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Abstract: Let B(H) be the C∗-algebra of all bounded linear operators on a complex

Hilbert space H. It is proved that an additive surjective map φ on B(H) preserving

the star partial order in both directions if and only if one of the following assertions

holds. (1) There exist a nonzero complex number α and two unitary operators U

and V on H such that φ(X) = αUXV or φ(X) = αUX∗V for all X ∈ B(H). (2)

There exist a nonzero α and two anti-unitary operators U and V on H such that

φ(X) = αUXV or φ(X) = αUX∗V for all X ∈ B(H).
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1 Introduction

In the last few decades, many researchers have studied properties of various partial orders

on matrix algebras, or operator algebras acting on a complex infinite dimensional Hilbert

space, such as minus partial order, star partial order, left and right star partial order and

so on (see [1–6]). One of the orders on the algebra Mn of all n × n complex matrices is

the star partial order “
∗
≤” defined by Drazin in [5]. Let A,B ∈ Mn. Then we say that

A
∗
≤ B if A∗A = A∗B and AA∗ = BA∗. We note that this definition can be extended to a

C∗-algebra by the same way. In particular, it can be extended to the C∗-algebra B(H) of all

bounded linear operators on a complex Hilbert space H. For example, motivated by Šemrl’s

approach presented in [7] for minus partial order, Dolinar and Marovt[4] gave an equivalent
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definition (see Definition 2 in [4]) of the star partial order and considered some properties

of this partial order. We can refer [1, 4] to see more interesting properties.

On the other hand, as partially ordered algebraic structures on Mn and B(H), what

are the automorphisms of Mn and B(H) with respect to those partial orders? These topics

have been studied and some interesting results have been obtained. Šemrl[7] described the

structure of corresponding automorphisms for the minus partial order. For the star partial

order, Guterman[8] characterized linear bijective maps on Mn preserving the star partial

order and Legǐsa[9] considered automorphisms of Mn with respect to the star partial order.

Recently, several authors consider the automorphisms of certain subspaces of B(H) with

respect to the star partial order when H is infinite dimensional. Dolinar and Guterman[10]

studied the automorphisms of the algebra K(H) of compact operators on a separable complex

Hilbert space H and they characterized the bijective, additive, continuous maps on K(H)

which preserve the star partial order in both directions. On the other hand, characterizations

of certain continuous bijections on the normal elements of a von Neumann algebra preserving

the star partial order in both directions are obtained by Bohata and Hamhalter[11]. In

this paper, we consider additive surjective maps preserving the star partial order in both

directions on B(H) and characterizations of those maps are given. In particular, we improve

the main result in [10].

Let H be a complex Hilbert space and denote by dimH the dimension of H. Let C and

Q denote the complex field and the rational number field, respectively. Let B(H), K(H)

and F(H) be the algebras of all bounded linear operators, the compact operators and the

finite rank operators on H, respectively. For every pair of vectors x,y ∈ H, ⟨x, y⟩ denotes
the inner product of x and y, and x⊗ y stands for the rank-1 linear operator on H defined

by (x⊗ y)z = ⟨z, y⟩x for any z ∈ H. If x is a unit vector, then x⊗ x is a rank-1 projection.

σ(A) is the spectrum of A for any A ∈ B(H). For a subset S of H, [S] denotes the closed

subspace of H spanned by S and PM denotes the orthogonal projection on M for a closed

subspace M of H. We denote by R(T) and N(T) the range and the kernel of a linear map

T between two linear spaces. Throughout this paper, we generally denote by I the identity

operator on a Hilbert space.

2 Additive Maps Preserving the Star Partial Order

Let φ be an additive map on B(H). We say that φ preserves the star partial order if

φ(A)
∗
≤ φ(B) for any A,B ∈ B(H) such that A

∗
≤ B. We say that φ preserves the star

partial order in both directions if φ(A)
∗
≤ φ(B) if and only if A

∗
≤ B for any A,B ∈ B(H).

We firstly give the following lemma which generalizes Lemma 10 in [10].

Let T ∈ B(H). We denote by

H1 = R(T ∗), H2 = N(T ), K1 = R(T ), K2 = N(T ∗),

respectively. Then

H = H1 ⊕H2 = K1 ⊕K2, (2.1)
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and

T =

(
T0 0

0 0

)
(2.2)

with respect to the orthogonal decompositions (2.1), where T0 ∈ B(H1, K1) is an injective

operator with dense range.

Lemma 2.1 Let T ∈ B(H) be a nonzero operator. Then T is of rank-1 if and only if for

any operator S with S
∗
≤ T , we have S = 0 or S = T .

Proof. The necessity is clear. Conversely, suppose rankT ≥ 2. Let T have the matrix

form (2.2). Let T0 = UA be the polar decomposition of T0. Then A ∈ B(H1) is an injective

positive operator and U ∈ B(H1, K1) is a unitary operator. Let A =

∫
σ(A)

λdEλ be the

spectral decomposition of A. If σ(A) = {λ} for some positive constant λ, then T = λW ,

where W is a partial isometry with rank at least 2. It is easy to know that there is a rank-1

operator T1 such that T1

∗
≤ T . This is a contradiction. Now we assume that σ(A) is not

a singleton. Let ∆ ⊆ σ(A) be a Borel subset such that both E(∆) and (I − E(∆)) are

nonzero and H1 = E(∆)H1 ⊕ (I −E(∆))H1. Then

H = E(∆)H1 ⊕ (I −E(∆))H1 ⊕H2 = UE(∆)H1 ⊕U(I −E(∆))H1 ⊕K2. (2.3)

Put U1 = U |E(∆)H1
, A1 = E(∆)A, U2 = U |(I−E(∆))H1

and A2 = (I − E(∆))A on H1,

respectively. Then

T =

 U1A1 0 0

0 U2A2 0

0 0 0

 ,

according to (2.3). Let

T∆ =

 U1A1 0 0

0 0 0

0 0 0


according to (2.3) again. It follows that T∆

∗
≤ T by Lemma 3 in [4]. Note that T∆ ̸= T is a

nonzero operator. This is a contradiction too. Thus T is of rank-1. The proof is completed.

Our main result is as follows.

Theorem 2.1 Let φ be an additive surjective map on B(H). Then φ preserves the star

partial order in both directions if and only if one of the following assertions hold:

(1) There exist a nonzero α ∈ C and two unitary operators U and V on H such that

φ(X) = αUXV or φ(X) = αUX∗V for all X ∈ B(H);

(2) There exist a nonzero α ∈ C and two anti-unitary operators U and V on H such

that φ(X) = αUXV or φ(X) = αUX∗V for all X ∈ B(H).

Proof. The sufficiency is clear. We only need prove the necessity. It is clear that φ is

injective. Then φ−1 preserves the star partial order too. We complete the proof by several

steps.
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Step 1. φ preserves rank-n operators in both directions.

Let A be a rank-1 operator and φ(A) = B. Suppose that rankB ≥ 2. Then there is a

nonzero B1 ∈ B(H) such that B1

∗
≤ B and B1 ̸= B by Lemma 2.1. Put A1 = φ−1(B1).

Then A1

∗
≤ A and A1 ̸= A is a nonzero operator. This is a contradiction by Lemma 2.1.

Thus B is of rank-1. It follows that φ preserves rank-1 operators in both directions. Since

a rank-n operator is the sum of n rank-1 operators, it is elementary that φ preserves rank-n

operators in both directions.

Step 2. Let f , g ∈ H and φ(f ⊗ g) = u⊗ v. Then

{φ(x⊗ y) : x ∈ {f}⊥, y ∈ {g}⊥} = {ξ ⊗ η : ξ ∈ {u}⊥, η ∈ {v}⊥}.
In fact, for any x ∈ {f}⊥, y ∈ {g}⊥, we have

f ⊗ g
∗
≤ f ⊗ g + rx⊗ y, r ∈ Q.

Let φ(x⊗ y) = ξ ⊗ η. Then

u⊗ v
∗
≤ u⊗ v + rξ ⊗ η, r ∈ Q,

which implies that

ξ ∈ {u}⊥, η ∈ {v}⊥.

The converse is the same since φ preserves the star partial order in both directions.

Step 3. For any unit vectors f , g ∈ H, ∥φ(f ⊗ f)∥ = ∥φ(g ⊗ g)∥. Moreover, if f⊥g,

then ∥φ(f ⊗ f)∥ = ∥φ(f ⊗ g)∥.
Let f⊥g, φ(f ⊗ f) = ξ1 ⊗ η1 and φ(g ⊗ g) = ξ2 ⊗ η2. By Step 2, ξ1⊥ξ2 and η1⊥η2.

Without loss of generality, we may assume that

∥φ(f ⊗ f)∥ = ∥ξ1∥ = ∥η1∥ = 1.

Put U and V be two unitary operators on H such that

Uξ1 = f , U
1

∥ξ2∥
ξ2 = g, U{ξ1, ξ2}⊥ = {f , g}⊥,

V η1 = f , V
1

∥η2∥
η2 = g, V {η1, η2}⊥ = {f , g}⊥.

Let ψ = UφV ∗. Then ψ preserves the star partial order in both directions such that

ψ(f ⊗ f) = f ⊗ f

and

ψ(g ⊗ g) = ∥ξ2∥∥η2∥g ⊗ g = β22g ⊗ g.

Then ψ preserves rank-1 operators in both directions. Let ψ(f ⊗ g) = ξ3 ⊗ η3. Note that

both f ⊗ f + f ⊗ g and f ⊗ g + g ⊗ g are of rank-1. Then either f (resp. g) and ξ3 or f

(resp. g) and η3 are linearly dependent. We assume that

ξ3 ⊗ η3 = β12f ⊗ g.

We thus have

ψ(g ⊗ f) = β21g ⊗ f .

Put

E(r) =
1

1 + r2
(f ⊗ f + rf ⊗ g + rg ⊗ f + r2g ⊗ g), r ∈ Q.



NO. 1 XI C. et al. ADDITIVE MAPS PRESERVING THE STAR PARTIAL ORDER ON B(H) 93

Then E(r) is a projection and

E(r) ≤ f ⊗ f + g ⊗ g.

Of course,

E(r)
∗
≤ f ⊗ f + g ⊗ g.

It follows that
1

1 + r2
(f ⊗ f + rβ12f ⊗ g + rβ21g ⊗ f + r2β22g ⊗ g)

∗
≤ f ⊗ f + β22g ⊗ g.

Then

|β12| = |β21| = β22 = 1.

Thus

∥φ(f ⊗ f)∥ = ∥ψ(f ⊗ f)∥ = ∥ψ(g ⊗ g)∥ = ∥φ(g ⊗ g)∥ = ∥ψ(f ⊗ g)∥ = ∥φ(f ⊗ g)∥ = 1.

If dimH = 2, then for any unit vector x ∈ H we have

x⊗ x
∗
≤ f ⊗ f + g ⊗ g = I.

Thus we have ψ(x⊗ x) is a projection and

∥φ(x⊗ x)∥ = ∥ψ(x⊗ x)∥ = 1 = ∥φ(f ⊗ f)∥.
Assume that dimH > 2. For any unit vectors f and g, take any unit vector h ∈ {f , g}⊥.
Then

∥φ(f ⊗ f)∥ = ∥φ(h⊗ h)∥ = ∥φ(g ⊗ g)∥.

We next assume that ∥φ(f⊗f)∥ = 1 for any unit vector f ∈ H without loss of generality.

Step 4. Let {eλ : λ ∈ Λ} be an orthonormal basis of H. Then there are two orthonormal

bases {fλ : λ ∈ Λ} and {gλ : λ ∈ Λ} such that

φ(eλ ⊗ eλ) = fλ ⊗ gλ, λ ∈ Λ. (2.4)

If (2.4) holds, then both {fλ : λ ∈ Λ} and {gλ : λ ∈ Λ} are orthonormal families of H. If

there is a unit vector f ∈ H such that f⊥fλ for all λ ∈ Λ, then φ−1(f ⊗ gλ0) = x0 ⊗ y0 is

a rank-1 operator. By Step 2, eλ ∈ {x0}⊥. This is a contradiction. Thus both {fλ : λ ∈ Λ}
and {gλ : λ ∈ Λ} are bases of H.

Step 5. φ is linear or conjugate linear on F(H).

As in Step 4, let {eλ : λ ∈ Λ} be an orthonormal basis of H. Let U and V be two

unitary operators on H such that U1fλ = eλ and V1gλ = eλ for any λ ∈ Λ. Put

φ1(X) = Uφ(X)V ∗, X ∈ B(H).

Then φ1 preserves the star partial order in both directions such that

φ1(eλ ⊗ eλ) = eλ ⊗ eλ, λ ∈ Λ.

For any n ∈ N+ and {eλi : 1 ≤ i ≤ n} ⊆ {eλ : λ ∈ Λ}, denote

Pn =

n∑
i=1

eλi ⊗ eλi .

We conclude that

φ1(PnB(H)Pn) = PnB(H)Pn
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by the similar way as Step 4 of [10]. In fact, it easily follows that φ1(Q) = Q, where Q is

the projection onto {eλ : λ ∈ S} for any subset S ⊆ Λ. For any A ∈ PnB(H)Pn, we know

that

A
∗
≤ A+ r(I − Pn), r ∈ Q.

Then

φ1(A)
∗
≤ φ1(A) + r(I − Pn), r ∈ Q.

It follows that φ1(A) ∈ PnB(H)Pn by a simple calculation. PnB(H)Pn can be identified

with Mn. So φ1|PnB(H)Pn
can be considered as a bijective, additive map on Mn, which

preserves the star partial order in both directions. It follows from Theorem 3.1 in [12]

that φ1|PnB(H)Pn
is linear or conjugate linear. We note that if φ1|PkB(H)Pk

is linear (resp.

conjugate linear) for some k ≥ 2, then φ1|PnB(H)Pn
is also linear (resp. conjugate linear) for

any n. This implies that if φ|PkB(H)Pk
is linear (resp. conjugate linear) for some k ≥ 2, then

φ|PnB(H)Pn
is linear (resp. conjugate linear) for any n. We now assume that φ|PkB(H)Pk

is

linear for some k ≥ 2. Let A,B ∈ F(H). Let M be the subspace generated by

{eλi : 1 ≤ i ≤ k} ∪R(A) ∪R(A∗) ∪R(B) ∪R(B∗).

Then M is finite dimensional with an orthonormal basis {hj : 1 ≤ j ≤ m} containing

{eλi : 1 ≤ i ≤ k}. It now follows that φ|PMB(H)PM
is linear by preceding proof since

Pk ≤ PM .

Note that A = PMAPM ∈ PMB(H)PM and B = PMBPM ∈ PMB(H)PM . Then

φ(αA+ βB) = αφ(A) + βφ(B), α, β ∈ C.
Thus φ is linear on F(H).

If φ|PkB(H)Pk
is conjugate linear for some k ≥ 2, then φ is conjugate linear on F(H).

We now next assume that φ is linear on F(H). Then φ is a rank preserving linear

bijection on F(H). It follows from Theorem 2.1.6 in [13] that the following statements hold.

(1) There exist two linear maps A and C on H such that for all x,y ∈ H,

φ(x⊗ y) = Ax⊗Cy;

(2) There exist two conjugate linear maps A and C on H, such that for all x,y ∈ H,

φ(x⊗ y) = Ay ⊗Cx.

Note that both A and C are invertible since φ is bijective on F(H). Assume that (1)

holds. Then for any unit vectors e,f ∈ H such that ⟨e, f⟩ = 0, we have that

⟨Ae, Af⟩ = 0

by Step 2. Note that (e+ f)⊥(e− f). It follows that

∥Ae∥ = ∥Af∥.
If dimH = 2, then for any unit vector x ∈ H, we have x = αe + βf for some constants

α, β ∈ C with |α|2 + |β|2 = 1. We easily have that

∥Ax∥ = ∥Ae∥ = ∥Af∥
by an elementary calculus. If dimH > 2, then for any unit vectors x,y ∈ H, there is a unit

vector z ∈ {x, y}⊥. It now follows that

∥Ax∥ = ∥Az∥ = ∥Ay∥.
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Thus U =
A

∥A∥
is a unitary operator. We similarly have that V =

C∗

∥C∥
is also a unitary

operator. Put α = ∥A∥∥C∥. Then we have that

φ(F ) = αUFV , F ∈ F(H).

Put

ϕ(X) = α−1U∗φ(X)V ∗, X ∈ B(H).

Then ϕ is an additive bijection on B(H) preserving the star partial order in both directions

such that

ϕ(F ) = F , F ∈ F(H).

Now let P ∈ B(H) be any projection. Then for any finite rank projection Q, if Q ≤ P , we

have

λQ
∗
≤ λP , λ ∈ C.

Then

λQ
∗
≤ ϕ(λP ).

Noting that {λQ : Q ≤ P } is a ∗-increasing net and ∗-bounded from above such that

lim
Q≤P

λQ = λP

in strong operator topology, by Proposition 3.5 in [1], we have

lim
Q≤P

λQ = λP
∗
≤ ϕ(λP ).

We note that the ∗-increasing and ∗-bounded sequences are considered in this proposition.

However, the proposition still holds if we replaces a sequence by a net. By considering ϕ−1,

we have

ϕ(λP ) = λP .

Then ϕ(X) = X for all X ∈ B(H) since X is a linear combination of finitely many projec-

tions from Theorem 3 in [14]. Thus

φ(X) = αUXV , X ∈ B(H).

If (2) holds, then there are two anti-unitary operators U and V such that

φ(X) = αUX∗V , X ∈ B(H).

If φ is conjugate linear on F(H), then we similarly have two unitary operators U and

V on H such that

φ(X) = αUX∗V , X ∈ B(H)

or two anti-unitary operators U and V on H such that

φ(X) = αUXV , X ∈ B(H).

The proof is completed.

The following corollary is a generalization of the main result in [10].
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Corollary 2.1 Let φ be an additive surjective map on K(H). Then φ preserves the star

partial order in both directions if and only if one of the following holds:

(1) There exist a nonzero α ∈ C and two unitary operators U and V on H such that

φ(X) = αUXV , X ∈ K(H)

or

φ(X) = αUX∗V , X ∈ K(H);

(2) There exist a nonzero α ∈ C and two anti-unitary operators U and V on H such

that

φ(X) = αUXV , X ∈ K(H)

or

φ(X) = αUX∗V , X ∈ K(H).
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