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Abstract: In this paper, one-dimensional (1D) nonlinear beam equations of the form

utt − uxx + uxxxx + mu = f(u)

with Dirichlet boundary conditions are considered, where the nonlinearity f is an

analytic, odd function and f(u) = O(u3). It is proved that for all m ∈ (0, M∗] ⊂ R

(M∗ is a fixed large number), but a set of small Lebesgue measure, the above equations

admit small-amplitude quasi-periodic solutions corresponding to finite dimensional

invariant tori for an associated infinite dimensional dynamical system. The proof is

based on an infinite dimensional KAM theory and a partial Birkhoff normal form

technique.
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1 Introduction and Main Result

Consider the general nonlinear beam equations of the form

utt − uxx + uxxxx + mu = f(u) (1.1)

on the finite x-interval [0, π] with Dirichlet boundary conditions

u(t, 0) = u(t, π) = uxx(t, 0) = uxx(t, π) = 0, (1.2)

∗
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where the parameter m ∈ (0, M∗] ⊂ R, the nonlinearity f is assumed to be real analytic in

u and of the form

f(u) = au3 +
∑

n≥5

fnun, a 6= 0. (1.3)

We study the equations of the form (1.1) as a Hamiltonian system on

P = H1
0 ([0, π]) × L2([0, π])

with coordinates u and v = ut. Then the Hamiltonian is

H =
1

2
〈v, v〉 +

1

2
〈Au, u〉 +

∫ π

0

g(u)dx, (1.4)

where

A =
d4

dx4
− d2

dx2
+ m, g =

∫

0

−f(s)ds, (1.5)

and 〈 · , · 〉 denotes the usual scalar product in L2. Then (1.1) can be written in the form

ut =
∂H

∂v
= v, vt = −∂H

∂u
= −Au − f(u). (1.6)

Let

φj(x) =

√

2

π
sin jx, λj =

√

j4 + j2 + m, j = 1, 2, · · ·
be the basic modes and frequencies of the linear equation

utt − uxx + uxxxx + mu = 0

with Dirichlet boundary conditions (1.2). Then every solution of the linear equation is the

superposition of their harmonic oscillations and of the form

u(t, x) =
∑

j≥1

qj(t)φj(x), qj(t) =
√

Ij cos(λjt + θj),

with amplitudes Ij ≥ 0 and initial phases θj . The motions are periodic or quasi-periodic,

respectively, depending on whether one or finitely many eigenfunctions are excited. In

particular, for every choice

J = {j1 < j2 < · · · < jn} ⊂ N

of finitely many modes there exists an invariant 2n-dimensional linear subspace EJ which

is completely foliated into rotational tori with frequencies λj1 , · · · , λjn
:

EJ = {(u, v) = (q1φj1 + · · · + qnφjn
, p1φj1 + · · · + pnφjn

)} =
⋃

I∈P n

TJ (I),

where

Pn = {I ∈ Rn : Ij > 0, 1 ≤ j ≤ n}
is the positive quadrant in Rn and

TJ (I) = {(u, v) : q2
j + λ−2

j p2
j = Ij , 1 ≤ j ≤ n},

by using the above representations of u and v. In addition, such a torus is linearly stable,

and all solutions have zero Lyapunov exponents.

Upon restoration of the nonlinearity f , we show that there exist a Cantor set O ⊂ Pn,

a family of n-tori

TJ [O] =
⋃

I∈O
TJ (I) ⊂ EJ over O,
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and a Whitney smooth embedding Φ : TJ [O] → EJ ⊂ P , such that the restriction of Φ to

each TJ (I) in the family is an embedding of a rotational n-torus for the nonlinear equations.

The image E of TJ [O] is called the Cantor manifold of rotational d-tori in [1].

Theorem 1.1(Main Theorem) Suppose that the nonlinearity f is real analytic and of the

form (1.3). Then for each index set J = {j1 < · · · < jn}, there exists, for all m ∈ (0, M∗] ⊂
R, but a set of small Lebesgue measure, a Cantor manifold EJ given by a Whitney smooth

embedding Φ : TJ [O] → EJ , which is a higher order perturbation of the inclusion map

Φ0 : EJ → P restricted to TJ [O]. Moreover, the Cantor manifold EJ is foliated by real

analytic, linearly stable, n-dimensional invariant tori carrying quasi-periodic solutions.

Their starting point is to take (1.1) as a perturbed sine-Gordon equation. This result is

regained by Pöschel[1] by the infinite KAM theory and the normal form technique. Later,

the existence of quasi-periodic solutions of the Hamiltonian partial differential equations

have been studied in [2–8]. In this paper, by using the KAM approach originating from

[9–11], we can obtain that (1.1) admits small-amplitude quasi-periodic solutions for all m ∈
(0, M∗] ⊂ R (M∗ is a fixed large number), but a set of small Lebesgue measure.

2 An Infinite-dimensional KAM Theory

We consider a small perturbation of infinitely dimensional Hamiltonian in the parameter

dependent form

H = N + P =
∑

1≤j≤n

ωj(ξ)yj +
1

2

∑

j≥1

Ωj(u
2
j + v2

j ) + P (2.1)

in n dimensional angle-action coordinates (x, y) and infinite-dimensional Cartesian coordi-

nate (u, v) with symplectic structure
n

∑

j=1

dxj ∧ dyj +
∑

j=n+1

duj ∧ dvj ,

on the phase space

Pa,s = T n × Rn × la,s × la,s ∋ (x, y, u, v),

where T n is the usual n torus with 1 ≤ n < ∞. The tangent frequencies ω = (ω1, · · · , ωn)

and the normal frequencies Ω = (Ω1,Ω2, · · · ) depend on n parameters ξ ∈ O ⊂ Rn. O is a

closed bounded set of positive Lebesgue measure.

As in [2], we set

z =
u + iv√

2
, z̄ =

u − iv√
2

,

and

D(ŝ, r) = {(x, y, z, z̄) ∈ Pa,s : |Imx| < ŝ, |y| < r2, ‖z‖a,s + ‖z̄‖a,s < r},
where | · | denotes the sup-norm for the complex vector and ‖ · ‖a,s is the norm in the space

la,s, which are to be defined later. We define the weighted phase norm

|W |r = |W |s̄,r = |x| + 1

r2
|y| + 1

r
‖z‖a,s̄ +

1

r
‖z̄‖a,s̄
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for W = (x, y, z, z̄) ∈ Pa,s̄ with s̄ = s+1. Denote by O the parameter set [1, 2]n. For a map

F : D(s, r) → Pa,s̄, define its Lipschitz semi-norm |F |Lr as follows:

|F |Lr = sup
ξ 6=ζ

|∆ξ,ζF |r
|ξ − ζ| = sup

ξ 6=ζ

|F ( · , ξ) − F ( · , ζ)|r
|ξ − ζ| ,

where the supremum is taken over O.

For each ξ ∈ O, there is an n-torus

T n
0 = T n × {0, 0, 0}

with frequencies

ω(ξ) = (ω1(ξ), · · · , ωn(ξ))

of the linear integrable Hamiltonian N . In its norm space, described by u-v coordinates, the

origin is an elliptic fixed point with characteristic frequencies Ω(ξ). The KAM theorem by

Pöschel[11] shows the existence of this linear stable rotational tori under a small perturbation

P . In order to obtain the result we have to give some assumptions:

(A1) Non-degeneracy. The real map ξ → ω(ξ) is Lipeomorphism between O and its

image. Moreover, for all integer vectors (k, l) ∈ Zn × Z∞ with 1 ≤ | l | ≤ 2,

meas{ξ : 〈k, ω(ξ)〉 + 〈l, Ω(ξ)〉 = 0} = 0, (2.2)

and 〈l, Ω(ξ)〉 6= 0 on O, where | l | =
∑

j

| l |j for integer vectors, and 〈 · , · 〉 is the usual scalar

product.

(A2) Spectral Asymptotics. There exist d ≥ 1 and δ < d − 1 such that

Ωj(ξ) = jd + · · · + O(jδ), (2.3)

where the dots stand for fixed lower order terms in j, allowing also negative exponents.

More precisely, there exists a fixed parameter independent sequence Ω̄ with Ω̄j = jd + · · ·
such that Ω̃j = Ωj − Ω̄j gives rise to a Lipschitz map Ω̃ : O → l−δ

∞ , where lp∞ is the space of

all real sequences with the finite norm |ω|p = sup
j

|ωj|jp.

(A3) Regularity. The perturbation P (x, y, u, v) is real analytic for a real argument

(x, y, u, v) ∈ D(r, s) for any given r, s > 0, and Lipschitz in the parameter ξ ∈ O. For

each ξ ∈ O, its gradients with respect to u, v satisfy

iPz, −iPz̄ ∈ A(la,p, la,p̄)

{

p̄ ≥ p, for d > 1;

p̄ > p, for d = 1,
(2.4)

where A(la,p, la,p̄) denotes the class of the maps from some neighborhoods of the origin in la,p

into la,p̄, which is real analytic in the real and imaginary parts of the complex coordinates.

To state Pöschel’s theorem we assume that

|ω|LO + |Ω |L−δ,O ≤ M < ∞, |ω−1|Lω(O) ≤ L < ∞. (2.5)

Moreover, we introduce the notations

〈 l 〉d = max
{

1,
∣

∣

∣

∑

j

jdlj
∣

∣

∣

}

, Ak = 1 + |k|τ ,

where τ > n + 1 will be fixed later. Finally, let

z = {(k, l) 6= 0, | l | ≤ 2} ⊂ Zn × Z∞.

We now state the basic KAM Theorem which is recited from [11].
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Theorem 2.1 Suppose that H = N + P satisfies (A1)–(A3), and

ǫ = sup
D(s,r)×O

|XP |r + sup
D(s,r)×O

|XP |Lr ≤ γα, (2.6)

where 0 < α ≤ 1 is another parameter, and γ depends on n, τ and s. Then there exist a

Cantor set Oα ⊂ O with

meas(Oα/O) → 0 as α → 0,

a Lipschitz continuous family of torus embedding Φ : T n × Oα → Pa,p̄, and a Lipschitz

continuous map ω̃ : Oα → Rn, such that for each ξ ∈ Oα, the map Φ restricted T n × {ξ}
is a real analytic embedding of rotational torus with frequencies ω̃(ξ) for the Hamiltonian H

at ξ.

Each embedding is analytic on |Imx| <
s

2
, and

|Φ − Φ0|r +
α

M
|Φ − Φ0|Lr ≤ cǫ

α
, (2.7)

|ω̃ − ω| + α

M
|ω̃ − ω|L ≤ cǫ, (2.8)

uniformly on that domain and Oα, where Φ0 : T n × O → T n
0 is the trivial embedding, and

c ≤ γ−1 depends on the same parameters as γ.

Moreover, there exist Lipschitz maps ων and Ων on O for ν ≥ 1 satisfying

ω0 = ω, Ω0 = Ω

and

|ων − ω| + α

M
|ων − ω|α ≤ cǫ, (2.9)

|Ων − Ω |−δ +
α

M
|Ων − Ω |L−δ ≤ cǫ, (2.10)

such that

meas(O/Oα) ⊂ ⋃Rj
k,l(α),

where

Rj
k,l(α) =

{

ξ ∈ O : |〈k, ωj(ξ)〉 + 〈l, Ωj(ξ)〉| < α
〈l〉d
Ak

}

, (2.11)

and the union is taken over all j ≥ 0 and (k, l) ∈ Zn ×Z∞ such that |k| > K02
j−1 for j ≥ 1

with a constant K0 ≥ 1 depending on n and τ .

Concerning the measure of the bad frequency set O/Oα, we have the following theorem.

Theorem 2.2 ([11], Theorem D) Suppose that in Theorem 2.1 the unperturbed frequencies

are affine functions of the parameters. Then there is a constant c̃ such that

meas(O/O)α ≤ c̃(diamO)n−1αµ, (2.12)

where

µ =











1, d > 1;

κ

κ + 1 − ι/4
, d = 1,

for all sufficiently small α, and ι is any number with 0 ≤ ι < min{p̄ − p, 1}. In the case

d = 1, κ is a positive constant such that
Ωi − Ωj

i − j
= 1 + O(j−κ) (2.13)

uniformly on O.
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3 The Hamiltonian for the General Beam Equations

We recall that the Hamiltonian of our nonlinear beam equation is

H =
1

2
〈v, v〉 +

1

2
〈Au, u〉 +

∫ π

0

g(u)dx. (3.1)

As in [1], we introduce coordinates q = (q1, q2, · · · ), p = (p1, p2, · · · ) through the relations

u =
∑

j≥1

qj
√

λj

φj , v =
∑

j≥1

√

λjpjφj , (3.2)

where

φj =

√

2

π
sin jx, j = 1, 2, · · ·

are the normalized Dirichlet eigenfunctions of the operator A with eigenvalues

λ2
j = j4 + j2 + m,

and the coordinates q and p are taken from the Hilbert space la,s. We obtain the Hamiltonian

H = Λ + G =
1

2

∑

j≥1

λj(p
2
j + q2

j ) +

∫ π

0

g
(

∑

j≥1

qj
√

λj

φj

)

dx (3.3)

with the lattice Hamiltonian equations

q̇j =
∂H

∂pj
= λjpj, ṗj = −∂H

∂qj
= −λjqj −

∂G

∂qj
. (3.4)

Instead of discussing its validity, we just take the latter Hamiltonian as our new starting

point and make the following simple observation.

Lemma 3.1 Let a ≥ 0, s > 0, I be an interval, and t ∈ I → (q(t), p(t)) be a real analytic

solution of (3.4) such that

sup
t∈I

∑

j≥1

(|qj(t)|2 + |pj(t)|2)j2se2ja < ∞.

Then

u =
∑

j≥1

qj
√

λj

φj

is an analytic solution of (1.1).

Next we consider the regularity of the vector field of G. Let l2 be the Hilbert space of

bi-infinite square summable sequences with complex coefficients. For a ≥ 0 and s > 0, let

the subspace la,s ⊂ l2 consist of, by definition, all bi-infinite sequences with the finite norm

‖q‖2
a,s = |q0|2 +

∑

j

|qj |2|j|2se2|j|a.

Let

F : la,s → L2, q 7→ Fq =
1√
2π

∑

j

qje
ijx

be the inverse discrete Fourier transform, which defines an isometry between the two spaces,

where L2 is all square-integrable complex valued functions on [−π, π]. Through F we can

define subspaces W a,s ⊂ L2 that are normed by setting

‖Fq‖a,s = ‖q‖a,s.
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Lemma 3.2 For a ≥ 0 and s >
1

2
, the space la,s is a Hilbert algebra with respect to

convolution of sequences and

‖q ∗ p‖a,s ≤ C‖q‖a,s‖p‖a,s

with a constant C depending on s. Consequently, W a,s is a Hilbert algebra with respect to

multiplication of functions.

Lemma 3.3 For a ≥ 0 and s > 0, the vector field XG is a map from some neighborhoods

of the origin in la,s into la,s+2, with

‖XG‖a,s+2 = O(‖q‖3
a,s).

Proof. In a sufficient small neighborhood of the origin, we can consider the nonlinearity

f = u3. Due to

G =
1

4

∫ π

0

|u(x)|4dx =
1

4

∑

i,j,r,l

Gijrlqiqjqrql,

we have
∂G

∂ql
=

∑

i,j,r

Gijrlqiqjqr.

Hence

‖Gq‖2
a,s+2 =

∑

l≥1

|Gql
|2l2(s+2)e2al

≤ c
∑

l≥1

∑

±i±j±r=l

( 1
√

λiλjλrλl

|qiqjqr|
)2

l2(s+2)e2al

≤ c
∑

l≥1

(1

l

)2 ∑

±i±j±r=l

( |qiqjqr|
|i||j||r|

)2

l2(s+2)e2al

≤ c
∑

l≥1

1

lk
(q̃ ∗ q̃ ∗ q̃)2l2(s+2)e2al

≤ c
∑

l≥1

(q̃ ∗ q̃ ∗ q̃)2l2(s+1)e2al

≤ c‖q̃ ∗ q̃ ∗ q̃‖2
a,s+1

≤ c(‖q̃‖2
a,s+1)

3

≤ c(‖q‖2
a,s)

3

with

q̃j =
|qj |
j

,

where the constant c may be different at each appearance. Hence

‖Gq‖a,s+2 ≤ c(‖q‖a,s)
3.

The regularity of XG follows from the regularity of its components.

For the nonlinearity u3 we find

G =
1

4

∫ π

0

|u(x)|4dx =
1

4

∑

i,j,r,l

Gijrlqiqjqrql (3.5)
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with

Gijrl =
1

√

λiλjλrλl

∫ π

0

φiφjφrφldx.

It is not difficult to verify that Gijrl = 0 unless ±i ± j ± r ± l = 0 for some combination of

plus and minus signs. Particularly, we have

Giijj =
1

2π
· 2 + δj

i

λiλj
(3.6)

by the elementary calculation. In the following, we focus on the nonlinearity u3, since a

non-zero coefficient in front of u3 and all terms of order five or more make no difference.

Next we transform the Hamiltonian (3.3) into some partial Birkhoff form of order four so

that it may serve as a small perturbation of some nonlinear integrable system in a sufficiently

small neighborhood of the origin. we introduce the complex coordinates

zj =
1√
2
(qj + ipj), z̄j =

1√
2
(qj − ipj).

Then the Hamiltonian is given by

H = Λ + G =
∑

j

λj |zj|2 +

∫ π

0

g
(

∑

j

zj + z̄j
√

2λj

φj

)

dx (3.7)

with symplectic structure i
∑

j

dzj ∧ dz̄j .

Lemma 3.4 If {i, j, r, l} are nonzero integers such that i ± j ± r ± l = 0, but (i, j, r, l) 6=
(p,−p, q,−q), then for all m ∈ (0, M∗] ⊂ R, but a set of small Lebesgue measure, we have

|λi ± λj ± λr ± λl| ≥ c, where c is a constant depending on m.

Proof. Without loss of generality, we may assume that i ≤ j ≤ r ≤ l. The condition

i± j ± r± l = 0 then reduces to two possibilities, either i− j − r + l = 0 or i + j + k− l = 0.

We have to study divisors of the form

δ = ±λi ± λj ± λr ± λl

for all possible combinations of plus and minus signs. To this end, we distinguish them

according to their number of minus signs. To shorten notation we let, for example,

δ++−+ = λi + λj − λr + λl,

and similarly, for all other combinations of plus and minus signs.

Case 0. No minus sign. This is trivial.

Case 1. One minus sign. Obviously,

δ−+++ > δ+−++ > δ++−+ >
√

i4 + i2 + m +
√

j4 + j2 + m > 1,

so it suffices to study δ = δ+++−. We consider δ as a function of m and notice that

δ(n)(m) = (−1)n−1 (2n − 1)!!

2n
(λ

1

2
−n

i + λ
1

2
−n

j + λ
1

2
−n

r − λ
1

2
−n

l ) > d > 0.

According to Lemma 5.1 in the Appendix,

Ic = {m : |f(m)| ≤ c, m ∈ I, c > 0} < c̃c,

so after excising a set of small measure, we obtain that δ(m) > c.

Case 2. Two minus signs. Here we have δ−+−+, δ−−++ > δ+−−+, and all other cases

reduce to these ones by inverting the signs. So it suffices to study δ(m) = δ+−−+. Let

f(t) =
√

t4 + t2 + m.
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It is easy to verify that for t ≥ 1,

f ′(t) =
t(2t2 + 1)√
t4 + t2 + m

> 0

and

f ′′(t) =
(t3 − 1)2 + (t − 1)2 + 5t6 + 7t4 + m(6t2 + 1) − 3/4

(
√

t4 + t2 + m)3
> 0,

so f is increasing and convex for t ≥ 1. Hence we have

λl − λr ≥ λl−p − λr−p, 1 ≤ p ≤ r.

In the case l = i + j + r, we thus obtain

λl − λr ≥ λl−(r−i) − λi = λj+2i − λi.

Hence

δ ≥ λj+2i − λj ≥ 2if ′(j) =
2ij(2j2 + 1)

√

j4 + j2 + m
≥ i√

1 + m
,

by using the mean value theorem and the monotonicity of f ′. With the other alternative,

we have

i − j = r − l 6= 0.

Hence

λl − λr ≥ λj+1 − λi+1,

and

λj+1 − λj ≥ λi+2 − λi+1.

So we obtain that

δ ≥ λj+1 − λi+1 − λj + λi ≥ λi+2 − 2λi+1 + λi ≥ f ′′(i) ≥ 1

(
√

i4 + i2 + m)3
.

Cases 3 and 4. Three and four minus signs. These ones can be reduced to Cases 1 and

0, respectively.

Proposition 3.1 For any index set J = {j1 < · · · < jn}, and all m ∈ (0, M∗] ⊂ R, but

a set of small Lebesgue measure, there exists a change of coordinates Γ in a neighborhood

of the origin in la,s such that the Hamiltonian

H = Λ + G

with the nonlinearity (3.5) is changed into

H ◦ Γ = Λ + Ḡ + Ĝ + K,

where XḠ, XĜ, XK : la,s → la,s+2, and

Ḡ =
1

2

∑

one of {i,j}∈J

Ḡijz
2
i z2

j

with coefficients

Ḡij =
6

π
· 4 − δij

λiλj
,

and

|Ĝ| = O(‖ẑ‖4
a,s), |K| = O(‖z‖6

a,s), ẑ = {zj}j 6∈J .

Moreover, the dependence of Γ on m is real analytic for almost all compact m-interval in

(0, +∞) .
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Proof. It is convenient to introduce coordinates (· · · , w−2, w−1, w1, w2, · · · ) in la,s by

setting

zj = wj , z̄j = w−j .

Let

λ′
i = (sgn i)λ|i|.

The Hamiltonian under consideration then reads as

H =
∑

n

λnwnw−n +
∑

i,j,r,l

Gijrlwiwjwrwl. (3.8)

Consider a Hamiltonian function

F =
∑

i,j,r,l

Fijrlwiwjwrwl

with coefficients

iFijrl =







Gijrl

λ′
i + λ′

j + λ′
r + λ′

l

, {|i|, |j|, |r|, |l|} ∈ Ln\Nn;

0, otherwise,

where

Ln = {(i, j, r, l) ∈ Z4 : one of {|i|, |j|, |r|, |l|} ∈ J = {j1, · · · , jn}},
Nn = {(i, j, r, l) ∈ Z4 : (i, j, r, l) = (p,−p, q,−q)} ⊂ Ln.

Let Γ be the time-1 map of the flow of the Hamiltonian vector field F . Expanding at t = 0

and by Taylor’s formula, we obtain

H ◦ Γ = H + {H, F} +

∫ 1

0

(1 − t){{H, F}, F} ◦ Xt
F dt

= Λ + {Λ, F} + G + {G, F} +

∫ 1

0

(1 − t){{H, F}, F} ◦ Xt
F dt,

where

{Λ,F} = −i
∑

i,j ,r ,l

(λ′
i + λ′

j + λ′
r + λ′

l ) Fijrlwiwjwrwl .

Hence

G + {Λ,F} =
∑

(i,j ,r ,l)∈Nn

+
∑

(i,j ,r ,l) 6∈Ln

Gijrlwiwjwrwl = Ḡ + Ĝ .

Returning to the notations zj, z̄j , we have

Ḡ =
1

2

∑

one of {i,j}∈J

Ḡij |zi|2|zj |2

with

Ḡij =















24Giijj =
24

π
· 1

λiλj
, i 6= j;

12Giijj =
18

π
· 1

λiλj
, i = j

by (3.6), where Ĝ is independent of {zj}j 6∈J . Hence, formally we have

H ◦ Γ = Λ + Ḡ + Ĝ + K

as claimed.
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To prove analyticity and regularity of the preceding transformation we first show XF :

la,s → la,s+2. Indeed, by Lemma 3.4 and (3.5) with

w̃j =
1

|j| (|wj | + |w−j |),

we have
∣

∣

∣

∂F

∂wl

∣

∣

∣ ≤
∑

±i±j±r=l

|Fijrl||wiwjwr |

≤ c

| l |
∑

±i±j±r=l

|wiwjwr |
|ijr|

≤ c

| l |
∑

±i±j±r=l

w̃iw̃jw̃r

=
c

| l | (w̃ ∗ w̃ ∗ w̃)l.

By Lemma 3.2, we have

‖Fw‖a,s+2 ≤ c‖w̃ ∗ w̃ ∗ w̃‖a,s+1 ≤ ‖w‖3
a,s. (3.9)

The analyticity of Fw follows from the analyticity of each component functions and its local

boundedness. Hence in a sufficiently small neighborhood of the origin in la,s the time-1-map

Γ is well defined with the estimates

‖Γ − id‖a,s+2 = O(‖w‖3
a,s), ‖DΓ − I‖a,s+2,s = O(‖w‖2

a,s),

where the operator norm ‖ · ‖a,r̄,s is defined by

‖A‖a,r̄,s = sup
w 6=0

‖Aw‖a,r̄

‖w‖a,s
.

Obviously,

‖DΓ − I‖a,s+2,s+2 ≤ ‖DΓ − I‖a,s+2,s,

while in a sufficiently small neighborhood of the origin, DΓ defines an isomorphism of la,s+2.

Since XH : la,s → la,s+2, we have

Γ ∗XH = DΓ−1XH ◦ Γ = XH◦Γ : la,s → la,s+2.

The same holds for the Lie bracket: the boundedness of ‖DXF‖a,s+2,s implies that

[XF , XH ] = X{H,F} : la,s → la,s+2.

These two facts show that XK : la,s → la,s+2. The analogous claims for XḠ and XĜ are

obvious.

4 Proof of the Main Theorem

We now prove Theorem 1.1 by applying Theorems 2.1 and 2.2. In Section 3 we see that

there exists a real analytic, symplectic change of coordinates Γ , which takes H into

H̃ = H ◦ Γ = Λ + Ḡ + Ĝ + K

with the notation of the previous section:

Λ = 〈α, I〉 + 〈β, Z〉, Ḡ =
1

2
〈AI, I〉 + 〈BI, Z〉, |Ĝ| = O(‖ẑ‖4

a,s), |K| = O(‖z‖6
a,s),
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where

α = (λj)j∈J , β = (βj)j 6∈J , A = (Ḡij)i,j∈J ,

B = (Ḡij)j∈J,i6∈J , I = (|zj |2)j∈J , Z = (|zj |2)j 6∈J .

Moreover, the regularity of the nonlinear vector field is preserved. We introduce symplectic

polar and real coordinates by setting

zj =











√

ξj + yje
ixj , j ∈ J ;

1√
2
(uj + ivj), j 6∈ J,

where the parameter ξ ∈ O = [0, 1]n. Then the Hamiltonian H ◦ Γ can be read as

H̃ = N + P = 〈ω(ξ), y〉 + 〈Ω(ξ), u2 + v2〉 + G̃ + Ĝ + K

with the frequency

ω(ξ) = α + Aξ, Ω(ξ) = β + Bξ

and perturbation

P = G̃ + Ĝ + K = O(|y|2) + O(|y|‖u2 + v2‖) + Ĝ + K.

Now, we only have to verify (A1)–(A3) of the infinite KAM Theory for the above Hamil-

tonian. Since

λj =
√

j4 + j2 + m = j2 + · · · + m

2j
+ O

( 1

j3

)

,

one has

Ωj−n = (β + BI )j−n = λj +
〈ν, I 〉

λj

with

ν =
24

π
(λ−1

1 , · · · , λ−1
n ).

This gives the asymptotic expansion

Ωj−n = j2 + · · · + m

2j
+

〈ν, I〉
j

+ O
( 1

j3

)

= j2 + · · · + mI

j
+ O

( 1

j3

)

with

mI =
1

2
m + 〈ν, I〉.

So (A2) is satisfied with

d = 2, δ = −1, Ω̄ = β,

and

Ω̃j = Ωj − Ω̄j ,

which is a Lipschitz map from O to H1
∞.

Moreover, since

A = (Ḡij)j1≤i,j≤jn
=

6

π



























3

λj1λj1

4

λj1λj2

· · · 4

λj1λjn

4

λj2λj1

3

λj2λj2

· · · 4

λj2λjn

...
...

...

4

λjn
λj1

4

λjn
λj2

· · · 3

λjn
λjn



























,
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we have

det
(π

6
A

)

= (4n − 1)
∏

1≤j≤n

1

λ2
j

6= 0.

So the matrix A is non-degenerate and the map ξ → ω(ξ) is a lipeomorphism of Rn onto

itself. The measure condition is satisfied, since 〈k, ω(ξ)〉 + 〈l, Ω(ξ)〉 is a non-trivial affine

function of ξ which vanishes on a codimension 1 subspace. Finally, clearly 〈l, β〉 6= 0, for

1 ≤ |l| ≤ 2, and Bξ is small because of |ξ| small and B = (Ḡij)j∈J, i6∈J . Then we have

〈l, Ω(ξ)〉 6= 0 on O. So (A1) is satisfied.

Since

G̃ = O(|y|2) + O(|y|‖u2 + v2‖), |R| = Ĝ + K = O(|ẑ|4) + O(|z|6),
we have

XP = XG̃+R : la,s → la,s+2,

and thus, (A3) holds true with

p = s, p̄ = s + 2.

Moreover, since the frequency

ω(ξ) = α + Aξ

with the matrix A is invertible, we find that the condition (2.5) is satisfied.

Finally, as in [7], we can chose γ, α such that

c1r
2 ≤ γα ≤ c2r

4/3,

where c1, c2 are constants. The Hamiltonian H̃ is well defined on the phase space domain

D(ŝ, r) = {(x, y, u, v) : |Imx| < ŝ, |y| < r2, ‖u‖a,s + ‖v‖a,s < r}
and the parameter domain

Oα,r = UαOr, Or = {ξ : 0 < |ξ| < r4/3},
where UαOr is the subset of all points in Or with boundary distance greater than α. On

these domains, we have

|G̃| = O(r4), |Ĝ| = O(r4), |K| = O(r6).

Using Cauchy estimates, we obtain

‖XG̃‖r/2,D(ŝ/2,r/2) + ‖XĜ‖r/2,D(ŝ/2,r/2) + ‖XK‖r/2,D(ŝ/2,r/2) = O(r2).

Similarly, with respect to ξ on Oα,r, we have

‖XG̃‖L
r/2 + ‖XĜ‖L

r/2 + ‖XK‖L
r/2 = O(r2/α).

According to the equality above, we obtain

‖XP ‖r/2,D(ŝ/2,r/2) + α‖XP ‖L
r/2,D(ŝ/2,r/2) = O(r2) ≤ αr.

Thus the equation (2.6) holds true.

Thus, all the conditions of Theorems 2.1 and 2.2 are satisfied, and we finish the proof of

the main theorem.

5 Appendix

Lemma 5.1 Suppose that f(m) is an n-th differentiable function on the closure Ī of I ,

where I ∈ R is an interval. Let

Ic = {m : |f(m)| ≤ c, m ∈ I, c > 0}.
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If |fn(m)| > d > 0 on I, where d is a constant, then Ic < c̃c
1

n with

c̃ = 2(2 + 3 + · · · + n + d−1).

The proof can be found in [12].
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