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1 Introduction

In this paper, we investigate the existence, uniqueness and asymptotic behavior of solutions

to the following initial-boundary value problem for the pseudo-parabolic equation in one

spatial dimension:

∂u

∂t
− k

∂D2u

∂t
= D2u + m(x, t)uq, (x, t) ∈ Q, (1.1)

u(0, t) = u(1, t) = 0, t ≥ 0, (1.2)

u(x, 0) = u0(x), x ∈ [0, 1], (1.3)

where q > 1, Q ≡ (0, 1) × R+, D = ∂/∂x, k > 0 represents the viscosity coefficient,

m(x, t) ∈ Cα,α/3(Q) for some α ∈ (0, 1) and satisfies 0 < m ≤ m(x, t) ≤ m for any

(x, t) ∈ Q, m and m are positive constants.

The pseudo-parabolic equations are characterized by the occurrence of mixed third order

derivatives, more precisely, second order in space and first order in time. Such equations

are used to model heat conduction in two-temperature systems (see [1] and [2]), fluid flow

in porous media (see [3] and [4]), two phase flow in porous media with dynamical capillary
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pressure (see [5]), and the populations with the tendency to form crowds (see [6] and [7]).

Furthermore, according to experimental results, some researchers have recently proposed

modifications to Cahn’s model which incorporate out-of-equilibrium viscoelastic relaxation

effects, and thus obtained this type of equations (see [8]). The pseudo-parabolic equations

with strongly nonlinear sources we considered may arise in the study of nonstationary pro-

cesses in semiconductors with sources of free-charge currents (see [9] and [10]). The processes

can be described by the system that has the explicit form of the constitutive equations con-

necting the electric field strength E with the electric flux density G on the one hand, and

the electric field strength E with the current density J in the semiconductor on the other

hand, as follows:

divG = 4πen, E = −∇u, G = E + 4πP,

∂n

∂t
= −divJ + Q, Ji = σiEi, i = 1, 2, · · · , N,

where P is the polarization vector and in some models there has the following phenomeno-

logical relation divP = k1u, k1 > 0, n is the free electron concentration, u is the electric

potential, and σi is the conductivity tensor. Finally, assume that, in a semiconductor, there

are sources of free-charge currents whose distribution in the self-consistent electric field of

the semiconductor is of the form Q = m(x, t)up. By differentiating both sides of the first

equation with respect to t and taking account of the second equation, the above system can

be reduced to the equation (1.1).

The pseudo-parabolic equations have been extensively investigated. In [11]–[13], the

authors investigated the initial-boundary value problem and the Cauchy problem for the

linear pseudo-parabolic equation and established the existence and uniqueness of solutions.

The nonlinear pseudo-parabolic type equations with undefined or uninvertible operator at

the highest derivative with respect to time were studied in [14]. The degenerate and quasi-

linear degenerate pseudo-parabolic type equations were investigated in [15] and [16]. For

the local solvability of the pseudo-parabolic type equations with variety nonlocal boundary

conditions, see [17]–[19].

For pseudo-parabolic equations, classical maximum principle is invalid in general. For

the nonnegativity of a solution, not only nonnegative initial data, but also an extra condition

on the elliptic operator is needed (see [20]–[22]). Due to the special type of the problem

(1.1)–(1.3) which is included in the studies of [22], we can prove the comparison principle of

solutions, which enables us to obtain the existence of nonnegative solutions to the problem

(1.1)–(1.3). For the asymptotic behavior of solutions, we know that in certain cases, the

solution of a parabolic initial-boundary value problem can be obtained as a limit of solutions

to the problem of the corresponding pseudo-parabolic equations, see [11]. In this paper, we

show that the semilinear pseudo-parabolic equations still retain this character, namely, the

solutions of the pseudo-parabolic equations converge to the solution of the parabolic equation

as k → 0.

This paper is organized as follows. In Section 2, we show the existence and uniqueness

of nonnegative classical solutions to the initial-boundary value problem (1.1)–(1.3). Then,
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in Section 3, we discuss the asymptotic behavior of solutions as the viscosity coefficient k

tends to zero.

2 The Initial-boundary Value Problem

In this section, we discuss the solvability of the initial-boundary value problem (1.1)–(1.3).

Firstly, we prove the uniqueness of the solution.

Theorem 2.1 If the initial-boundary value problem (1.1)–(1.3) admits classical solutions,

then for any given initial datum u0 ∈ C2+α[0, 1] with u0(0) = u0(1) = 0, the solution of the

problem (1.1)–(1.3) is unique.

Proof. Let u1, u2 be two solutions of the problem (1.1)–(1.3). Set v = u1 − u2. Then we

have
∂v

∂t
− k

∂D2v

∂t
= D2v + qm(x, t) (u1 + θ(u2 − u1))

q−1
v, (x, t) ∈ QT ,

v(0, t) = v(1, t) = 0, t ∈ [0, T ],

v(x, 0) = 0, x ∈ [0, 1],

where θ ∈ (0, 1), T > 0 is a given constant, and QT = (0, 1) × (0, T ). Multiplying the first

equation by v, we get

1

2

d

dt

∫ 1

0

(

v2 + k|Dv|2
)

dx +

∫ 1

0

|Dv|2dx

=

∫ 1

0

qm(x, t)(u1 + θ(u2 − u1))
q−1v2dx.

It follows that
d

dt

∫ 1

0

(

v2 + k|Dv|2
)

dx ≤ C

∫ 1

0

v2dx

≤ C

∫ 1

0

(v2 + k|Dv|2)dx, t ∈ (0, T ).

Noticing that

v(x, 0) = Dv(x, 0) = 0,

by the Gronwall inequality, we obtain
∫ 1

0

(

v2(x, t) + k|Dv(x, t)|2
)

dx ≤ 0, t ∈ (0, T ).

Consequently,
∫ 1

0

v2(x, t)dx ≤ 0, t ∈ (0, T ),

which implies that u1 = u2 a.e. in QT . The proof of this theorem is completed.

Next, we prove that the solutions of the problem (1.1)–(1.3) admit comparison principle.

DiBenedetto and Pierre[22] discussed the maximum principle for pseudo-parabolic equations

including the equation
∂

∂t
(u − k∆u) − ∆u = f, (x, t) ∈ Ω × [0, T ]
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subject to the conditions

u|∂Ω = g(t), u(0) = u0,

where Ω is a bounded open set in Rn, and T > 0 is a given constant. Denote

E = {u ∈ H2(Ω); u0|∂Ω = g(0)}.

Their argument contains the following conclusion (see [22], P.14).

Lemma 2.1 The following propositions are equivalent:

(i) For any u0 ∈ E, f ∈ L1(0, T ; L2(Ω)),

u0 ≥ 0, f(t) ≥ 0 a.e. t ∈ [0, T ] ⇒ uk(t, u0, f) ≥ 0, t ∈ [0, T ].

(ii) For any t ∈ [0, T ], g(t) ≥ e−t/kg(0).

In virtue of that the boundary value conditions (1.2) imply g(t) = 0 for any t ∈ [0, T ],

the proposition (ii) of Lemma 2.1 holds. Therefore, we obtain the comparison principle as

follows.

Proposition 2.1 Let u1 and u2 be two solutions of the initial-boundary value problem

(1.1)–(1.3) in QT with initial data u10 and u20 respectively, u10, u20 ∈ C2+α[0, 1]. If u10 ≥

u20 ≥ 0 in (0, 1), then u1 ≥ u2 ≥ 0 in QT .

Proof. We first prove that u1 and u2 are nonnegative. For this purpose, we consider the

following problem:

∂û1

∂t
− k

∂D2û1

∂t
= D2û1 + m(x, t)(û1+)q, (x, t) ∈ QT , (2.1)

û1(0, t) = û1(1, t) = 0, t ∈ [0, T ],

û1(x, 0) = u10(x), x ∈ [0, 1],

where s+ = max{s, 0}. Since

m(x, t)(û1+)q ≥ 0, u10(x) ≥ 0,

and the zero boundary value conditions admit the proposition (ii) of Lemma 2.1, by virtue

of Lemma 2.1 we see that û1 ≥ 0 in QT . Hence, û1+ in the equation (2.1) is û1 itself.

Because the solution of the problem (1.1)–(1.3) is unique, we have

u1 = û1 ≥ 0 in QT .

Similarly, we can also prove

u2 ≥ 0 in QT .

Set

v = u1 − u2.

Then v satisfies
∂v

∂t
− k

∂D2v

∂t
= D2v + qm(x, t)(θu1 + (1 − θ)u2)

q−1v, (x, t) ∈ QT , (2.2)

v(0, t) = v(1, t) = 0, t ∈ [0, T ], (2.3)

v(x, 0) = u10(x) − u20(x), x ∈ [0, 1], (2.4)
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where θ ∈ (0, 1). Consider the following equation:
∂v̂

∂t
− k

∂D2v̂

∂t
= D2v̂ + qm(x, t)(θu1 + (1 − θ)u2)

q−1v̂+, (x, t) ∈ QT . (2.5)

Noticing that u1 ≥ 0, u2 ≥ 0, u10(x) ≥ u20(x) and the boundary value of v equals to zero, by

Lemma 2.1 we have the solution of the problem (2.5)–(2.3)–(2.4) v̂ ≥ 0 in QT . Consequently,

we see that v̂+ = v̂ in the equation (2.5). Similarly to the proof of Theorem 2.1, we can

prove that the solution of the problem (2.2)–(2.4) is unique. Therefore, the solution of the

problem (2.2)–(2.4) v = v̂ ≥ 0 in QT , i.e., u1 ≥ u2 in QT . The proof of this proposition is

completed.

In what follows, we prove the existence of solutions to the problem (1.1)–(1.3). For this

purpose, we first construct a uniformly bounded supersolution of the problem (1.1)–(1.3),

which enables us to obtain the upper bound of solutions. The definition of a supersolution

is as follows.

Definition 2.1 A function u is called a supersolution of the initial-boundary value prob-

lem (1.1)–(1.3) provided that

∂u

∂t
− k

∂D2u

∂t
≥ D2u + m(x, t)uq, (x, t) ∈ Q,

u(0, t) ≥ 0, u(1, t) ≥ 0, t ≥ 0,

u(x, 0) ≥ u0(x), x ∈ [0, 1].

Let u(x, t) = α(2−x2), where α is a positive constant to be determined. Then, u satisfies
∂u

∂t
− k

∂D2u

∂t
− D2u − m(x, t)uq = 2α − m(x, t)αq(2 − x2)q, (x, t) ∈ Q,

u(0, t) = 2α, u(1, t) = α, t ≥ 0,

u(x, 0) = α(2 − x2), x ∈ [0, 1].

We choose α to satisfy 0 < α ≤
1

2

(

1

m

)
1

q−1

, where m is the upper bound of m(x, t). When

max
(0,1)

u0 ≤
1

2

(

1

m

)
1

q−1

, it is easy to verify that u is a supersolution of the problem (1.1)–(1.3).

If u is the solution of the problem (1.1)–(1.3), and set v = u − u, then we have
∂v

∂t
− k

∂D2v

∂t
− D2v ≥ m(x, t)(θu + (1 − θ)u)q−1v, (x, t) ∈ QT ,

v(0, t) = 2α, v(1, t) = α, t ∈ [0, T ],

v(x, 0) = α(2 − x2) − u0(x) ≥ 0, x ∈ [0, 1].

Noticing that v(0, t) and v(1, t) satisfy the proposition (ii) of Lemma 2.1, similar to the

proof of Proposition 2.1, we can obtain v(x, t) ≥ 0 in QT , i.e., u(x, t) ≥ u(x, t) ≥ 0 in QT .

Consequently, the following lemma holds.

Lemma 2.2 For any given initial datum u0 ∈ C2+α[0, 1] with u0(0) = u0(1) = 0, u0 ≥ 0,

if u0 is appropriately small, u is the solution of the initial-boundary value problem (1.1)–

(1.3), then

0 ≤ u(x, t) ≤ M2, (x, t) ∈ QT , (2.6)
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where M2 is a positive constant independent of u and k.

By means of the above lemma, we show the global existence of solutions to the problem

(1.1)–(1.3).

Theorem 2.2 For any given initial datum u0 ∈ C2+α[0, 1] with u0(0) = u0(1) = 0, u0 ≥

0, if u0 is appropriately small, then the problem (1.1)–(1.3) admits at least one nonnegative

classical solution.

Proof. We prove this theorem by employing the Leray-Schauder fixed point theorem.

Consider a family of relevant equations with parameter, namely

∂u

∂t
− k

∂D2u

∂t
= D2u + σm(x, t)uq, (x, t) ∈ QT (2.7)

subject to the conditions

u(0, t) = u(1, t) = 0, t ∈ [0, T ], (2.8)

u(x, 0) = σu0(x), x ∈ [0, 1], (2.9)

where σ ∈ [0, 1] is a parameter. Here and below, we denote by C a constant, whose value

may be different from line to line and is independent of u and σ. Multiplying (2.7) by u and

integrating the result over Qt, we have

1

2

∫ 1

0

u2(x, t)dx +
k

2

∫ 1

0

|Du(x, t)|2dx +

∫∫

Qt

|Du|2dxds

=
σ2

2

∫ 1

0

u2
0(x)dx +

k

2
σ2

∫ 1

0

|Du0(x)|2dx + σ

∫∫

Qt

m(x, s)uq+1dxds.

By (2.6), we obtain
∫ 1

0

|Du(x, t)|2dx ≤ C, t ∈ (0, T ), (2.10)

∫∫

QT

|Du|2dxdt ≤ C. (2.11)

Multiplying (2.7) with D2u and integrating over Qt, we get

1

2

∫ 1

0

|Du(x, t)|2dx +
k

2

∫ 1

0

|D2u(x, t)|2dx +

∫∫

Qt

|D2u|2dxds

=
σ2

2

∫ 1

0

|Du0(x)|2dx +
k

2
σ2

∫ 1

0

|D2u0(x)|2dx − σ

∫∫

Qt

m(x, s)uqD2udxds

≤
1

2

∫∫

Qt

|D2u|2dxds + C,

which implies that
∫ 1

0

|D2u(x, t)|2dx ≤ C, t ∈ (0, T ), (2.12)

∫∫

QT

|D2u|2dxdt ≤ C. (2.13)

Combining (2.10) with (2.12), we conclude that

‖Du‖L∞(QT ) ≤ C. (2.14)
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Multiplying (2.7) with
∂u

∂t
and integrating over Qt yield

∫∫

Qt

∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

2

dxds + k

∫∫

Qt

∣

∣

∣

∣

∂Du

∂t

∣

∣

∣

∣

2

dxds +
1

2

∫ 1

0

|Du(x, t)|2dx

=
σ2

2

∫ 1

0

|Du0(x)|2dx + σ

∫∫

Qt

m(x, t)uq ∂u

∂t
dxds

≤
1

2

∫∫

Qt

∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

2

dxds + C.

It follows that
∫∫

QT

∣

∣

∣

∣

∂u

∂t

∣

∣

∣

∣

2

dxdt ≤ C. (2.15)

We rewrite the equation (2.7) into the form

∂D2u

∂t
=

1

k

∂u

∂t
−

1

k
D2u −

σ

k
m(x, t)uq.

Then, we have
∫∫

QT

∣

∣

∣

∣

∂D2u

∂t

∣

∣

∣

∣

2

dxdt ≤ C. (2.16)

In the following, we claim that

|u(x1, t1) − u(x2, t2)| ≤ C(|x1 − x2| + |t1 − t2|
1/3) (2.17)

for any (xi, ti) ∈ QT (i = 1, 2). It is obvious that the above inequality is equivalent to

|u(x1, t) − u(x2, t)| ≤ C|x1 − x2|, t ∈ [0, T ], x1, x2 ∈ [0, 1], (2.18)

|u(x, t1) − u(x, t2)| ≤ C|t1 − t2|
1/3, x ∈ [0, 1], t1, t2 ∈ [0, T ]. (2.19)

We can easily obtain (2.18) from (2.14). To prove (2.19), we need only to consider the case

of 0 ≤ x ≤ 1/2. Let ∆t = t2 − t1 > 0 satisfying (∆t)1/3 ≤ 1/4. Integrating (2.7) over

(y, y + (∆t)1/3) × (t1, t2) gives
∫ y+(∆t)1/3

y

(u(z, t2) − u(z, t1))dz

= k

∫ y+(∆t)1/3

y

∫ t2

t1

D2utdtdz +

∫ t2

t1

(Du(y + (∆t)1/3, t) − Du(y, t))dt

+ σ

∫ y+(∆t)1/3

y

∫ t2

t1

m(z, t)uqdtdz.

Integrating the above equality with respect to y over (x, x+(∆t)1/3), by (2.6), (2.14), (2.16)

and the mean value theorem, we have

|u(x∗, t2) − u(x∗, t1)| ≤ C|t2 − t1|
1/3,

where

x∗ = y∗ + θ∗(∆t)1/3, y∗ ∈ (x, x + (∆t)1/3), θ∗ ∈ (0, 1).

Combining the above inequality with (2.18), we arrive at

|u(x, t1) − u(x, t2)| ≤ |u(x, t1) − u(x∗, t1)| + |u(x∗, t1) − u(x∗, t2)| + |u(x, t2) − u(x∗, t2)|

≤ C|t1 − t2|
1/3.
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Now, we define a linear space X by

X = {u ∈ C1,1/3(QT ) : u(0, t) = u(1, t) = 0, ∀t ∈ [0, T ]},

and an operator

F : X −→ X, u 7−→ w,

where w is a solution of the following linear problem:

∂w

∂t
− k

∂D2w

∂t
= D2w + m(x, t)uq, (x, t) ∈ QT ,

w(0, t) = w(1, t) = 0, t ∈ [0, T ],

w(x, 0) = u0(x), x ∈ [0, 1].

By the classical theory (see [23]), the above linear problem admits a unique solution w ∈

C2+β,1+β/3(QT ), β ∈ (0, 1). So, the operator F is well-defined. We can also obtain that the

operator F is compact by means of the compact embedding theorem. Moreover, if u = σFu

holds for some σ ∈ [0, 1], then u satisfies the problem (2.7)–(2.9). Clearly σ = 0 implies

u ≡ 0. If σ 6= 0, from the above argument we see that ‖u‖C1,1/3(QT ) is bounded and the

bound is independent of u and σ. By the Leray-Schauder fixed point theorem, the operator

F has a fixed point u, which is the desired classical solution of the problem (1.1)–(1.3) in

QT . As above, we consider the problem in Q(T,2T ), Q(2T,3T ), · · · , Q((n−1)T,nT ) in turn.

Then, we infer that the problem (1.1)–(1.3) admits a classical solution in Q. The proof of

this theorem is completed.

3 Asymptotic Behavior

In this section, we discuss the asymptotic behavior of solutions as the viscosity coefficient

k tends to zero. Here, we denote by C a constant independent of u and k, and by C(k) a

constant independent of u.

Theorem 3.1 If uk is a nonnegative classical solution of the initial-boundary value prob-

lem (1.1)–(1.3), then uk(x, t) is uniformly convergent in QT as k → 0, and the limit function

u(x, t) is a nonnegative classical solution of the following initial-boundary value problem:
∂u

∂t
= D2u + m(x, t)uq, (x, t) ∈ QT , (3.1)

u(0, t) = u(1, t) = 0, t ∈ [0, T ], (3.2)

u(x, 0) = u0(x), x ∈ [0, 1]. (3.3)

Proof. From Lemma 2.2, we see that

‖uk‖L∞(QT ) ≤ M2.

Multiplying (1.1) by D2uk and integrating over Qt, we have
∫ 1

0

|Duk(x, t)|2dx ≤ C + C(k), t ∈ (0, T ), (3.4)

∫∫

QT

|D2uk|
2dxdt ≤ C + C(k). (3.5)
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Multiplying (1.1) by
∂uk

∂t
and integrating over QT , we get

∫∫

QT

∣

∣

∣

∣

∂uk

∂t

∣

∣

∣

∣

2

dxdt ≤ C. (3.6)

Rewrite the equation (1.1) into the following form:

k
∂D2uk

∂t
=

∂uk

∂t
− D2uk − m(x, t)uq

k.

Then, we arrive at

k

∫∫

QT

∣

∣

∣

∣

∂D2uk

∂t

∣

∣

∣

∣

2

dxdt ≤ C + C(k). (3.7)

By a proof similar to that of Theorem 2.2, from (3.4)–(3.7), we can obtain

|uk(x1, t1) − uk(x2, t2)| ≤ (C + C(k))(|x1 − x2|
1/2 + |t1 − t2|

1/6) (3.8)

for any (xi, ti) ∈ QT (i = 1, 2). Therefore, there exists a function u ∈ H2,1(QT ) ∩

C1/2,1/6(QT ) such that

uk → u uniformly in QT ,
∂uk

∂t
⇀

∂u

∂t
, D2uk ⇀ D2u in L2(QT ), (3.9)

as k → 0. Recalling the equation (1.1), we see that for any ϕ ∈ C2(QT ) satisfying ϕ(0, t) =

ϕ(1, t) = 0, we have
∫∫

QT

∂uk

∂t
ϕdxdt − k

∫∫

QT

∂uk

∂t
D2ϕdxdt

=

∫∫

QT

D2ukϕdxdt +

∫∫

QT

m(x, t)uq
kϕdxdt.

Taking k → 0, by (3.9), we have
∫∫

QT

∂u

∂t
ϕdxdt =

∫∫

QT

D2uϕdxdt +

∫∫

QT

m(x, t)uqϕdxdt,

which implies that u satisfies the equation (3.1) in the sense of distribution. Noticing that

u ∈ C1/2,1/6(Qω), by the classical theory (see [23]) we can deduce that u ∈ C2+β,1+β/3(Qω),

β ∈ (0, 1/2). It is obvious that u is nonnegative and satisfies the conditions (3.2) and (3.3).

Hence, u(x, t) is a nonnegative classical solution of the problem (3.1)–(3.3). The proof of

this theorem is completed.
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