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Abstract: Let M, be the algebra of all n X n complex matrices and gl(n,C) be
the general linear Lie algebra, where n > 2. An invertible linear map ¢ : gl(n,C) —
gl(n, C) preserves solvability in both directions if both ¢ and ¢! map every solvable
Lie subalgebra of gl(n, C) to some solvable Lie subalgebra. In this paper we classify
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ity on M, in both directions.
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1 Introduction

Let £ be a Lie algebra. Recall that the derived Lie algebra £() of £ is the Lie ideal [£, £]
spanned by all [z,y], z,y € L. To each Lie algebra £ we associated the derived series:

£oLMoL® = (5(1))(1) ...
The Lie algebra £ is solvable if there exists a positive integer r such that £ = {0}. The
set of all n X n complex matrices is denoted by M, when considered as a set or a linear
space or an algebra. If the linear space M, is equipped with the Lie product

[-, -]:[A B]=AB — BA,

then it becomes a general linear Lie algebra, denoted by gl(n, C).

A lot of attention has been paid to linear preserver problem, which concerns the charac-
terization of linear maps on matrix spaces or algebras that leave certain functions, subsets,
relations, etc., invariant. The earliest paper on linear preserver problem dates back to 1897
(see [1]), and a great deal of effort has been devoted to the study of this type of question since
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then. One may consult the survey papers [2—4] for details. For linear or nonlinear preserver
problem concerning linear Lie algebras we refer to the literature [5-12]. The author in [7]
characterized the invertible linear maps on simple Lie algebras of linear types preserving zero
Lie products. Radjavi and Semrl in [11] characterized the nonlinear maps which preserve
solvability in both directions on the general linear Lie algebras and the special linear Lie
algebras. In this article we determine the invertible linear maps preserving solvability on
gl(n, C) in both directions, where an invertible linear map ¢ : gl(n,C) — gl(n,C) is said to
preserve solvability in both directions if for any solvable Lie algebra s C gl(n, C), both ¢(s)
and ¢~ !1(s) are solvable Lie algebras of gl(n,C). Now we state our main theorem:

Theorem 1.1  Let ¢ : gl(n,C) — gl(n,C) be an invertible linear map. The following two
conditions are equivalent:
(1) ¢ preserves solvability in both directions;
(2) There exists a non-zero scalar u € C, a linear functional f on gl(n,C) with f(I) #
—uw and an invertible matriz S € gl(n,C) such that either
B(X) = pSXS~ 1+ F(X)I
for every X € gl(n,C), or
H(X) = pSX'S 4 f(X)1

for every X € gl(n,C), where X' denotes the transpose of X .

The above result determines an explicit form of the linear invertible map preserving
solvability described in Theorem 1.1 of [11]. In [12], the author proved that any bijective
linear commutativity preserving map ¢ on M, is also one of the above two standard maps.

Thus we have the following corollary.

Corollary 1.1 Let ¢ be an invertible linear map on gl(n,C). Then the following condi-
tions are equivalent:

(1) ¢ preserves solvability in both directions;

(2) ¢ preserves zero Lie products in both directions.

Here we specify some notations for later use. We denote by I the identity matrix in
gl(n,C) and by E;; the matrix in gi(n, C) whose sole nonzero entry 1 is in the (z, j)-position.
Let CI be the set {alla € C} of all scalar matrices, H the set of all diagonal matrices in
gl(n,C), and n™ (resp., n™) the set of all strictly upper (resp., low) triangular matrices. Let
D be the set of the diagonalizable matrices. Denote the one-dimensional vector space CE;
by L for any pair (s,t), 1 < s # ¢ <n. And denote C* = C — {0}.

2 Certain Invertible Linear Maps Preserving Solvability

In this section, we construct certain invertible linear maps preserving solvability in both
directions on gl(n,C), which will be used to describe arbitrary invertible linear maps pre-

serving solvability in both directions.
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(A) Inner automorphisms:
For any invertible matrix T' € gl(n,C), the map
or : gl(n,C) — gl(n,C), X —T71XT,
is an automorphism of gl(n,C), called an inner automorphism of gl(n, C).
(B) Graph automorphisms:
Let
wo : gl(n,C) — gl(n,C), X — —RX'R,

where
R=FEi,+Ep 1+ - +E,_12+E,.

Then wy is an automorphism of gl(n,C). Both 1 and wy are called graph automorphism of
gl(n,C).

(C) Scalar multiplication maps:

For any ¢ € C*, define

Y : gl(n,C) — gl(n,C), X —cX.

We call 9. a scalar multiplication map on gl(n,C). It is obvious that any scalar multiplica-
tion map is an invertible linear map preserving solvability in both directions.

(D) Invertible linear maps induced by a linear function on gl(n, C):

Let f : gl(n,C) — C be a linear function such that

(D) # 1.
It is easy to see that the map
Y5 gl(n,C) — gl(n,C), X— X+ f(X)I
is an invertible linear map, and its inverse is the linear map w;l defined by
f(X)
1+ f(I)
The map 9y is called an invertible linear map induced by the linear function f. Since
[ (X), 45 (V)] = [X,Y]

for any X,Y € gl(n,C), ¢; preserves solvability in both directions.

P X)) =X — I.

The following lemma is easy to check.

Lemma 2.1 (1) % e = Yo for any ¢, € C*;
(2) o1 -or = oy for any pair of invertible matrices T,T' € gl(n, C);
(3) wi=1.

By Lemma 2.1 we have

-1 -1 -1
YV, =YPe-1, op =o0r-1, Wy T = wo.

3 Proof of the Main Theorem

Before proving the main theorem, we recall some results from Theorem 1.1, Proposition 2.4
and the proof of Lemma 2.5 in [11].
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Lemma 3.1  Let ¢ be a bijective map on gl(n,C) preserving solvability in both directions.
Then
¢(D)=D

and two diagonalizable matrices A and B commute if and only if $(A) and ¢(B) commute.
Moreover, let Dy, (k = 1,2,---,n) be the set of all diagonalizable matrices with exactly k
distinct eigenvalues. Then we have

¢(Dy) = Dy.
In particular,

o(I) = AI

for some nonzero A € C*.

Proof of Theorem 1.1 First we prove that Theorem 1.1 holds for n > 3.
For the sufficient direction, it is easy to see that ¢ is an invertible linear map and its

inverse is given by

f(S7IXS)

X)) =pISTIXS - ———
P ) =u (% + pf (1)

or
-1 _ o —latytiaty—1 fFSEX(SYH) )
for any X € gl(n,C). Since
[¢(X)a ¢(Y)] = :L"QS[Xa Y]Sil
or

[6(X), 6(Y)] = —u*S([X,Y])'s™

for any X,Y € gl(n,C), for any solvable Lie subalgebra s of gl(n,C), ¢(s) is a solvable Lie
subalgebra of gl(n,C). Similarly, ¢~ preserves solvability. Thus ¢ is an invertible linear
map preserving solvability in both directions.

Now we prove the essential direction of the theorem. Let ¢ be an invertible linear map
on gl(n,C) preserving solvability in both directions. First observe that the image (under
@) of a solvable subalgebra generated by a subset X of gl(n,C) is precisely the subalgebra
generated by ¢(X). We prove the main theorem through the following nine steps.

Step 1. There exists an invertible matriz S1 € gl(n,C) such that

(0s, - ¢)(H) = H.
For a diagonal matrix
ho = diag{1,2,...,n} € H C D,
we have ¢(hg) € D by Lemma 3.1, and so there exists an invertible matrix S; € gi(n,C)
such that
(75, + @)(ho) = Sy $(ho)S1

is a diagonal matrix. Denote

o1 =05, - 9.
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Then ¢, is still an invertible linear map on gl(n, C) preserving solvability in both directions.
Let

¢1(ho) = diag{A1, A2, -+, An}.
Since hg € D,,, by Lemma 3.1, ¢1(hg) € D,,, and so
Xi # A
for any ¢ # j. For any h € H,
ho-h = h- hg,
so by Lemma 3.1,
diag{A, Aoy -+ Ak 61(h) = én(h) - diag{Ar, Ao, -, Aal (3.1)

By the above equality (3.1), we know that ¢1(h) is a diagonal matrix. It follows that

61(H) = H.

Step 2. For any pair (s,t), 1 < s #t <mn, there exists some pair (p,q), L <p#q<n,
such that

®1 (Est) - qu'

Consider ¢1(H + Lst). Since H 4+ L4 is an (n 4+ 1)-dimensional solvable subalgebra
containing H, ¢1(H + L) is also an (n + 1)-dimensional solvable subalgebra containing H.
First we prove that

¢1(H +Lst) =H + Lpq

for some pair (p,q), where 1 < p # ¢ < n. Denote
s=¢1(H + Lst).
For any element x € s, write it in the form
r=h+Y_ duwBu,

uFv
where h € H, a,, € C. Let

hy = diag{1,2,2%,... 2772 2771},
Applying (ad h;) repeatedly on x, we have
>t =2 Yeay, By = (ad hy)F(2) €5, k=1,2,--- ,n(n—-1).  (3.2)
uFv
View the above equations (3.2) as a system of linear equations in n? — n variants (2*~% —

2" 1), By, for the pairs (u,v) with coefficients (24! —2v=1)*=1 For any (u,v) # (u',v’),

it is easy to see that

2

2u—1 o 21)—1 7& 2u/—1 o 21/—1'

So the determinant of coefficients of variants (24~ — 2*~1)q,,, E,.,, being exactly a Vander-
monde determinant, takes a nonzero value. So each (2“_1 — 2”_1)aquuv can be written as
a linear combination of
(ad hy)(z), (ad h1)2(x), -, (ad hy)™ """ Y(@), (ad hy)™ ~"(x).
Then (2¢7! — 2" 1)a,, By, € 5. For the case ayy # 0, Eyy € 5. Since dims = n + 1, there
exists only one pair (p,q), 1 < p # ¢ < n, such that a,s # 0. Thus
O1(H+Lgt) =H+ Lpyg.
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Assume that
d)l (Est) =h + aqua

where h € H, a € C*. We now need to show that h = 0. Otherwise, take
R = diag{\1, Ao, -+, A} €H
such that
Ap—Ag #0

and A/, h are linearly independent (do exist). Let
R = ¢ (h') € H.
Since L+ Ch” is a two-dimensional solvable subalgebra generated by Es; and h”, ¢1 (Lt +
Ch") is a two-dimensional solvable subalgebra generated by aE,, + h and h'. By
[, aEpq + k] = a(Ay — Ag) Epg,
we see that h = 0. Thus
$1(Est) = aBpg € Lpg.

Step 3. There exists some invertible matriz So such that
(1) (¢1-0s,)(H) = H;
(2) (61 05,)(Lar) C 0 for any 1< s <t <n;
(3) (¢1-05,)(Lst) S0~ forany 1 <t <s<n.
It is not difficult to see that (2) is equivalent to the following announcement:
(%) (¢1-05,)(Lss41) S0t
forany 1 <s<n-—1.
Since (3) follows from (2) by Step 2, we only need to prove (1) and (x).
Let
77(;'1 ={(s,t) |1 <s<t<n, ¢1(Ls) Cnt}.

Now we use decreasing induction on Card P;l to complete (1) and (x). If

2
+ _n°—n
Card ’P¢1 =~
e, ¢1(Lst) C nt for any 1 < s <t < n, then we choose Sy = I to complete the proof. If
2
n®—n

Card 77;1 =k< 7
then there exists at least one ¢ € {1,2,--- ,n — 1} such that ¢;(L;,11) € n~. Choose an

invertible matrix
S"=(I = Eiis1)I + Eiv1,:)(I — Eijit1).

By an easy computation, we have the following results:

(i) os/(diag{as, ---, ai, aiy1, -+, an}) =diag{as, -+, ai41, @i, -+, an}, and so

os/(H) = H;
(i) og/(Eii+1) = —Eit1,4, and so
o5 (Liiv1) = Lit1i;
(i) For any t > i+ 1,

s/ (Eit) = —FEiy14, s/ (Bit1,t) = Eit,
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and then
s/ (Lit) = Lixi,t, s (Lit1,t) = Lit;

(iv) For any t < 4,
05/ (Eyiv1) = —Eyi, 05/ (Ey) = Et iy,
and then
s/ (Liit1) = Liis o5/ (L) = Liit1;

(v) Forany s#i,i+1landt#4,i+1,1<s<t<mn,
os/(Est) = Est,
and then
US’(Est) = Lg.

Thus we have
(i)
(¢1-05)(H) = H;
(ii)
(¢1-05)(Liit1) = ¢1(Lit1,:) S 0T
(if ¢1(Lig1:) Cn, then ¢1(Liip1 + H+ Liv1) = H+ 01(Liiv1) + ¢1(Lig1,:) CH+n”
is solvable, which contradicts the fact that £; ;41 + H + Li41,; is not solvable);
(iii) ¢1 - og induces a permutation on the set {Ls|(s,t) # (4,1 +1), 1 < s <t < n}.
One will see that the number of pairs (s,t), 1 < s < t < n, satisfying that
(¢1-05)(Lst) CnT
is precisely k + 1. By induction hypotheses, there exists an invertible matrix S” such that
(i) ((¢1-0g)-057)(H) = H;
(i) ((¢1-0s/) 0g7)(Ls) CSnt forany 1 < s <t < n.
Let
Sy =S8"5".
Then by Lemma 2.1(2), the proofs of (1) and (2) are completed.
In the remainder of this proof, we denote
G2 =1 0s,.
Step 4. For any s € {1,2,--- ,n — 1}, there is some j € {1,2,--- ,n — 1} such that
$2(Lss41) = Ljjr1-
By Step 3,
¢a(nt) Cn*.
Since dim¢s(n') =dimn™, we have
¢2(nt) =n".
Since n™ is a solvable subalgebra generated by all L, 11 for s € {1,2,---,n — 1}, we see

that n™ is also generated by all ¢2(Ls s41) for s € {1,2,--- ,n—1}. Then Step 4 holds from
Step 2.
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Step 5. There is a graph automorphism w of gl(n,C) such that
(W : ¢2)(£s,s+1) = Es,s-‘,-l
for any s € {1,2,--+ ;n—1}.

For any two distinct s,t € {1,2,---,n — 1}, |s — t| = 1 if and only if the dimension of
the solvable subalgebra generated by L s41 and L4441 is 3, and |s — ¢| > 1 if and only if
the dimension of the solvable subalgebra generated by £, 41 and Ly +41 is 2. By Step 4, we
can set 7 to be the permutation of {1,2,---,n — 1} such that

B2(Ls,s11) = La(s),m(s)+1
forany s =1,2,---,n—1. Since the dimension of the solvable subalgebra generated by L s+1
and Ly ;41 is equal to the dimension of the solvable subalgebra generated by L (s) x(s)+1
and L) xt)+1, |[s —t| = 1 if and only if |7(s) — 7(t)| = 1, and [s — ¢| > 1 if and only if
|7(s) — w(t)] > 1. Then either

(1) n(s)=s,1<s<n-—1,or

(2) w(s)=n—-s5,1<s<n-—1.

For the case (1), we set w = I; and for the case (2), we set w = wg. Then Step 5 holds.

Denote

P3 =w - Po.

Step 6. ¢3(Lst) = Lgt for any s, t € {1,2,--- ,n} and s # t.
At first we prove that
@3(Lst) = Lt for any 1 < s <t < n.
To achieve the aim we use decreasing induction on t — s, where 1 <t —s < n — 1. For
t—s=mn—1,thent=mn,s=1. Since L1, + L k+1 is a two-dimensional solvable subalgebra
for any k =1,2,--- ,n—1, the image ¢3(L1, + Lk k+1) is also a two-dimensional subalgebra,
which is generated by ¢3(L1,) and ¢3(Lk x+1). Assume that
¢3(£1n) - qu # Lin.
Then there is some ¢ € {1,2,--- ,n — 1} such that
[qu; Ei,iJrl] ?é 0;

ie.,

[¢3(L1n), ¢3(Liit1)] # 0,
which implies that the subalgebra of gl(n, C) generated by ¢3(L1y) and ¢3(L; i+1) is at least

three-dimensional, a contradiction. Thus

¢3(L1n) = Lin.
Assume that

$3(Lst) = Lt

for any pair (s,t) satisfying t —s > k+1, 1 < s <t < n. Let (p,q) be a pair satisfying
lp—¢| =k and 1 <p < g <n. There is some 7 € {1,2,---,n — 1} such that

[ﬁpqa ‘Ci,i+1] # 0.
The subalgebra t generated by L, and L; ;41 is

Lpg + Liit1 + [Lpgs Lijita],
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which is three-dimensional and solvable. We consider the three-dimensional solvable algebra
¢3(t). On the one hand, it is the subalgebra generated by ¢3(L,q) and L; 41, i.e., it is the
subalgebra

Liit1+ ¢3(Lpg) + [Liiv1, ¢3(Lpg)]-
On the other hand, it is
¢3(Lisit1 + Lpg + [Lijiv1, Lpgl) = Lisivr + ¢3(Lpg) + @3([Lisiv1, Lpg))-

By hypothesis,

¢3([Liit1, Lpal) = [Lisiv1; Lpg-
Then

[Ei,iJrlaqu] = [E’i,i+17 ¢3(£pq)];
and so

b3 (qu) = Lpqg-
By induction,
@3(Lst) = Lt for any 1 <s <t < n.

It is easy to see that
¢3(n”) =n", ¢3(H) = H.
As in Step 4, we can similarly prove that for any 1 < i < n — 1, there is some j such that
¢3(Liv1,i) = Lijy1j-
For a giveni € {1,2,--- ,n—1}, if the above j # 4, then the solvability of £; 11 ;+L;iv1+H
will force
3 (Ljy1j+ Liivn +H) = Liy1i+ Liip1 + H
to be solvable, absurd. So
¢3(Liv1i) = Liv1 forany 1 <i:<n-—1.
A similar discussion to the above shows that
$3(Lst) = Lt forany 1 <t < s <n.
Step 7. There exist a constant v € C* and a linear function [’ such that
(g -yt - 3)(h) =h  forany h € H.
Let
$3(Eii) = diag{A1i, Aai, -+, Ani} for any 1 <i <mn,
and
$3(Est) = bst By for any 1 < s#t<n.

For any fixed i € {1,2,--- ,n}, and any two distinct j, k # i, By and Eji, + E; generate a
two-dimensional solvable subalgebra of gi(n, C). So ¢3(E;;) and ¢3(Ey; + E,x) also generate
a two-dimensional subalgebra of gi(n,C). Since
[#3(Eii), ¢3(Erj + Ejk)] = brj(Mki — Nji) Erj + bje(Nji — Aki) Ejie,
we have
Aki = Aji
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for any two distinct j, k # 4. Thus

A=Ay = =XN1i=Niq1i = =Ny,  foranyi=1,2,---

So
d3(Eii) = (Mii — Mei ) Eii + Al for some k # 1.
We may assume that
¢3(Ei;) = vi By +uil forany i =1,2,--- ,n,
where u;,v; € C. By Lemma 3.1,
¢3(I) =0l for some b € C*.
Since

¢3(I) = ¢3(E11) + ¢3(Eaz) + - - - + ¢3(Enn),

we have

V1 =V2 =+ = Un,
denoted by v, and
n
b=v+ Zul
i=1

Then
¢3(Ey) = vEy; +wil,

where v # 0 (otherwise, ¢35 *(u;I) = Ej, a contradiction to Lemma 3.1). So

W71 - ¢s)(Ei) = Eyi + %I for any 1 < i < n.

Define a linear function
f' :1gl(n,C) —C

determined by

f’(Eiz‘):*% forany 1 <i<n
and
f'(Est)=0  forany 1 <s#t<n.
So
n
2. Ui
f)=-5—=-147#-1
b b '

Correspondingly, there is an invertible linear map

Y gl(n,C) — gl(n,C), A A+ f(A),
where A € gl(n,C). Then

(Ypr byt ¢3)(Bii) = By forany 1 <i <n,
and so

(p -yt ps)(h) =h for any h € H,
and
(Wp -yt d3)(Lst) = Loy forany 1 <s#t<n.
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Denote
b1 =Ygy .
Step 8. There is an invertible matrixz S3 such that
(0s, - 04)(A)=A for any A € gl(n,C).
Suppose that
G4(Eiit1) = biE; iy,
where b; € C*. Let
Sy = diag{1,b7 ", by 15", b0yt b )
Then
(0s - pa)(h) =h for any h € H.

Let
(08y - Pa)(Est) = astFst for any 1 < s#t <mn,
where ag € C*.
At first we prove that

ast =1

for any pair (s,t) such that 1 < s < ¢ <n by induction on ¢t — s. It is easy to check that
(055 - 04)(Eiiv1) = it forany 1 <i<n-—1.
So it holds for ¢t — s = 1. Assume that
ast = 1 forany 1 <t—s<k.

We prove

ast =1
when ¢t — s = k. Since

[Bi—1,t-1+ Ei14,Fs i1+ Est]) = —(Es,t—1 + Est),
Ei_ 141+ Ei_1 and E, ;1 + Ey generate a two-dimensional solvable subalgebra, and so
(0sy - ®1)(Er—1,0-1 + Ey—14) and (os, - ¢4)(Es—1 + Eg) also generate a two-dimensional
solvable subalgebra, where
(085 - O1)(Br—1t-1+ Er14) = Er—14-1 + Er_1 4,
and
(055 - $a)(Esp—1+ Est) = Es 1+ ast Egt
by hypothesis. Since
[Bi—1,t-1+ Ei—14, Fs i1+ astEst]) = —(Es -1 + Est),

we have

ast = 1.
By induction,

ast = 1 forany 1 <s<t<n.

Next, we prove that
ast = 1 forany 1 <t < s <n.
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First we prove that
at+1,t =1 forany t =1,2,--- ,n— 1.

We prove it in the following two cases.
Case 1. t=1.
Since
[E11 + Eo1, Ev3 + Ea3) = E13 + Eags,

we see that E17 + FEo; and FEi3 + Fa3 generate a two-dimensional solvable subalgebra of
gl(n,C), and so (0g,-¢4)(E11+FE21) and (0g,-¢4)(E13+ Eag) also generate a two-dimensional
subalgebra of gl(n,C). Since
(05, - @4)(Er1 + E21), (05, - ¢4)(E13 + Ea3)]

= [E11 + a21F21, Ei13 + a3

= F13 + ag1 Eas,
we have

as; = 1.

Case 2. t > 1.
Since
(Erpip41 + Erre, B+ Eio1t) = —(Bi—1,041 + Ei—14),

we see that Eyiq 441 + By, and By 41 + Ey_1,; generate a two-dimensional solvable
subalgebra of gl(n,C), and so (og, - ¢4)(Ett1,t41 + Ery1,) and (os, - ¢a)(Er—1,041 + Fr—1.¢)
also generate a two-dimensional solvable subalgebra of gi(n,C). Since

[(oss - Pa)(Erg1,441 + Eig1,t), (085 - Pa)(Br—1,p41 + Er—14)] = —(Bi—1041 + at1,:Er—14),
we have

At41,t = 1

A similar discussion as above shows that
ast =1 forany 1 <t <s<n.
Thus
(055 - 04)(Est) = Egt for any 1 < s,t < n.

Thus Step 8 holds.
Step 9. There are a nonzero element u € C*, an invertible matriz S and a linear
function f on gl(n,C) with f(I) # —p such that either
6(X) = uSXS~' + f(X)I
or
B(X) = pSX'S~1 4 F(X)I

for any X € gl(n,C).
By Step 8,
1:033 '¢4:033 '¢f"¢;1'w'051 '(725'0—52;
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and so
p=o0g' w gy YL oy og.

We prove Step 9 in the following two cases:

Case 1. w=1.

In this case, by Lemma 2.1, we have

(X)) = (05;1 "ty Qb;fl : 052*153*1)()()
= v(519592) X (S153592) " — bf (S35 XS5 1S5 I
Let
n =", 52515352,

and f be the linear function determined by
F(X) = —bf'(S35: XS5 155 1).
Then
f)==bf'I)=b—v# —v=—u.
Thus Step 9 holds.
Case 2. w = wy.
In this case, by Lemma 2.1, we have
O(X) = —v(S1R(S; 155 1)) X (SLR(S; 1S5 1)) ™ + b (S59: X Sy 851
Let
p=-v, S=SR(S;S),
and f be the linear map determined by
F(X) =0bf"(838:X55"S5").
Then
FI) =bf'(I) = ~b+v#v=—p.
Thus Step 9 holds.
Finally, Theorem 1.1 holds for the case n > 3.
Next we prove Theorem 1.1 holds for n = 2.

We only need to prove the essential direction.
Let ¢ be an invertible linear map preserving solvability on ¢l(2, C).

a b
’Tg{( >|a,b,c€C}
0 ¢

is a solvable subalgebra of gi(2,C), ¢(72) is a solvable subalgebra of gl(2,C), and so there
is an invertible matrix S such that
¢(Tz) € 1257,

Since

which implies that
(05, - 9)(12) = Ta.

Here og, - ¢ is still an invertible linear map preserving solvability on gi(2, C). The set gi(2,C)
is a disjoint union of CI, N and D’, where N is the set of all matrices of the form A\ + N
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with N # 0 and N? = 0, and D’ is the set of all nonscalar diagonalizable matrices. By

Section 3 of [11], each of the sets CI, N, and D’ is invariant under og, - ¢. Let
(05, - P)(I) = Mo, Ao € C.

Since
Eis e N N7y,
we have
(05, - 9)(E12) € NN Ty,
where

NNT={A+ NEp\ XN eC}.

So we may assume that
(05, - @) (E12) = M1 + tEs,

where A\; € C and ¢t € C*. Similarly, by F1; € D' N7T3, we have
(05, - 9)(E11) € D' N Ty,
and we may assume that
(05, - ¢)(E11) = akh1 + bE1s + cEaa,

where a,b,c € C, and a # ¢. Choose
b
So=I— ——Fi5.
a—c
It is easy to check that

(03, - 05, - ®)(Er1) = aE11 + cEaa, (03, - 05, - ®)(Er2) = M I +tEs.

Denote
¢1 =05, 05, " .
Then
#1(E11) = (a —c)En +cl,
¢1(E22) = ¢1(1) — ¢1(En1) = (a — ¢) Bz + (Ao — a),
and so

¢1(H) = H.

Since F11, E12 generate a two-dimensional solvable subalgebra, ¢1(E11) and ¢1(E12) also

generate a two-dimensional solvable subalgebra. By computation,
[1(E11), ¢1(Er2)] = [aE1 + cEaa, M1 +tE12] = t(a — c)Era.
Thus
AL =0,

which implies that
$1(E12) = tE1s.

Let
¢1(E21) = h+ a21Eo1 + a12En2,
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where h € H, aj2,a21 € C. Since FE11, Foo, E31 generate a three-dimensional solvable
subalgebra, ¢1(E11), ¢1(E22) and ¢1(FE91) generate a three-dimensional solvable subalgebra,
denoted by t. Choose
hy = FE11 +2F. € HCH.

Then (ad h1)(¢1(F21)) € t, (ad h1)?(¢1(E21)) € t, i.e., ag1FEo1 — a1aF12 € t, az1 B2 +
a12FE12 € t. Thus ag1Eo1 € t, a1oE12 € t. If ajo # 0 (resp., ag1 # 0), then Ejs € t (resp.,
E5; € t). Thus one of ajg, a2; is zero and the other is nonzero. Assume that

aiz # 0, as =0,
ie.,

$1(E21) = h + a12E2.
In this case ¢1(E12), ¢1(E21) and ¢1(E11 — Ea2) generate a solvable subalgebra of gl(2, C),
which contradicts the fact that the subalgebra generated by Fs1, E12 and E1; — E3o is not
solvable. Thus

as # 0, a1z =0,
ie.,

$1(F21) = h + az1 Ea.

Next we prove that h = 0.
Assume that h # 0. Let
h = pE11 + qFE3s, p,q €C.
We could choose p’, ¢ € C so that p’ # ¢/, and p'q # ¢'p. Then p’E11 + ¢'Eas and h are
linearly independent. Let
h' = ¢ (p'En + ¢ Ex) € H.

Denote
t' = ¢1(CEy + Ch").

Since CE5; + Ch” is a two-dimensional solvable subalgebra generated by h” and FEo1, t' is a
two-dimensional solvable subalgebra generated by ¢1(F21) and ¢1(h”). However,

[01(E21), ¢1(h")] = [h+ a21Ea1, p'Ervi + ¢'Ez] = az1(p’ — ¢') B,
a contradiction. Thus

ie.,

where as; € C*. So
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Let f/ be a linear function on C determined by

f(E1) = ﬁa [ (Ea2) = );0:57 ['(E12) = f'(F21) = 0.
Since \
FiI) =" =14 -,
a—c

b gl(2,€) = gl(2,C), A A+ [I(A)L,
is an invertible linear map preserving solvability. It is easy to check that
W' Yle - ¢1)(En) = B,
(W' Yale - 01)(B22) = Ena,
-1 -1 t
Ja . E19) = ——Fqo,
(Vp  Yac $1)(En2) PR L

az1

1 -1
1 - 61)(Eay) = Eo.
Wy Yo d1)(B21) = ——En
Denote
G2 =1 Yulo o
Choose
a—c
S3 = Fi1 + Eys.
Then
(s, - $2)(E11) = En,
(055 - ¢2)(Ea2) = Eaa,
(08, - $2)(E12) = Eng,
tas
. FEs1) = E
(055 * ¢2)(E21) oozl
Set
t, _ ta21
(a—c)?
We shall prove that
t'=1.

Since

[E11 + E1a — Eo1 — Eaa, Eo1 + E12] = 2(E11 + E12 — B9y — Eaa),

we see that Ey; + Eijo9 — Ea1 — Eos and Fo; + Ejo generate a two-dimensional solvable
subalgebra of gl(2,C), and so (og, - ¢2)(E11 + E12 — Fa1 — Ea2) and (0g, - ¢2)(Ea1 + E12)

also generate a two-dimensional solvable subalgebra of ¢gl(2,C). By computation,

(055 - #2)(E11 + B2 — Eo1 — E2), (05, - ¢2)(E21 + Er2)]
= 2(t'E11 + E12 — t'Ea; — t' Eg).
Thus t’' =1, i.e.,
(055 - ¢2)(Fa1) = Ea.
Therefore
o8y - g2 =1,
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ie.,

—1 —1
O—SS.?/}f’. a—(;.O—S2.O—Sl.¢:1'

Thus by Lemma 2.1,

6 =051 05} Ve g 05l =g ae g o6,
Therefore

d(X) = (a — ¢)(5159253) X (515253) ™' + (a — ) f'(S3 X S5 )T

for any X € ¢l(2,C). Let
n=a—=c, 51515253,

and f be the linear function determined by
FX)=(a—o)f (SsXS5 ™).
So
f)y=(@—-of'(I)#—(a—c)=—p
Thus
O(X) = pSXS™H + f(X),

and Theorem 1.1 holds for n = 2.
The proof of Theorem 1.1 is completed.
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