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Abstract: In this paper, we prove that the Toeplitz operator with finite Blaschke
product symbol Sw( z) on N, has at least m non-trivial minimal reducing subspaces,
where m is the dimension of H2(I,) © ¢(w)H?(I,). Moreover, the restriction
of Sw(z) on any of these minimal reducing subspaces is unitary equivalent to the
Bergman shift M.
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1 Introduction

Let D denote the open unit disk in the complex plane C and T? be cartesian product of two
copies of T, where T is the unit circle. It is well known that 72, as usually is endowed with
the rotation invariant Lebesgue measure, is the distinguished boundary of D?. Let dm(z)
denote the normalized Lebesgue measure on T and dm(z)dm(w) be the product measure
on the torus 72. The Bergman space is denoted by L2(D) and Bergman shift is denoted
by M,. Let H?(I'?) be the Hardy space on the two dimensional torus 72. We denote by
z and w the coordinate functions. Shift operators T, and T, on H?(I'?) are defined by
T.f=z2fand T, f = wf for f € H*(I'?). Clearly, both T, and T,, have infinite multiplicity.
A closed subspace M of H?(I'?) is called a submodule (over the algebra H*(D?)), if it is
invariant under multiplications by functions H>°(D?). Equivalently, M is a submodule if it
is invariant for both T, and T,. The quotient space N : H?(I'?) © M is called a quotient
module. Clearly, Ty N C N and TN C N. In the study here, it is necessary to distinguish
the classical Hardy space in the variable z and that in the variable w, for which we denote
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by H?(I',) and H?(T,), respectively. In this paper, we look at submodules of the form [z-
o(w)], where ¢ is an inner function in H?(I',) and [z-¢(w)] is the closure of (z-p)H>(I'?)
in H%(I'?). For simplicity we denote [2-¢(w)] by My,. N, = H*(I'*) & M,, denote N,-type
quotient modules on the torus. For a function 1 € H®(D?), we define the Toeplitz operator
Sy on N, with symbol v by

Su(f) = Px, (W), VEN,,
where Py, is a projection from H?(I'?) to N,.

The quotient module IV, has a very rich structure. In deed, when ¢ is inner, N, can be
identified with the tensor product of two well-known classical spaces, namely the quotient
space H?(I') © ¢H?*(I') and the Bergman space L2(D). Clearly, when ¢(w) = w, N,, is
unitary equivalent to LZ(D). In fact, it is shown in [1] that {T%, T,,, H*(I'?)} is the minimal
super-isometrical dilation of M,. Then the reducible problem of Toeplitz operator with
finite Blaschke product on the Bergman space is turned to the reducible problem of Toeplitz
operator with finite Blaschke product on N,. It is obtained in [1] that Toeplitz operator
with finite Blaschke product Sy ;) on N, has at least a reducing subspace M, moreover,
Sylm =2 M,. In this paper, we prove that when ¢ is a non-constant inner function, the

conclusion like that in [1] is also true.
2 Preliminaries

In order to prove the main theorem, we need the following lemma.

Lemma 2.1 Let p(w) be a one variable non-constant inner function and {\p(w): k =
1,2,---,m} be an orthonormal basis of H*(I',) © p(w)H?(I,,), and
W+ w4y

i =0,1,--).

Erj = Ae(w)ej(z, p(w))-

Then {Ey;: k=1,2,---,m; j=0,1,---} is an orthonormal basis for N,.

ej(z,w) =

Let

Lemma 2.2 There exists a unitary operator U,
U: N, — (H*(Iu) © p(w)H?(IL)) © Ly(D),
Epj — Me(w)y/7 + 1€
such that
US.,=(1TQM.)U,
where I is an identity map on H*(I,)o¢(w)H?(I,).

Lemma 2.3 Suppose that

N-1 5
pw)=w,  v()==z]] T
=1

Q
arz

(lar|>0, oy (Ml #k), 1<Lk<N-1).
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Then there exists a unique unit vector e such that
e € ker Ty, Nker Ty ) N Ny = ker Sj ) Nker Sy, (2.1)
(¥(2) + h(w))e € No. (2.2)

Lemma 2.48B  Suppose that ¢ is the inner function. Then the boundary value of ¢ is

the measurable transformation on T, my ™! is the measure on T. And the Radon-Nikodym

derivative of mep ™! is equal to poisson’s kernel, i.e.,

%(;(t)) = pa(t) = Re<ij—z> <a = /0% so(e“’)dm(9)>~

A\ —
Lemma 2.5  Suppose that A € D and ny = . Then the Toeplitz operator S, on

— Az
N, is unitary equivalent to S, i.e., Sy, =5,.

Proof. There exists a unitary transformation (see [2]),
Wi: L(D) — L2(D),
~ - 1
Wi(h) = (1—|[AP)hon -k iy = ———
== pPmem B (= 5o
such that
Wi M, Wi = M..

Let
Wy =1 W;.

Then it is clear that W5 is the unitary transformation on (H?(I,) © p(w)H?(I,)) ® L?(D).
What’s more,
Woll ® My, ) = (I @ Wi)(I® M,,)

=1I® (Wle)

=1® (M.Wy)

=T ®M.,)I®W)

= (I ®@M,)Ws.
Thus

[®M,, =1 M.

By Lemma 2.2, there exists a unitary operator U such that
US.,=(I® M,)U.
By the function calculus, it is well known that
USp U* = Unx(S.)U"
=m(US:.U")
=m{ @ M,)
=1®M,,.
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Let
W5 = U*WLU.
Then
W3S, Wy = UWLUS,, U WU
= U"Wa(I @ M,, )WsU
=U"(I® M,)U
=5..
Therefore
S = 8.

The proof is completed.

Lemma 2.6  Suppose that v is a finite Blaschke product and ¥y = ¥ ony. If Sy, has at
least a non-trivial reducing subspace on which the restriction of Sy, s unitary equivalent to
the Bergman shift, then Sy also has at least a non-trivial reducing subspace on which the
restriction of Sy is unitary equivalent to the Bergman shift.

Proof. Let M be the non-trivial reducing subspace of Sy, and there exists a unitary trans-
formation W: M — L2(D) such that

WSy, [ar = M.W.

Because
momw) =w,
we have
Y =1rom.
By Lemma 2.5,

W38, W3 =5..
By the function calculus,
W3Sy Wy = W3Sy, oWy
= Waa(Sn, )W
= Ya(W35p, W5)
= ¥a(S:)

ie.,

Let
My = Wq M.

Then M; is the non-trivial reducing subspace of Sy. Let
Wy = WWs.
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It is easy to prove that
WySylar, = M, Wy,

ie.,

S¢,|M1 =~ M,.

The proof is completed.

Lemma 2.71  Suppose that Y(z) is the finite Blaschke product having zeros with multi-
A —

plicity greater than one and ny = . XZ . Let Yx(z) = (a0 )(2). Then there exists a
— Az

X € D such that ¥x(z) has distinct zeros.

3 Principal Results and Proofs
In this section we give our main results.

Theorem 3.1  Suppose that p(w) be a one variable non-constant inner function, and

Nl a
v(z) =z ]
P

l
1—qpz
=1

(laa| >0, ey £y (VI#£K), 1<L,k<N-—1).

Then there exists a unique unit vector € such that
/ * * _ * *
e < kerTw(z) n kerTw(w(w)) n N‘P = ker Sw(z) n ker Sw(‘ﬂ(“’))’ (31)
(¥(2) + ¥(p(w)))e’ € N.
Proof. Picking the unit vector e in Lemma 2.3, then we have
e € H}(T?) © [z-w] = N,
By Lemma 2.1, {e;(z, w): j > 0} is an orthonormal basis for H?(T?) & [z-w]. Then there
exsits a sequence of constant numbers {k;}, such that

e= Z kiej(z, w).
Let "
el(zv W) = )\1(01)6(2, (p(W))

Then obviously

(oo} oo
e(z, w) = ij()\l(w)ej(z, o(w))) = ijEl,j €N, (3.3)
j=0 j=0
and -
e/ =D 1k [* = llell* = 1.
§=0
Because
e €ker Ty, < T, e(z, w) =0,
ie.,

/T/T|T$(z>€(27 W) [2dm(z)dm(w) = 0,
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then
1T ez o)
- / / T3 ez pw)Pdm(z)dm(w) (et t = p(w))
TJT
_ o ppdme @)
= [ [1mete oF e dn dn)
Let

2 )
a= / o(e®)dm().
0

Then by Lemma 2.4,

e A = (o)

t+a
- ‘Re(t — a)‘
t+a
tfa‘
1+ |al
~ 1—af
* 21+ |af
/T/T |Tw(z)e(z,t)| dm(z)dm(t)

1 —1al

IN

< Ltlal / / 1T el ) Pdm(z)dm()
1_|@| TJT

= 0.

Thus
Tje(z, ¢(w)) = 0.
Then
Tj€ (2, w) = Ty (M(w)e(z, p(w))) = M(w)T].)e(z, p(w)) =0. (34)
By (3.3) and (3.4),
e/ S kerT,:Z(z) n N‘P
We have
Tinlve = Ty(p N,
In fact, because ¢ € A(D), it is easy to prove that
¥(z) = PlpWw)) € [z-p(w)] = My,
and it is well known that 1y € H>°(D?). Then for any g € H*(T?), (¥(2) — ¢ (p(w)))g € M.
Therefore,
<(T1Z(z) - T’tZ(ap(w)))fa g> = <f7 (1/)(2) - 1/)(80(“)))@ =0, vfag € N@a
ie.,
TinIve = Typ(y N,
Then
el c kerTJ)(z) n kerTJ)(@(w)) n N<p.
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Let
N-1
zZ— ]
Py 1—az
By the fact that
T;el = T;(w)el,

moreover the conclusion (3.2) is equivalent to the following;:
[Yo(2) = dolp(w))le’ = [1)(2) — P(p(w))]TTe". (3.5)
In fact,
(¥(2) +(p(w)))e’ € Ny

= (T = T5)[(¥(2) + P(e(w)))e'] = 0

= [Yo(2) — dolp(W))le’ = [¢(2) — P(p(w))]T €.
Similarly, by (2.2), we have

[Yo(2) = do(W)le(z, w) = [¥(2) — p(W)]TTe(z, w).

So
Io(z) — do(@)le(zr ©) — [$(z) — B@)T7e(z W)
/ / (= e(z, w) — [(2) — YT e(z, w)Pdm(z)dm(w)
Then
1o(2) — dolp@)e(z 9@)) — [(z) — blp@)Tre(z p@)]?
/ / (= Ve(z, o()) — [B(2) — bp@)Tre(z, o(w))Pdm(z)dm(w)
(let t = p(w))
= [ [ nta) = w0kt )= 96:) - ozt 0P 2E D arn(apamn
= [ ] 102) = in(0letz. ) = [0:) = wlITzelz. 0Fpa()dm(z)dm(r)
_ 1+l .
< 1_|a|//|¢0 1) = () = YOI Tze(, 1) Pdm()dm)
Therefore,

[0(2) = to(p(w))le(z, pw)) = [(2) — Y(p(Ww)]Te(z, p(w)).

Multiplied by A;(w), we can obtain the conclusion (3.5). The proof is completed.

Remark It is different from Lemma 2.3, ¢’ in the theorem is not unique. We can let

e = A(w)e(z, W),
where A\, (w) is any element of the orthonormal basis of H*(I,) © ¢(w)H?(I,) in Lemma
2.1.
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Theorem 3.2  Suppose that (w) be a one variable non-constant inner function, and

N—-1
zZ—
v == ] 17071; (lou| >0, y #£ o (VI#EK), 1<, k< N—1).
=1

Pick €' in Theorem 3.1. Then
Me’ = Span{p{n(w)el -n 2 0};
where
Pr(®) = 9" (2) + 9" H(2)P(p(W)) + -+ ()" (W) + ¢ (W)
is a non-trivial minimal reducing subspace of Sy(.). Moreover Sy )|, is unitary equivalent

to Bergman shift M.

Proof.
TZpy, ()€ T*Mpn(w) !
= TI[W"(2) + 9" () (p(w)) + ()w" W) + 9" (p(w))e’
= Th " (2) + 9" H(2)w(e (w) D(2)P" " (p(w)) + 9" (p(w))]e’

= [o(2)Y" " (2)e’ + 1o (2)Y" * (2)¥(p(w )e +o ()Y (pW))e’ + 9" (p(w)) T e]

— [ ()T e + 9" (2)do(p(w))e!
+19(2)00 (W)™ 2 (p(w))e’ +wo( (w ))w"‘l(so(w))e’]
= [ho(2)" 1 (2)€' + Yo (2)P" 2 (2)P(p(w))e’ + -+ + 1o (2)Y" (p(w)e’ + ™ (p(w) Ty €]
— [ (2)Tre + 9" (2)go(p(w))e + - --
+9(2)P0 (W)™ (p(w)e’ + Yo(p(w)P"Hp(w))e']
= D1 (¥) (o (2) = Yo(pw)))e’ + (" (p(w)) — " (2))T7 e
(by (3.5))
(W)W (2) = Y(pW)Tre + (W (p(w)) =" (2) T e

= D1
= (¥"(2) =" (eW))TZe + (" (p(w)) — " (2)) 7€
= 0.
We have
(T2 = Tw))Pn(¥)e’ = 0.
So
Pp(¥)e’ € N.
Also,
Sy (P (¥)e)
= q(2)pn ()¢’
= ()" (2) + " W (eW) + -+ Y2 p(W)) + 9" (p(w))]e!

(z) +
= q[" T (2) + 9" ()W) + -+ V()Y (W) + Y (2)Y" (p(w)]e!
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n+1,

— {0+ — @) — 0 () + (07() — 6 (@) (p(w) + -

+ (W(z) — b)) (o)) |

n+1,
nr 2Pt

(¥)e’ € Mer, (3.6)

and
Sy (P (W)e))
= q(2)p,, ()€’
= @)W (2) + " () (W) + - + Y)Y () + " (p(w))]e!
= q[Y" 7 (2) + V"2 (2)P(p(w) + -+ Y T (p(w))]e + " (W) T e
(by (3.1)
= q[Y" 7 (2) + V"2 (2)P(p(w)) + -+ " (p(w))]e!

= ph1(¥)e’ € Mer. (3.7)
Hence by (3.6) and (3.7), M. is the non-trivial reducing subspace of Sy.). Because

()] = [(p@)l=1  ae onT?

then
cka* (2)PH (W), if m>n;
, i k+l=n—m,—n<k,l<n 9
()P (¥) = & Lk ) a.e.on T-.
S a2 (ew) + (4 1), ifm=n
—n<k<n,k#0
Since e’ € ker TJ(Z) N ker qu(qj(w)) N Ny, it is easy to check
, P n_J 0, if m #£n;
W ) ={ Ve

Pu()e’
vn+1 -

define a unitary transformation

Therefore, { n=0,1,-- } is an orthonormal basis for M.. By (3.6) we can

Wy : My — L2(D),

/ A
n+1
such that
WSy, = M Wi.
Hence

Syylm,, = M..
The proof is completed.

Corollary 3.1  Suppose that o(w) be a one variable non-constant inner function, and

N—-1
zZ—
Y(z) =z ] 1_@; (log] >0, oy £ ap (VI #£k), 1<1,k<N—1).
=1

Then the Toeplitz operator Sy.) has at least m non-trivial minimal reducing subspaces (m =
dim(H?*(I',) © p(w)H?*(I,)) and m may be +00). Moreover, the restriction of Sy, on any
of these minimal reducing subspaces is unitary equivalent to the Bergman shift M.
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Theorem 3.3  Suppose that (z) is a common finite Blaschke product. Then Sy ) has
at least a non-trivial minimal reducing subspace on which the restriction of Sy, s unitary

equivalent to the Bergman shift.

Proof. Suppose that 1¥(z) is a finite Blaschke product of order N. If 9(z) is the finite
Blaschke product having zero with multiplicity greater than one, then, by Lemma 2.7, there
exists a A9 € D such that 9, (z) has distinct zeros, where

Yo (2) = (Mg 0 ¥)(2), Mo (%)

- )\O_Z
N 1—)\_02'

If ¥, (0) #£ 0, let
¥ (2) = (¥x, 0, )(2)-
Suppose that A; satisfies the condition
P, (A1) = 0.
Then
U (0) = ¥ (12, (0)) = thae (A1) = 0.

Hence 1y, (2) is the case in Theorem 3.2. Therefore, Sy, (z) has at least a reducing subspace
on which the restriction of Sy, (z) is unitary equivalent to the Bergman shift. By Lemma
2.6, Sy,, (z) also has at least a reducing subspace, denoted by M and
Wi Sy, | = M W1,
By 7 o mx(w) = w and function calculus, one has
Ao = Sy (2)
S z) = Siyo z) — S z)) = —
5) = Smagovn (=) = MalSun, ) = T 55
So M is the reducing subspace of Sy ,). We have
WSy Wi = Wil ous, () W1

= W177A0 (Slb)\o )Wl*

= Mo (W1 Sy, WT)

= Mo (MZ)

= Mmo-
By [1], there exists a unitary transformation Ws such that
WaoM,, Wy = M,.
Define a unitary transformation:

W. M — Lz(D)W = WQWl.
Therefore,
WSyW* = WoW1 Sy WiW5 = WMy, Wy = M,

ie.,
S¢|M =~ M,.

Corollary 3.2  Suppose that p(w) be a one variable non-constant inner function and ¥ (z)
is a common finite Blaschke product. Then Sy .y has at least m non-trivial minimal reducing



NO. 1 WU Y. et al. REDUCING SUBSPACE OF TOEPLITZ OPERATORS 29

subspaces (m = dim(H?(I,) © ¢(w)H*(I,)) and m may be +00). Moreover, the restriction
of Sy(z) on any of these minimal reducing subspaces is unitary equivalent to the Bergman
shift M.

Proof. It can be easily obtained by Corollary 3.1 and Theorem 3.3.
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