = 1, r43(r22 + r33 − 1) = 0, r43r32 = 0, r43r42 = 0, r43r31 = 0,

r43(r11 − r33) = 0, r43(r12 − r34) = 0, r43r41 = 0, r43(r43 − r21) = 0,

r43(r22 − r44) = 0

by (3.10), (3.13), (3.44), (3.48), (3.52), (3.54), (3.56)–(3.61).

Case 1.2.1. r43 ̸= 0. We get R2 in Theorem 2.1 by (3.44), (3.48), (3.52), (3.54), (3.56)–

(3.61) and (3.69).

Case 1.2.2. r43 = 0, where r13 = r14 = r23 = r24 = r43 = 0, r11 + r22 = 1, r21 ̸= 0. It is

not difficult to obtain r33 = 0 or 1 by (3.40).

(A) r33 = 0. From (3.18), (3.69), we directly conclude that r12 = −r42 and r44 = 0 or

1.

According to r44 = 0 and r44 = 1, respectively, we obtain R3 and R4 in Theorem 2.1 by

(3.10), (3.30), (3.34), (3.35), (3.45) and (3.63).

(B) r33 = 1. We conclude that I −R3 and I −R4 are in RB(M2(F)) by Lemma 3.1.
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4.2 Case 2. r21 = r23 = 0, r24 ̸= 0.

Case 2.1. r13 ̸= 0. We obtain

r13 = r24 ̸= 0, r41 = 0, r43 = 0, r12 = 0, r11 = r22, r14 = 0, r22 + r33 = 1,

r34 = 0, r32 = 0, r33 = r44 = 1− r22 = 1− r11, r31 = r42, r22 − r222 = r31r24

by (3.10), (3.12), (3.16), (3.22), (3.24), (3.25), (3.32), (3.33), (3.43), (3.45), (3.54) and (3.56).

Let r11 = a, r13 = b ̸= 0. We get R5 in Theorem 2.1.

Case 2.2. r13 = 0. It is not difficult to obtain r11 = 0 or 1 by (3.6).

Case 2.2.1. r11 = 0. It is easy to know r22 = 1 + r14 by (3.13).

(A) r43 ̸= 0. We get R6 in Theorem 2.1 by (3.9), (3.30), (3.37), (3.44), (3.48), (3.52),

(3.60), (3.68) and (3.69).

(B) r43 = 0. We can get r214 + r14 = r12r24, r22 = r222 + r24r42, r12 = −r42, r41 = 0,

r22 + r44 = 1, r33 = 0 or 1 by (3.9), (3.35), (3.34), (3.37) and (3.40).

According to r33 = 0 and r33 = 1, respectively, we obtain R7 and R8 in Theorem 2.1 by

(3.17), (3.30), (3.39) and (3.45).

Case 2.2.2. r11 = 1. We conclude that I − Ri are in RB(M2(F)) (i = 6, 7, 8) by

Lemma 3.1.

4.3 Case 3. r23 = r21 = r24 = 0.

We can obtain r13 = 0, r43 = 0 and r33 = 0 or 1 by (3.24), (3.40) and (3.60).

Case I. r33 = 0. It is easy to get r11 = 0 or 1 by (3.6).

(I) r11 = 0. We can obtain r22 = 0 or 1 by (3.11).

(I.1) r22 = 0. It is not difficult to obtain r14 = 0 or 1 from (3.11).

(I.1.1) r14 = 0. We obtain r12 = r31 = r32 = r34 = r41 = r42 = r44 = 0 by (3.31), (3.38),

(3.39), (3.41), (3.42), (3.43) and (3.45). So we get R9 = 0 in Theorem 2.1.

(I.1.2) r14 = −1. We can get r12 = 0 by (3.31), r14 = 0 by (3.33), which is inconsistent

with r14 = −1. Hence, the system of the equations (3.6)–(3.69) has no solution in this case.

(I.2) r22 = 1. By (3.7) and (3.9), we can get r12r14 = 0 and r14 = 0 or −1.

(I.2.1) r14 = 0. We can get r44 = 0 or 1 from (3.69).

(A) r44 = 0. It is not difficult to obtain r34 = 0 from (3.65), r41 = 0 or −1 from (3.66).

By r41 = 0 and r41 = −1, respectively, we get R10 and R11 in Theorem 2.1.

(B) r44 = 1. Similarly, we obtain R12 and R13 in Theorem 2.1.

(I.2.2) r14 = −1. In the same way, we get R14 and R15 in Theorem 2.1.

(II) r11 = 1. Here r13 = r21 = r23 = r24 = r33 = r43 = 0 and r22 = 0 or 1.

(II.1) r22 = 0. We can get r11 = 0 from (3.30), which is inconsistent with r11 = 1.

Hence, the system of the equations (3.6)–(3.69) has no solution in this case.

(II.2) r22 = 1. From (3.7) and (3.9), we can conclude r12r14 = r12 and r14 = 0 or 1.

(II.2.1) r14 = 0. We can get r44 = 0 or 1.

(A) r44 = 0. We get r41 = 0 or −1 by (3.66) and we get R16 and R17 in Theorem 2.1.

(B) r44 = 1. Similarly, we get R18 and R19 in Theorem 2.1.

(II.2.2) r14 = 1. In the same way, we get R20 and R21 in Theorem 2.1.
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Case II. r33 = 1. We conclude that I − Ri (i = 9, 10, · · · , 21) are in RB(M2(F)) by

Lemma 3.1.

4.4 Case 4. r23 ̸= 0, r12 = 0.

We have

r12 = −r42 = 0, r13 = −r43, r32 = −r12r13
r23

= 0, r14r41 = −r13r12 = 0

by (3.20), (3.21), (3.28), (3.52), and by (3.12), (3.36), we get

r11 + r41 = r14 + r44. (4.1)

It is easy to get r22 = 0 or 1 by (3.11).

Case 4.1. r22 = 0.

Case 4.1.1. r14 ̸= 0. We have r31 = 0, r41 = 0 and r11 = 0 or 1 by (3.17), (3.21) and

(3.6).

(A) r11 = 0. It can be obtained that r214 + r14 = r13r34 and r21 = 0 by (3.9), (3.22).

According to r214+ r14 = r13r34 ̸= 0 and r214+ r14 = r13r34 = 0, respectively. We get R22

and R23 in Theorem 2.1 by (3.12), (3.13), (3.24), (3.25), (3.45), (3.68) and (4.1).

(B) r11 = 1. Similarly, we get R24 and R25 in Theorem 2.1.

Case 4.1.2. r14 = 0. From (3.25), (3.69), we conclude r34 = 0 and r44 = 0 or 1.

(A) r44 = 0. We can get r11 = −r41 by (4.1) and r24 = 0 by (3.37). According to r13 ̸= 0

and r13 = 0, respectively. We get R26 and R27 in Theorem 2.1 by (3.6), (3.8), (3.10), (3.12),

(3.22), (3.24) and (3.36).

(B) r44 = 1. Similarly, we get R28 and R29 in Theorem 2.1.

Case 4.2. r22 = 1. We conclude that I −Ri (i = 22, 23, · · · , 29) are in RB(M2(F)) by
Lemma 3.1.

4.5 Case 5. r23 ̸= 0, r12 ̸= 0.

We have

r12r23 = r13(r14 + 1− r11 − r33) ̸= 0, r42 = −r12, r43 = −r13, r32 = −r12r13
r23

,

r14r41 = −r12r13, r11 + r41 = r14 + r44, r22 = 1− r11 + r14 +
r213
r23

, r21 =
r12r23
r14

,

r33 = −r12r13
r14

− r44 + 1− r12r23
r13

, r31 = −r212r13
r214

− r212r23
r13r14

− 2r12r44
r14

− r12 +
r12
r14

,

r24 = r13 −
2r23r44
r13

− r12r23
r14

+
r23
r13

− r12r
2
23

r213
by (3.7), (3.8), (3.10), (3.12)–(3.14), (3.21), (3.23), (3.27), (3.28), (3.36) and (3.68). r14 +

r44 = 0 or 1 from (3.6).

Case 5.1. r14 + r44 = 0. We have (r13r14 − r12r23)(r14r23 − r13r24) = 0 by (3.37).

Case 5.1.1. r13r14 = r12r23. Let r12 = a, r13 = b, r14 = c. We get R30 in Theorem 2.1

by (3.50).
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Case 5.1.2. r24 =
r14r23
r13

̸= 0. We get

r313r14 + r13r14r23 + r13r
2
14r23 − r12r

2
13r23 − r12r14r

2
23 = 0. (4.2)

Let r12 = τ , r13 = a, r14 = b, r23 = c. We get R31 in Theorem 2.1 by (3.10), (3.21), (3.23),

(3.25), (3.29), (3.32), (3.62) and (3.68).

Here τabc ̸= 0, a3b+ ab2c+ abc− τa2c− τbc2 = 0 by (4.2), that is,

τ =
a3b+ ab2c+ abc

a2c+ bc2
̸= 0,

where abc ̸= 0. In fact, we have a3b+ ab2c+ abc ̸= 0 and a2c+ bc2 ̸= 0 by (3.12) and (3.69).

Case 5.2. r14 + r44 = 1. We conclude that I −R30 and I −R31 are in RB(M2(F)) by
Lemma 3.1.
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