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1 Introduction and Statement of the Main Results

In this paper, we discuss the third initial-boundary value problem for parabolic Monge-

Ampere equations
ou

—E‘i‘F(DQU‘FU(x)):f(fU,t) in Qr,
Ju
oz(ac)% +u = ¢(x,t) on 902 x [0,T7,
u=1(x,0) on 2 x {t =0},
where {2 is a bounded uniformly convex domain in R",

QT =X (OaT]v
0pQr = 002 x (0,T]U 2 x {t =0},
F(D*u+ o(z)) = det (D%u + o(x)),
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and
D?u = (Djju)

is the Hessian of u with respect to the variable x, v is the unit exterior normal at (z,t) €
912 x [0,T] to 012, which has been extended on Q7 to be a properly smooth vector field
independent of ¢, a(z) > 0 is properly smooth for all x € 2, o(z) = (0;(x)) is an n x
n symmetric matrix with smooth components, f(z,t), ¢(x,t), ¥(z,t) are given properly
smooth functions and satisfy some necessary compatibility conditions.

The first initial-boundary value problem for a class of elliptic Monge-Ampeére equations

det(D?u(z) + o(x)) = f(z)  in £,
{ u = ¢(x) on 912

was firstly discussed by Caffarelli et al.[!

(2]

Ivochkina and Ladyzhenskayal® studied the following first initial-boundary value prob-

lem for parabolic Monge-Ampeére equations

—% + detTIL(DQu) = f(z,t) in Qr, (1.1)*
u = é(x,t) on Q. (1.2)*

They derived two structure conditions as follows:

9] 1
min f(z,t) + min —¢(x,0) — §ad2 > 0, in which d is

QT apQT at
the radius of the minimal ball B4(z¢) containing 2, (Co)*
0
a = max {0, %E;X af(:c,t)},

. 0
min (f@.t)+ 5o 0) >0,

(Ca)”
D%f(x,t), DQ(detv_lLD2q§(ac, 0)) are nonpositive definite.
By (C2)* or (C)*, they obtained the existence and uniqueness of the solution. The third
initial-boundary value problem for equation (1.1)* was studied by Zhou and Lianl!. They
also got two structure conditions similar to (Cz)* and (C5)* in [2].
Therefore, it is natural for us to consider the problem (1.1)—(1.3) as an extension of the
result of [2-3].

Definition 1.1  We say that u(z,t) is an admissible function of (1.1)~(1.3) if u(z,t) € K,
where
K ={ve C*(Qr) | (D*v(z,t) + o(x)) >0, (z,t) € Qr}.

Definition 1.2 We say that u(x,t) is an admissible solution of (1.1)~(1.3) if an admis-
sible function u(zx,t) satisfies (1.1)—(1.3).

Obviously, the equation (1.1) is of parabolic type for any admissible function u(z,t).
For any admissible solution, the following condition is necessary:
(D*(z,0) + o(2)) >0, x€R. (Cy)
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Following the idea of [2], we derive two structure conditions as follows:

. . .0 .0
win £ (o) + min { ain 26,0, guin 50,0}

1
fgadQ — amax |a(z)(z — xo) - v| > 0, in which d
o)
is the radius of the minimal ball B;(x¢) containing (2,

0
a= maX{O, rgz;xaf(z,t)},

min (f(x,t) + %qﬁ(m,t) + aa%f(x,t)) >0,

002x[0,T)
(D%f(x,1)), (D2det™ (D2 (x,0) + o(x))) are nonpositive definite.

Especially, we drive a new type of structure condition

(C3)

— min{éﬂ?& o (z,t), 511)15; Pi(x,0)} + rngn f(x,t) —aT >0,

(C3)
in which a = 0, m ng(ac t) ’
in which o = max | 0, max . f(z, 1) -

Our main result is as follows.

Theorem 1.1  Assume that (2 is a bounded uniformly convex domain, and for some 3 €
(0,1), 002 € CF8, f € C?HBIHBI2(Qr), ¢ € CHB2HBI2(Qr), p € CHHP2HP/2(Qr), where
¢, Y satisfy the compatibility conditions up to the second order. If (C1) and one of the
structure conditions (Cz), (Ch) and (C4) hold, then the problem (1.1)—(1.3) has a unique
admissible solution u € C*T52+8/2(Qr).

Remark 1.1  When a(z) = 0 = o(x), the structure conditions (Cz) and (C}) are just
(C2)* and (C4)* in [2].

To simplify the formulations, we assume that ¢(x,t) and ¢ (z,t) have been smoothly
extended on Qr, and

0 0 1 _
_% +det™ (D*)(z,0) + o(2)) = f(2,0),  w€ L. (©)
Similarly to the argument in [4], we use Weyl’s theorem (see [5]) to overcome the difficulty
coming from o = o(z) in (1.1). However, if 0 = o(z,¢) in (1.1), then the difficulty in the

process of deriving the structure conditions is so hard that we are not accomplished.

Lemma 1.1P/(Weyl’s Theorem) — Assume that A and B are all real symmetric matrices
of order n. Denote the eigenvalues of A, B, A+ B respectively by A\;(A), \i(B), \i(A+ B),
i = 1,---,n. Suppose that these eigenvalues are arranged in increasing order, i.e., for
C=A, B, A+ B, we have
M(C) < Xa(C) -+ < M(C).
Then for each k =1,2,--- ,n, it holds that
A (A) + M (B) < A(A+ B) < Ap(A4) + Mn(B).
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It is necessary to give some known results for further discussion. Denote

SY = {n=(niy) | n is a symmetric positive definite matrix of n order},

F(n) = det™,

Fy(a) = 5= F ).

Then we have several lemmas as follows.

1, k=1,

n 1
Lemma 1.20 2 Feom(m)nmi = 20k F (), where o = { 0, k#L

Lemma 1.3 For anyn e ST, we have

tr(Fy(m) = Fa(n) > 1.

Lemma 1.412  Ifn ¢ € ST, then

> B > F(Q).
i,j=1
The structure of this paper is stated as follows: In Section 2, we show the existence and
uniqueness of the admissible solution in Theorem 1.1 by using the method of continuity
and comparison theorem. In Section 3, the generalized approach for deriving the structure
conditions is presented, and the positive lower bound of F(D?u + o(z)) is obtained. In

Section 4, a series of a priori estimates are established.

2 The Method of Continuity and Comparison Theorem

In order to get the existence of admissible solution in Theorem 1.1 by the method of conti-
nuity, we consider a family of problems with one parameter 7 € [0, 1] as follows:

ou”

~ 5 + det™ (D?u” + o(z)) = f7(x,t) in Qr, (2.1),
a(z) ‘9;; FuT = g7 (x,t) on 92 x [0, 7], (2.2),
u” = (x,0) on 2 x {t =0}, (2.3),
where
fT(:L'a t) = Tf(l'a t) + (1 - T)fo(xat)a
FO(x,t) = det™ (D%)(x,0) + o(x)), (2.4)
67 (@,8) = 76(2, 1) + (1= ) a2, 0) + (2, 0],

Obviously, for 7 = 1 the problem (2.1),—(2.3), is just (1.1)—(1.3).

Remark 2.1  If the assumptions of Theorem 1.1 hold, it is easy to find that the admis-
sible solutions to problem (2.1),—(2.3), satisfy the compatibility condition up to order two
uniformly with respect to 7 by direct calculations.
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Set
V={ve CQJFO"HQ/Q(QT) | det(D?v(z,t) +o(z)) >0, (z,t) € Qr},
S = {7 €[0,1] | the problem (2.1),—(2.3) has a solution in V'}.

In order to prove the existence of admissible solution in Theorem 1.1 by the method of
continuity, we only need to prove that S is nonempty, and also S is a relatively both open
and closed set in [0, 1].

Let 7 = 0. It is obvious that u%(z,t) = v (x,0) is a solution of (2.1),—(2.3), in V, i.e., S
is nonempty.

In order to show that S is a relatively open set in [0, 1], we need the following lemma.

Lemma 2.1 Let X|, Xy and ¥ be Banach spaces, and G be a mapping from an open
set U in X7 x X into Xo. If there exists a (wo, 10) € U satisfying
(1) G(wo, 10) = 0;
(2) G is differentiable at (wo, T0);
(3)
then there exists a neighborhood N of o in X such that the equation
Gw, 7)=0

is solvable for each T € N with the solution w = w,; € X;.

the partial Fréchet derivative G, (wo, 7o) is invertible,

Actually, we can choose
X =10,1],
Xy =A{w(z,t) |we C2+ﬁ’1+6/2(QT)a wli=o = 0},
By = C%P12(Qr),
By = CYAIHB2(90 % [0,T)),
Xy = By X Bs.
Let
U={(w,71)]|w(z,t)=v(z,t) —(z,0), v(z,t) €V, 7€ X}
It is easy to prove that U is an open set in X; x X.
Set
G'w,T) = — Dy(w + 1) + det™ (D*(w+ )+ o) —7f — (1 — T)detTIL(D2w + o),
G*(w,7) = a(x)Dy,(w + ¥) + (w+ ) — 79 — (1 — 7)(aDyy + ),
G(w, ) = (G, G*)(w,7) = (G*(w, T),G*(w, T)).
Then G' and G? are mappings from the open set U into B; and Bs respectively, and G is
a mapping from U into Xo.
Let wg € U, 79 € [0, 1] be such that
G (wo, 10) = 0, G?(wo, 0) = 0,
ie.,

G(U}o, To) = 0
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It is easy to find that G is differentiable at (wg, 7o) if G* and G? are differentiable at (wq, 7o)
with the Fréchet derivative

G, (wo, 70) = =Dy + Fij(D*(wo + ¥) + ) Dy,

G?U('UJO, TO) =aD, + 1,

where
OF (1)

e F(r) = det™ (r).

Fz(T') =

Since G! is a linear parabolic operator and G? is an oblique derivative operator, by Theorem
5.3 of Chapter 7 in [7], we know that
Gw(wo, 7o) = (GL,G?)(wg,70) : X1 x & — X,
is invertible. Therefore, by Lemma 2.1, there exists a neighborhood N C [0, 1] of 79 such
that N C S. This proves that S is a relatively open set in [0, 1].
In order to prove S is a relatively close set in [0, 1], we need to establish the following a

priori estimate.

Theorem 2.1  If the assumptions of Theorem 1.1 hold, then there exist two positive con-
stants « € (0,1) and C independent of T such that

[ule2+anttarzgry < C (2.5)
holds for all solutions u™ of the problem (2.1),—(2.3),.

Thus we can prove that S is a relatively close set in [0,1] by Theorem 2.1 and Ascoli-
Arzela lemma. It is easy to check that the data of (2.1), and (1.1) have the same characters.
So it suffices to establish the a priori estimate (2.5) for all admissible solutions u of (1.1).

To prove the uniqueness of the admissible solution in Theorem 1.1, we need the following

comparison theorem.

Lemma 2.2 Assume that (a;j(x,t)) is a non-negative definite matriz, u € C>*(Qr) N
C(Qr), a(x) >0 for any x on 012, and

Lu<0 in Qr, (2.6)

a(z)gu +u>0 on 902 x [0,T], (2.7)
v

u>0 on 2 x {t =0}, (2.8)

where
a n
7,7=1
and v is the unit exterior normal at (x,t) € 02 x [0,T]. Then
u(z,t) >0, (z,t) € Qr.

Theorem 2.2  If the assumptions of Theorem 1.1 hold, then there exists at most one
admissible solution of the problem (1.1)—(1.3).
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Proof. If u; and ug are two admissible solutions of (1.1)—(1.3), then & = u; — ug satisfies

ou _
_8_? + F(D*uy + o(x)) — F(D?*ug + o(x)) = 0, (x,t) € Qr.
Moreover, we have
ot - .
—E + aij(ac, t)Diju =0 n QT;
a(x)é%ﬂJrﬁ:O on 912 x [0,T],
u=0 on 2 x {t =0},

where .
agj(z,t) = / Fyj(sD?uy + (1 — s)D%uy + o(x))ds.
0

By Lemma 2.2, we have

ISy
I
<o

ie.,

U1 = Ug.

The proof is completed.

3 A Positive Lower Bound Estimate of F/(D?u(x,t)+o(x))

For convenience of statements, we call a constant depending only on the data of the problem
as a controllable constant.

The structure conditions (Cs), (C}), (C4) are used to estimate a positive lower bound
of F(D?*u(z,t) + o(x)). From now on, we show a generalized approach for deriving these

structure conditions.

Set 9
Lu=—5 + Fij(D*u+ 0) Dy, (3.1)
where oF
Fij(r) = (r) F(r) = det™ (r).
87“1']‘

Choose the auxiliary function
v(x,t) = we(x,t) + at + ¢,

where v is an admissible solution of the problem (1.1)—(1.3), a > 0 and c¢ are constants to

be chosen.
For any (z,t) € Qr,
0
Luv = *ﬁ + Fj(D*u+ o) Dijuy —a = fy —a <0
provided

a = max{max f;(z,t), 0}.
Qr

For any (z,t) € 002 x [0,T],
Ov Ous

a— +v =« t+ut+at+c:¢t+at+020
ov ov
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provided

¢ = — min ¢(x,t).
ap T

For any (z,t) € 2 x {t = 0},
v(x,0) = u(2,0) + ¢ = e (x,0) + ¢ >0
provided

¢ = — min ¢(z,0).
ap T

As the discussion above, setting
¢ = —min{ min ¢¢(x,t), min z,0)},
{8PQT Pe(, ) Auin Ye(2,0)}
a = max{0, max fi(x,t)},
Qr
we get v > 0 by Lemma 2.2. Therefore, in order to obtain
F(D*u(z,t) + o(x)) = us + f(x,t) > —at —c+ f(x,t) >~ >0,

where 7 is a controllable constant, we need only to establish the structure condition

pT

— min{ mj ,t), mi ,0)} + min f(z,t) —aT =~ >0,
{ mln{gnc}?n Pe(x,1) anin. Ye(x,0)} Ingnf(x )—al =~ o
2

a = max{0, max f;(z,t)}.
Qr
Thus we have the following theorem.

Theorem 3.1  If the assumptions of Theorem 1.1 (except (Cz2) and (C5)) hold, then there
exists a controllable positive constant v such that F(D*u(z,t) + o(z)) has a positive lower
bound, where u is an admissible solution of the problem (1.1)—(1.3).

Remark 3.1  We can get the structure condition (Cz) by choosing the auxiliary function
1
v(x,t) = ug(x,t) — §a|x —x0? +c,

where a > 0 and ¢ are to be chosen, and x( is an arbitrary fixed point in f2.

Remark 3.2  We can get the structure condition (C4) by choosing the auxiliary function
v(x,t) = ue(x,t) + f(z,t) — ¢,

where ¢ is to be chosen.

4 A Priori Estimate of [|ul|c2+a1+0/2(0,)

Theorem 4.1  If the assumptions of Theorem 1.1 hold, then there exists a controllable
constant Cy > 0 such that

sup |u| < Cy
Qr

holds for all admissible solutions u of the problem (1.1)—(1.3).
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Proof. Choose the function

w:t(l'at) = iK(t + 1) + 1/1(9370),

where
K = max { max | f(x,t)| + max F(D?*(x,0) + o),
Qr £
6o, ) + ], 0]+ ma () 20
Set
L=-D;+ aij(x,t)Dij,
where

a;j(z,t) = /0 F;; (sD*w (x,t) + (1 — s)D*u(x,t) + o(x))ds

is a positive definite matrix, i.e., L is a linear parabolic operator.

Then, for any (z,t) € Qr, we have

L(wy — u)

<

— Diywy + detv_lL(D2w+ +o)—f
— K — Dyp(x,0) + det (D*(x,0) + ) — f
0.

For any (z,t) € 902 x [0,T], we have

a(a) o (wy ) + (wy —w) = o(z)

o(x,0)
ov

For any (z,t) € 2 x {t = 0}, we have
wi(z,0) —u(r,0) = K + ¢(z,0) —(z,0) = K > 0.

Therefore, by Lemma 2.2, w; > wu. Similarly, w_ < u. Then there exists a controllable

constant Cy > 0 such that

This completes the proof.

sup |u| < Cp.
Qr

)

+ K(t+1)+¢(z,0) — ¢z, t) > 0.

Theorem 4.2  If the assumptions of Theorem 1.1 hold, then there exists a controllable

constant C7 > 0 such that

sup | Du| < Cy
Qr

holds for all admissible solutions u of the problem (1.1)—(1.3).

Proof. Step 1. For any £ € S 1, set

where

M =1+ A(o) +sup|Df], Alo) = sup  Amax(E£D¢o(z
Qr

wy (z,8,§) = +Deu + M|x|2/2,

zeN,£cSn—1

Differentiating (1.1) with respect to &, we have
—Dy(D¢u) + Fj(D*u+ 0)D;j(D¢u) = D¢ f — Fij(D*u + o) Deoyj.

))-
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Set
L, = —Dy + Fij(D*u(z,t) + o(z))D;j.

By Lemma 1.4, we have
By the maximum principle of parabolic equations we have

w+ < sup W4.
0pQr

There exists a controllable constant C; > 0 such that
|Deu| < sup |Deu| + Cy.
p QT
Obviously, D¢u is known on 2 x {t = 0} x S"~!, and hence we only need to get a priori
estimate of |Dgu| on 902 x [0,T] x "~ 1.
Step 2. For all (zg,t0) € 02 x[0,T], by (1.2) and Theorem 4.1, there exists a controllable
constant él > (0 such that

|Dyu(xo, to)] < Ci.

If we can prove that there exists a controllable constant C; > 0 such that

| Dyu(zo, to)| < Ci, (%)
where v -1 = 0, then for any ¢ € S"~ 1, there exist 6, ¢ € [0,1] with 62 4+ ¢? = 1 such that
§=0v+Qn,
and
D¢u=0Dyu+ (Dyu, |Deul < |Dyu| + |Dyul.
Thus

|D£U(£L’0,t0)| S é1 + 01.

Step 3. We now prove that (%) holds. Actually, if u(z,to) is a convex function of z,
following the proof of Theorem 2.2 in [8], we have
| Dyu(zo,to)| < C.

If it were not true, we could choose the function

(xz,to) = u(z, to) + (A(o) + 1)%

Since
(D*u(z,t) +o(z)) >0,  (2,t) € Qr,

by Wyel’s theorem we have

(D?u(x,t)) > (D*u(x,t) + o(x)) — Alo)I, (D*u(x,t) + (A(o) + 1)I) > 1.
Thus 4(x,to) is a convex function of x, and we have

| Dyti(xo, to)| < C.
At last, noticing that {2 is bounded, we have

| Dyu(zo,to)| = [Dyi(zo, to) — (A(0) +1)(wo - )| < C + (A(0) + 1)|ao| = Ci.

The proof is completed.
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Theorem 4.3  If the assumptions of Theorem 1.1 hold, then there exists a controllable
constant Cy > 0 such that

sup |Dyu| < Cy
Qr

holds for all admissible solutions u of the problem (1.1)—(1.3).

Proof. A priori estimate
Do+ f = det® (D*u+ o) > v
in Theorem 3.1 yields
Dyu>ry— f>Ch,

where ég is a controllable constant.
In order to get the upper bound of D;u, denoting v = Dyu, differentiating (1.1)—(1.2)

with respect to t, we have

—Dyw + Fij(D*u+ o)Dijv = fy in Qr,
aD,v+v= ¢ on 02 x [0,T],
v(z,0) = det%(DQ’u(z,O) +0)— f(z,0) on 2 x {t =0}.
Choose o
w(z) = —|z[* - K,
2
where

M = sup D¢ fl,
Qr

Kmax{M sup <|a|
02 x[0,T]

jz? |2
Du< 2 + 9 +|¢t| ’

sup (1ol + et (D%u(2,0) + ) + 1120 )}

Following the proof of Theorem 4.1 we get the upper bound of D;u. Thus the proof of

Theorem 4.3 is completed.

By Theorems 3.1 and 4.3, we have the following proposition.

Proposition 4.1  If the assumptions of Theorem 1.1 hold, then there exists a controllable
constant I' > 0 such that

v < det® (D?u(x,t) + o(x)) = D+ f < T, (2,t) € Qr (Hy)
for all admissible solutions u of the problem (1.1)—(1.3).

In order to get the estimate of sup |D?u|, we need the following lemma.
Qr

Lemma 4.18  Assume that h € C*>'(Q7), hlaaxio,m = 0, and

n
[h(z,0)| < Cs, |Dh(x,0)| < Cs, |- Dih+ F;Dih| <Y Fi,  z€2,
i=1
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where Cs, Cs, k are positive constants, (F3;) is a positive definite matriz and tr(F;;) > 1.
Then there exists a controllable constant C3 > 0 such that
sup |Dh| < Cs.
02 x[0,T]
Theorem 4.4  If the assumptions of Theorem 1.1 hold, and v € C*%(Qr) is an admissible
solution of the problem (1.1)—(1.3), then there exists a controllable constant Cy > 0 such that
sup |D2u| < C4. (Hp)
Qr

Proof.  Step 1. Denote A(c) = sup Amax(c(z)). Notice that (D?*u + o(z)) > 0, Wyel’s
e
theorem yields

MN(D?u) > —A(0).
Step 2. In order to get the upper bound of Deeu, & € S, we choose the function
U(I’,t,f) : QT X Snil - Ra
v(@,t,€) = Degu — (2, t,€) + Kla|?,
where v is given by

o(x,t,€) = 2(6 - v)&i(D; @ — Divy Dyu),

in which, v is a C3({2) extension of the unit exterior normal vector on 942,
L= (& V)i, 2=(d-u)/a(z),

and K is a positive constant to be chosen.

Rewrite
o(z,t,§) = axDru + 0,
where
ap = 2(6 - v) (=& /alz) = EDik), b =2(6-v)&Did.
Then

— Dy + F;j(D*u + o(x))Djjv
= — De¢gyt + ax Digu + Db + Dyag Dyu + Fij (D*u + 0(z))Dijecu
— ap Fyj(D*u+ o(x))Dijru — DyuFij(D*u + o(z))Dijag
— F;j(D*u+ o(x))D;jb+ 2K Fyy(D*u + o ()
—2D;a,F;j(D*u + o(x))[Djku + oji] + 2F;;(D*u + o(x)) D;ako ;. (4.1)
Step 3. From now on, we prove that we can choose K > 0 large enough so that the right

hand term of (4.1) is positive.
By Lemma 1.2, we have

Fip(D*u+ o(x))[Drju + o] = %&jdet% (D?*u + o (x)) > 0. (4.2)
Differentiating (1.1) twice with respect to & € S"~1, we get
— Digeu + Fij(D*u + o(2)) Dijecu
= — Fyyu(D*u+0(2))(Dijeu+ Deoyj(2))(Dugu + Deoij(x))
+ Dee f(2,t) — Fij(D*u + o(2)) Degoij(2).
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Since F' is concave, it holds that
*DtEE“ + Fij (DQU + O’(Q’J))Dijggu > Dggf(l‘, t) - Fij (D2u + O—(Z))foo—ij (SL') (43)
Differentiating (1.1) with respect to xj, and multiplying by ax, we get
agDiiu — apFij (D%u + o(2))Dijru = —apDy f(z,t) + arF;; (D%u + o(z))Dgoij(x). (4.4)
Since (F;;(D?*u+ o(x))) is a positive definite matrix, we have
1
|Fij(D*u+ o(2))] < 5lFiu(D*u+ (@) + Fj;(D*u+ o(@))] (4.5)
At last, by Lemma 1.3, we have
Z Fop(D*u+o(z)) > 1.
k=1
Substituting (4.2)—(4.5) into (4.1), and noticing that the other terms in the right hand side
of (4.1) are all controllable, for all (z,t) € Qr we have

n
~Dyv + Fij(D*u+ o(x)) Dyjv > 2K = C) Y Fie(D*u + o(x)) — C > 0,
k=1
where C' is a controllable constant, and K is a large enough controllable positive constant.
By means of the maximum principle of parabolic equations, we know that the maximum of
v is attained on 0,Q7.

Step 4. Since v is known on 2 x {t = 0} x S"7!, we only need to estimate v on
082 x (0,T] x S»~1. Assume that the maximum of v is attained at (z°,¢°,£). Then we need
only to estimate v(x?,°, ).

Now, we complete the estimate in the following four cases.

Case 1. Estimate of |D,,u(z°,t°)|, where v -7 = 0.

Set

(Si = ((51']‘ - l/iVj)Dj.

Applying é; to (1.2) (D,u = ®), we have
O;vg Dru + vy 0; Dpu = 0; 9, (4.6)
and multiplying (4.6) with n;, we get
1:0;Vk Disu + nivi0i Djru — vinivivy Djpu = 1,03 9.
Since n;v; = 0, we have

m-l/kéiijku = Dm,u.

It holds that
1:0; vk Dyu + Dypyu = 1,6, @,

which implies that there exists a controllable positive constant C' such that
|Dypu(2°, %) < C.
Case 2. Estimate of |D,,u(x°,t°)|, where v - n = 0.
Applying 0; twice to (1.2) (D,u = @), we have
Dyudidjvi + 00 Dyu + 6v10; Dyu + v30;6; Du = 6;0; @, (4.7)
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and multiplying (4.7) with &;&;, we get
Deevu = vip&i&; Dijru
= §i£0i0; D — &E Dpudio vy
— 00 Dyuéi&s — 0k Diu&i&y + (6:v5)8i; Duvu. (4.8)
Then
Deeyu = &€ Dijru
= &i§j0i0; D — & Dyudidjvg — 603 Dxuéi&y — 05060 Diu&i&s + (05v5)6i Duvt
< (=1/a)Diju&i&; — 2(0ive) Dixu&i&s + (8:v5)6i8 Duvu + C,
ie.,
Deeu < —a(x)Degyu — 2a(x) 005 Djpu&ié + a(x)6;v€:€ Dy + C. (4.9)
Since the maximum of v is attained at (x°,t°, &) € 992 x [0,T] x S~ and a; = 0 (by
¢ -v=0), we have
0 < Dyv = De¢gyu — arDygu — (Dyag)Diu — Db+ 2K (z - v),
which implies that
—a(x)Deepu < Cay, (4.10)
where C' is a controllable positive constant. Moreover, by the positive definite property of
(0iv) and (Djru + ojk(x)), we have
—2a(x)0;vpDiru&i&; = — 20(x) vk (Djru + 0jk) &5 + 20(2) 0 vk0 ki€
< 20(x)d;vio k&l (4.11)
Substituting (4.10)—(4.11) into (4.9), we have
Deeu(2°,t%) = Dyu(a®,1°) < C(1 + Dyu(2®, 7).
Case 3. Estimate of |Deeu(2?,t°)|, where € # 1 and € # v.
For all £ € S"~ 1, rewrite
§=pn+qv,
where
p=En), q¢=Ewv), pP+¢=1
At the point (29,19, &) € 82 x [0,T] x S*~1, it holds that
o =2(¢ - v)&(D; & — D, Dyu) = 2qpDyyu,
Deeu = pQDnnu +¢*Dyyu+ 9.
Then
Deeu— v+ K|Jc|2 = pQD,mu +¢*Dyyu+ (p2 + q2)K|9U|27
ie.,
v(x®,1%,€) = p?u(2°, 1%, n) + ¢*v(2°, %, v).
Since the maximum of v is attained at (z%,t°,£) € 92 x [0,7] x S*~!, we have

v(2°, 1, v) > v(2°,1%,&) > v(z’, ", ),
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which implies that
Deeu(z°,1%) < O(1 + Dy u(a®,t%)).
Case 4. Estimate of |D,,u(z?,t°)|.
Differentiating (1.1) with respect to xj, we get
—Dyu+ Fij(D*u+ o(2))Dijru = Dy f(z,t) — Fyj(D*u + o(x))Dyoyj(z).
Set
h(z,t) = v Dyu — ¢.
Then h € C*1(Qr), hlapaxjo,m = 0, and |h|, |[Dh| are all bounded on 2 x {t =0}. By simple
calculations, we have
— Dih + Fyj(D*u+ o(x))Dyjh
= v Dy f(x,t) — Dyu/a(x) + 2F;;(D*u + o) DiuD;(1/a(x))
+uF;;(D*u+ 0)Dij(1/a(x)) + Fij(D*u+ o) Diju/a(z)
+2F;; (D?u + 0)D;(vi)Djru + Fij (D?u + 0)D;;vi Diu
— F;j(D*u+ 0)Dyj(¢/) + ¢/ a(x) — v Fij (D*u + ) Dy ()
+2D;(vg) Fij (D*u + o) () — 2Di(vy)Fyj (D*u + 0)o(2)
+ (1/a(2) Fyj (D*u+ 0)oij(x) — (1/a(x)) Fij (D*u + 0)oy; ().
Following the discussion of (4.1), we can find a controllable constant x > 0 such that
| = Dih + Fij(D*u+ o(2))Dijh| < kY Fi(D*u + o(x)).

k=i
By Lemma 4.1, there exists a controllable constant C's > 0 such that

sup |Dh| < Cs,
002x[0,T)

which implies that

sup |Dyul < C.
002 x[0,T]

The proof is completed.

By Theorems 4.1-4.4, we get the estimate of ||u[|¢2.1(g,). Similarly to the Chapter 14
in [9], it is easy to get the estimate of ||uc2+s.145/2(g,) Provided that (1.1) is a uniformly
parabolic equation. The following lemma implies that (1.1) is a uniformly parabolic equation.

Lemma 4.2  Assume that u € C**(Qr) is an admissible solution of the problem (1.1)-
(1.3). If (Hy) and (Hz) hold, then there exist two positive constants A and A such that

MNéP? < Fyj(D*u+ o(2))&6:€5 < A€, £eR™ (4.12)

Proof. Let 0 < A\ <--- <\, be the eigenvalues of (D?u + o(z)). Noticing that D;u and
f are bounded, we can find that

det™ (D*u+ o(x)) = f + Dsu
is bounded. Then

0< M\ <C, k=1,---,n,
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where C' > 1 is controllable. Diagonalizing (D?u + o(z)), by (Hy) we have
N _ ,.yn
0<y" <A (C)VL, C >N\ > — > 0.
’)’_k() —k—(C)n_l
Let p1g > --+ > pn, > 0 be the eigenvalues of (D?u + o(x))~!. Then
pr = ()"
and (C’ .
1 n-
0<5§‘Ll,k§ . k:].,"',’ll.

Diagonalizing F;;(D?*u+0(z)), by Lemma 1.2, we see that the eigenvalues of (F};(D*u+o(x))
are )

—det%(DQu—i—a(x)),uk, k=1,---,n.

n
(Cv)nflp

A = ———— such that (4.12) holds. Then the proof is
ny

v

—

Thus we can choose A =

completed.
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