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1 Introduction

Exponential dichotomy plays an important role in the theory of nonautonomous dynamical

systems. When people deal with the nonlinear problems which are the perturbation of the

linear ones, exponential dichotomy is very useful. Copple[1] studied in detail the exponen-

tial dichotomy for ordinary differential equations. Coff and Schäffer[2] studied exponential

dichotomy for difference equations. In 1990, Hilger[3] introduced the theory of time scales,

and then there are numerous works using this notion to unify and generalize theories of

continuous and discrete dynamical systems (see [3]–[5]).

Recently, Barreia and Valls[6] studied the relationship between nonuniform exponen-

tial dichotomy and quadratic Lyapunov function. In this paper, we firstly introduce strict

quadratic Lyapunov function on time scales. Then we study the relationship between expo-

nential dichotomy and strict quadratic Lyapunov function on time scales. We obtain that

the linear equation x∆ = A(t)x has a strict quadratic Lyapunov function if it admits strong

exponential dichotomy; conversely, the linear equation admits exponential dichotomy if it

has a strict quadratic Lyapunov function with some property. And by quadratic Lyapunov

function, we investigate the instability of the zero solution of the nonlinear perturbed equa-
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tion. The stability and instability of solutions to the nonlinear perturbed equation on time

scales have been studied in [7] and [8] by considering appropriate eigenvalue conditions, and

in [9] by assuming the existence of Lyapunov functions.

This paper is organized as follows. In next section, we review some useful notions and

basic properties on time scales. In Section 3, the main concepts, exponential dichotomy and

strict quadratic Lyapunov function on time scales, are given. Furthermore, our main results

are stated and proved. Finally, we study instability of the zero solution to the nonlinear

perturbed equation on time scales in Section 4.

2 Preliminaries on Time Scales

For the convenience of readers, we review some preliminary definitions and theories on time

scales. The reader may refer to [5] for details. Let T be a time scale which is an arbitrary

nonempty closed subset of the real numbers. Such as the sets of real numbers and integers

are the special time scales and the union of arbitrary nonempty closed intervals is also a

time scale.

Definition 2.1 Let T be a time scale. The forward jump operator is defined by

σ(t) := inf{s ∈ T : s > t}
for every t ∈ T. Let µ(t) := σ(t) − t be the graininess function.

It is clear that the graininess function µ(t) is nonnegative. In this paper, we always

suppose that the graininess function µ(t) is bounded.

Definition 2.2 A function f : T → R
n is called rd-continuous if it is continuous at right

dense points in T and left-sided limits exist at left dense points in T.

We denote the set of rd-continuous functions by Crd(T,Rn).

Definition 2.3 A function f : T → R
n is called differentiable at t ∈ T, if for any ε > 0,

there exists a T-neighborhood U of t and f∆(t) ∈ R
n such that for any s ∈ U we have

‖f(σ(t)) − f(s) − f∆(t)(σ(t) − s)‖ ≤ ε(σ(t) − s),

and f∆(t) is called the derivative of f at t.

If f and g are differentiable at t, then the following equalities hold:

f(σ(t)) = f(t) + µ(t)f∆(t),

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t).

The integral of a mapping f is always understood in Lebesgue’s sense and written as
∫ t

s

f(τ)∆τ , for s, t ∈ T. If f ∈ Crd(T,Rn) and t ∈ T, then

∫ σ(t)

t

f(s)∆s = µ(t)f(t). (2.1)
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Definition 2.4 A function p : T → R is called regressive if 1+µ(t)p(t) 6= 0 for all t ∈ T,

and the n×n matrix valued function A(t) on time scale T is called regressive if Id+µ(t)A(t)

is invertible for all t ∈ T.

Let a, b be regressive. Define

(a ⊕ b)(t) = a(t) + b(t) + µ(t)a(t)b(t),

(⊖a)(t) = − a(t)

1 + µ(t)a(t)
for all t ∈ T. Then the regressive set is an Abelian group. It is not hard to verify that the

following properties hold.

Lemma 2.1 Suppose that a, b are regressive. Then we have

(1) a ⊖ a = 0;

(2) ⊖ (⊖a) = a;

(3) a ⊖ b =
a − b

1 + µ(t)b
;

(4) ⊖ (a ⊕ b) = (⊖a) ⊕ (⊖b).

Now we give the definition of exponential function on time scales. Moreover, we state

some basic properties of the exponential function which are to be used in our paper.

Definition 2.5 Let p be regressive. We define the exponential function by

ep(t, s) = exp

{
∫ t

s

1

µ(τ)
ln(1 + µ(τ)p)∆τ

}

for all s, t ∈ T. When µ(τ) = 0, we define ep(t, s) = ep(t−s).

Lemma 2.2 Suppose that a, b are regressive. Then we have

(1) e0(t, s) = 1 and ea(t, t) = 1;

(2) ea(t, s) = e⊖a(s, t);

(3) ea(t, s)ea(s, r) = ea(t, r);

(4) ea(t, s)eb(t, s) = ea⊕b(t, s).

Lemma 2.3 Suppose that a is regressive and c ∈ T. Then we have

[ea(c, t)]
∆
t = −a(t)ea(c, σ(t))

and
∫ t

s

a(τ)ea(c, σ(τ))∆τ = ea(c, s) − ea(c, t),

where [ea(c, t)]∆t stands for the delta derivative of ea(c, t) with respect to t.

3 Exponential Dichotomy and Strict Quadratic Lyapunov

Function

Let M be a bound of µ(t), i.e., |µ(t)| < M for any t ∈ T. Consider the equation

x∆ = A(t)x, (3.1)
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where A(t) is an n × n matrix valued function on time scale T satisfying that A(t) is rd-

continuous and regressive. The equation (3.1) is said to admit an exponential dichotomy on

time scale T if for each t ∈ T there exists a projection P (t) : Rn → R
n such that

T (t, s)P (s) = P (t)T (t, s), t, s ∈ T (3.2)

and

‖T (t, s)P (s)‖ ≤ De⊖a(t, s), t ≥ s, t, s ∈ T, (3.3)

‖T (t, s)Q(s)‖ ≤ Dea(t, s), t ≤ s, t, s ∈ T (3.4)

for some constants a > 0 and D > 1. Here, T (t, s) is the linear evolution operator associated

to the equation (3.1), and Q(s) = Id−P (s) for s ∈ T. We say that the equation (3.1) admits

a strong exponential dichotomy on time scale T if there exists a projection P (t) : Rn → R
n

for each t ∈ T and constants a > 0, D > 1 satisfying (3.2), (3.3), (3.4), as well as a constant

b with b ≥ a > 0 such that

‖T (t, s)P (s)‖ ≤ Deb(s, t), t ≤ s, t, s ∈ T, (3.5)

‖T (t, s)Q(s)‖ ≤ Deb(t, s), t ≥ s, t, s ∈ T. (3.6)

Next we give the definition of Lyapunov functions. Consider a continuous function

V : T × R
n → R

n. The function V is called a Lyapunov function, if the following two

conditions are satisfied:

(H1) For each τ ∈ T, set Vτ := V (τ, ·) and

Cs(Vτ ) := {0} ∪ V −1
τ (−∞, 0), Cu(Vτ ) := {0} ∪ V −1

τ (0, +∞).

Let rs and ru be respectively the maximal dimensions of linear subspaces inside Cs(Vτ ) and

Cu(Vτ ) satisfying

rs + ru = n;

(H2) For every t ≥ τ, t, τ ∈ T and x ∈ R
n, we have

V (t, T (t, τ)x) ≥ V (τ, x).

Set

Es
τ :=

⋂

t∈T

T (τ, t)Cs(Vt), Eu
τ :=

⋂

t∈T

T (τ, t)Cu(Vt).

Then

T (t, τ)Es
τ = Es

t , T (t, τ)Eu
τ = Eu

t , t, τ ∈ T.

Suppose that V is a Lyapunov function for the equation (3.1). V is called a strict

Lyapunov function, if there exist r > 0 and K > 0 such that the following conditions are

satisfied:

(H3) If x ∈ Es
τ , then

V 2(t, T (t, τ)x) ≤ e⊖r(t, τ)V 2(τ, x), t ≥ τ, t, τ ∈ T;

(H4) If x ∈ Eu
τ , then

V 2(t, T (t, τ)x) ≥ er(t, τ)V 2(τ, x), t ≥ τ, t, τ ∈ T;

(H5) If x ∈ Es
τ ∪ Eu

τ , then

|V (τ, x)| ≥ 1

K
‖x‖, τ ∈ T.
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Furthermore, let S(t) for each t ∈ T be a symmetric invertible n × n matrix. Let

H(t, x) = 〈S(t)x, x〉, V (t, x) = −signH(t, x)
√

|H(t, x)| (3.7)

for t ∈ T, x ∈ R
n. If V (t, x) in (3.7) is a strict Lyapunov function, then we say that V (t, x)

is a strict quadratic Lyapunov function.

Now we state and prove our main results.

The following Theorems 3.1 and 3.2 indicate that, for the equation (3.1), the strong

exponential dichotomy property and the existence of a strict quadratic Lyapunov function

are equivalent in some sense.

Theorem 3.1 If the equation (3.1) admits a strong exponential dichotomy, then it has a

strict quadratic Lyapunov function.

Proof.

S(t) :=

∫ +∞

t

(T (σ(v), t)P (t))∗T (σ(v), t)P (t)ec⊖a(t, σ(v))∆v

−
∫ t

−∞

(T (σ(v), t)Q(t))∗T (σ(v), t)Q(t)ea⊖c(t, σ(v))∆v, (3.8)

where 0 < c < a. Let H(t, x) = 〈S(t)x, x〉.
When t ≥ τ, t, τ ∈ T, we have

H(t, T (t, τ)x) =

∫ +∞

t

‖T (σ(v), τ)P (τ)x‖2ec⊖a(t, σ(v))∆v

−
∫ t

−∞

‖T (σ(v), τ)Q(τ)x‖2ea⊖c(t, σ(v))∆v

≤
∫ +∞

τ

‖T (σ(v), τ)P (τ)x‖2ec⊖a(τ, σ(v))∆vec⊖a(t, τ)

−
∫ τ

−∞

‖T (σ(v), τ)Q(τ)x‖2ea⊖c(τ, σ(v))∆vea⊖c(t, τ).

Since c ⊖ a =
c − a

1 + µ(t)a
< 0, a ⊖ c =

a − c

1 + µ(t)c
> 0 and t ≥ τ , we obtain

ec⊖a(t, τ) ≤ 1, ea⊖c(t, τ) ≥ 1.

Thus,

H(t, T (t, τ)x) ≤
∫ +∞

τ

‖T (σ(v), τ)P (τ)x‖2ec⊖a(τ, σ(v))∆v

−
∫ τ

−∞

‖T (σ(v), τ)Q(τ)x‖2ea⊖c(τ, σ(v))∆v = H(τ, x). (3.9)

Set

V (t, x) = −signH(t, x)
√

|H(t, x)|.

We define subspaces

Es
t = P (t)(Rn), Eu

t = Q(t)(Rn), t ∈ T.

Thus

Es
t ⊕ Eu

t = R
n, t ∈ T.
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When x ∈ Es
t /{0}, we have H(t, x) > 0, and hence V (t, x) < 0; when x ∈ Eu

t /{0}, we have

H(t, x) < 0, and hence V (t, x) > 0. We also get that H(t, x) = 0 if and only if x = 0 which

implies S(t) is invertible for each t ∈ T. Note that S(t) is symmetric for each t ∈ T.

When t ≥ τ , from (3.9) we have

V (t, T (t, τ)x) = −
√

H(t, T (t, τ)x) ≥ −
√

H(τ, x) = V (τ, x), x ∈ Es
t

and

V (t, T (t, τ)x) =
√

|H(t, T (t, τ)x)| ≥
√

|H(τ, x)| = V (τ, x), x ∈ Eu
t .

Therefore, when t ≥ τ , we get V (t, T (t, τ)x) ≥ V (τ, x). It follows that V (t, x) is a Lyapunov

function.

From (3.3), (3.4) and Lemmas 2.1–2.3, we have

|H(t, x)| ≤
∫ +∞

t

‖T (σ(v), t)P (t)x‖2ec⊖a(t, σ(v))∆v

+

∫ t

−∞

‖T (σ(v), t)Q(t)x‖2ea⊖c(t, σ(v))∆v

≤
∫ +∞

t

D2e⊖a(σ(v), t)e⊖a(σ(v), t)ec⊖a(t, σ(v))∆v‖x‖2

+

∫ t

−∞

D2ea(σ(v), t)ea(σ(v), t)ea⊖c(t, σ(v))∆v‖x‖2

=

∫ +∞

t

−D2

a ⊕ c
[ea⊕c(t, v)]∆v ∆v‖x‖2

+

∫ t

−∞

−D2

⊖(a ⊕ c)
[e⊖(a⊕c)(t, v)]∆v ∆v‖x‖2.

Since

a ⊕ c = a + c + µ(t)ac ≥ a + c

and
−1

⊖(a ⊕ c)
=

1 + µ(t)(a + c + µ(t)ac)

a + c + µ(t)ac
≤ 1

a + c
+ M,

we obtain

|H(t, x)| ≤
( D2

a + c
+

D2

a + c
+ MD2

)

‖x‖2 =
( 2

a + c
+ M

)

D2‖x‖2. (3.10)

Thus

|V (t, x)| =
√

|H(t, x)| ≤ D

√

2

a + c
+ M‖x‖.

Next, we show that the function V (t, x) is actually a strict Lyapunov function. To do

this, we only need to verify that (H3)–(H5) hold.

If x ∈ Es
τ for τ ∈ T, there exists y ∈ R

n such that x = P (τ)y. Then for t ≥ τ, t, τ ∈ T,

H(t, T (t, τ)x) =

∫ +∞

t

‖T (σ(v), τ)P (τ)x‖2ec⊖a(t, σ(v))∆v

≤
∫ +∞

τ

‖T (σ(v), τ)P (τ)x‖2ec⊖a(τ, σ(v))∆vec⊖a(t, τ)

= ec⊖a(t, τ)H(τ, x).
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Therefore,

V 2(t, T (t, τ)x) ≤ ec⊖a(t, τ)V 2(τ, x), x ∈ Es
τ ,

i.e., (H3) is satisfied.

If x ∈ Eu
τ for τ ∈ T, there exists z ∈ R

n such that x = Q(τ)z. Then for t ≥ τ, t, τ ∈ T,

|H(t, T (t, τ)x)| =

∫ t

−∞

‖T (σ(v), τ)Q(τ)x‖2ea⊖c(t, σ(v))∆v

≥
∫ τ

−∞

‖T (σ(v), τ)Q(τ)x‖2ea⊖c(τ, σ(v))∆vea⊖c(t, τ)

= ea⊖c(t, τ)|H(τ, x)|.
Therefore,

V 2(t, T (t, τ)x) ≥ ea⊖c(t, τ)V 2(τ, x), x ∈ Eu
τ ,

i.e., (H4) is satisfied.

Now we establish the condition (H5). From (3.3)–(3.6), when t ≥ τ, t, τ ∈ T, we have

‖T (t, τ)‖ ≤ ‖T (t, τ)P (τ)‖ + ‖T (t, τ)Q(τ)‖
≤ De⊖a(t, τ) + Deb(t, τ), (3.11)

and when t ≤ τ, t, τ ∈ T, we have

‖T (t, τ)‖ ≤ ‖T (t, τ)P (τ)‖ + ‖T (t, τ)Q(τ)‖
≤ Deb(τ, t) + Dea(t, τ). (3.12)

If x ∈ Es
τ , τ ∈ T, then P (τ)x = x and

H(τ, x) =

∫ +∞

τ

‖T (σ(v), τ)P (τ)x‖2ec⊖a(τ, σ(v))∆v

≥
∫ +∞

τ

‖x‖2

‖T (τ, σ(v))‖2
ec⊖a(τ, σ(v))∆v

≥
∫ +∞

τ

‖x‖2ec⊖a(τ, σ(v))

[Deb(σ(v), τ) + Dea(τ, σ(v))]2
∆v

≥ ‖x‖2

4D2

∫ +∞

τ

ec⊖a(τ, σ(v))eb⊕b(τ, σ(v))∆v

=
‖x‖2

4D2

∫ +∞

τ

e(b⊕b)⊕(c⊖a)(τ, σ(v))∆v.

Since

(b ⊕ b) ⊕ (c ⊖ a) = 2b + µ(t)b2 +
c − a

1 + µ(t)a
+ µ(t)(2b + µ(t)b2)

c − a

1 + µ(t)a

≤ 2b + c − a + Mb2 + 2Mbc + M2b2c,

and obviously (b ⊕ b) ⊕ (c ⊖ a) > 0, we have
1

(b ⊕ b) ⊕ (c ⊖ a)
≥ 1

2b + c − a + Mb2 + 2Mbc + M2b2c
.

Therefore,

H(τ, x) ≥ ‖x‖2

4D2

∫ +∞

τ

−[e(b⊕b)⊕(c⊖a)(τ, v)]∆v
(b ⊕ b) ⊕ (c ⊖ a)

∆v

≥ ‖x‖2

4D2(2b + c − a + Mb2 + 2Mbc + M2b2c)
. (3.13)
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If x ∈ Eu
τ , τ ∈ T, then Q(τ)x = x and

|H(τ, x)| =

∫ τ

−∞

‖T (σ(v), τ)Q(τ)x‖2ea⊖c(τ, σ(v))∆v

≥
∫ τ

−∞

‖x‖2

‖T (τ, σ(v))‖2
ea⊖c(τ, σ(v))∆v

≥
∫ τ

−∞

‖x‖2ea⊖c(τ, σ(v))

[Deb(τ, σ(v)) + De⊖a(τ, σ(v))]2
∆v

≥ ‖x‖2

4D2

∫ τ

−∞

ea⊖c(τ, σ(v))eb⊕b(σ(v), τ)∆v

=
‖x‖2

4D2

∫ τ

−∞

e(a⊖c)⊖(b⊕b)(τ, σ(v))∆v.

Since

−(a ⊖ c) ⊖ (b ⊕ b) = −

a − c

1 + µ(t)c
− (2b + µ(t)b2)

1 + µ(t)(2b + µ(t)b2)

≤ 2b − a + c + Mb2 + 2Mbc + M2b2c,

and obviously −(a ⊖ c) ⊖ (b ⊕ b) > 0, we have
1

−(a ⊖ c) ⊖ (b ⊕ b)
≥ 1

2b + c − a + Mb2 + 2Mbc + M2b2c
.

Therefore,

|H(τ, x)| ≥ ‖x‖2

4D2

∫ τ

−∞

−[e(a⊖c)⊖(b⊕b)(τ, v)]∆v
(a ⊖ c) ⊖ (b ⊕ b)

∆v

≥ ‖x‖2

4D2(2b + c − a + Mb2 + 2Mbc + M2b2c)
. (3.14)

From (3.13) and (3.14), we obtain

|H(t, x)| ≥ ‖x‖2

K2
, (3.15)

where

K2 = 4D2(2b + c − a + Mb2 + 2Mbc + M2b2c).

Thus, we get

|V (τ, x)| =
√

|H(τ, x)| ≥ ‖x‖
K

,

i.e., (H5) holds. The proof is completed.

Theorem 3.2 If the equation (3.1) has a strict quadratic Lyapunov function and satisfies

sup
t∈T

‖S(t)‖ < ∞,

then it admits an exponential dichotomy.

Proof. Let V be a strict quadratic Lyapunov function for the equation (3.1). Then V

satisfies the conditions (H1)–(H5). For each τ ∈ T, set

Es
τ :=

⋂

t∈T

T (τ, t)Cs(Vt), Eu
τ :=

⋂

t∈T

T (τ, t)Cu(Vt).

Then we have

T (t, τ)Es
τ = Es

t , T (t, τ)Eu
τ = Eu

t .
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By condition (H1), there exist subspaces F s
t ⊂ Es

t and Fu
t ⊂ Eu

t satisfying F s
t ⊕ Fu

t = R
n.

Consider the projections

P (t) : Rn → F s
t , Q(t) : Rn → Fu

t .

Obviously, Q(t) = Id − P (t) for each t ∈ T.

Since sup
t∈T

‖S(t)‖ < ∞, there exists a constant L > 0 such that sup
t∈T

‖S(t)‖ ≤ L2 < ∞.

Then

|V (τ, x)| =
√

|H(τ, x)| =
√

|〈S(t)x, x〉| ≤
√

sup
t∈T

‖S(t)‖‖x‖2 ≤ L‖x‖. (3.16)

If x ∈ F s
τ for τ ∈ T, then, by (3.16) and (H3), we obtain

‖T (t, τ)x‖2 ≤ K2|V (t, T (t, τ)x)|2 ≤ K2e⊖r(t, τ)V 2(τ, x) ≤ K2L2e⊖r(t, τ)‖x‖2

when t ≥ τ, t, τ ∈ T. Therefore,

‖T (t, τ)|F s
τ
‖ ≤ KL[e⊖r(t, τ)]

1

2 . (3.17)

Now we need to find some constat a > 0 such that

[e⊖r(t, τ)]
1

2 ≤ e⊖a(t, τ), t ≥ τ, t, τ ∈ T. (3.18)

By the notion of exponential function on time scales, we have

e⊖r(t, τ) = exp

{
∫ t

τ

1

µ(v)
ln

( 1

1 + µ(v)r

)

∆v

}

.

It follows that we only need to find a > 0 such that

exp

{
∫ t

τ

1

µ(v)
ln

( 1

1 + µ(v)r

)
1

2

∆v

}

≤ exp

{
∫ t

τ

1

µ(v)
ln

( 1

1 + µ(v)a

)

∆v

}

. (3.19)

Note that if
(

1

1 + µ(v)r

)
1

2

≤ 1

1 + µ(v)a
, (3.20)

then (3.19) holds. The inequality (3.20) is equivalent to

1 + µ(v)r ≥ 1 + 2µ(v)a + µ(v)2a2,

and hence

µ(v)a2 + 2a ≤ r.

Since µ(v)a2 + 2a ≤ Ma2 + 2a, we only need find a > 0 such that

Ma2 + 2a ≤ r, (3.21)

i.e., 0 < a <

√
1 + Mr − 1

M
. Therefore, if 0 < a <

√
1 + Mr − 1

M
, then the inequality (3.18)

holds and, by (3.17), we have

‖T (t, τ)|F s

τ
‖ ≤ KLe⊖a(t, τ). (3.22)

If x ∈ Fu
τ for τ ∈ T, then, from (3.16), (H4) and (H5), we obtain

‖T (t, τ)x‖2 ≥ 1

L2
|V (t, T (t, τ)x)|2

≥ 1

L2
er(t, τ)V 2(τ, x) ≥ 1

K2L2
er(t, τ)‖x‖2, t ≥ τ, t, τ ∈ T.

Therefore,

‖T (τ, t)|F u

t
‖2 ≤ K2L2e⊖r(t, τ).

By (3.18), we get

‖T (τ, t)|F u

t
‖ ≤ KLe⊖a(t, τ) = KLea(τ, t). (3.23)
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Next, we estimate ‖P (t)‖ and ‖Q(t)‖. From the definitions of P (t), Q(t), the quadratic

Lyapunov function and (H5), we have

V 2(t, P (t)x) = 〈S(t)P (t)x, P (t)x〉 ≥ 1

K2
‖P (t)x‖2, (3.24)

V 2(t, Q(t)x) = −〈S(t)Q(t)x, Q(t)x〉 ≥ 1

K2
‖Q(t)x‖2. (3.25)

Since S(t) is symmetric, by (3.24) and (3.25), we obtain

1

K2

∥

∥

∥
P (t)x − K2

2
S(t)x

∥

∥

∥

2

+
1

K2

∥

∥

∥
Q(t)x +

K2

2
S(t)x

∥

∥

∥

2

≤ 〈S(t)P (t)x, P (t)x〉 − 〈S(t)Q(t)x, Q(t)x〉

+
K4

2
‖S(t)x‖2 − 〈S(t)x, P (t)x〉 + 〈S(t)x, Q(t)x〉

=
K4

2
‖S(t)x‖2.

Thus,

‖P (t)x‖ ≤
∥

∥

∥
P (t)x − K2

2
S(t)x

∥

∥

∥
+

∥

∥

∥

K2

2
S(t)x

∥

∥

∥

≤
√

2K2‖S(t)x‖ (3.26)

≤
√

2K2L2‖x‖ (3.27)

and

‖Q(t)x‖ ≤
∥

∥

∥
Q(t)x − K2

2
S(t)x

∥

∥

∥
+

∥

∥

∥

K2

2
S(t)x

∥

∥

∥

≤
√

2K2‖S(t)x‖ (3.28)

≤
√

2K2L2‖x‖. (3.29)

By (3.22) and (3.27), we have

‖T (t, τ)P (τ)x‖ ≤ ‖T (t, τ)|F s
τ
‖‖P (τ)x‖ ≤

√
2K3L3e⊖a(t, τ)‖x‖, t ≥ τ, t, τ ∈ T.

Then

‖T (t, τ)P (τ)‖ ≤ De⊖a(t, τ)‖x‖, t ≥ τ, t, τ ∈ T, (3.30)

where D =
√

2K3L3.

By (3.23) and (3.29), we have

‖T (t, τ)Q(τ)x‖ ≤ ‖T (t, τ)|F u
τ
‖‖Q(τ)x‖ ≤

√
2K3L3ea(t, τ)‖x‖, t ≤ τ, t, τ ∈ T.

Then

‖T (t, τ)Q(τ)‖ ≤ Dea(t, τ)‖x‖, t ≤ τ, t, τ ∈ T, (3.31)

where D =
√

2K3L3. Therefore, by (3.30) and (3.31), the equation (3.1) admits an expo-

nential dichotomy.

4 Instability of the Solution to the Nonlinear Perturbed

Equation

In this section, we discuss the instability of the nonlinear equation

x∆ = A(t)x + f(t, x), (4.1)
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where f : T × R
n → R

n is an rd-continuous function in T satisfying f(t, 0) = 0. We have

the following theorem.

Theorem 4.1 Assume that the equation (3.1) admits a strong exponential dichotomy with

projections P (t) for t ∈ T and constants b ≥ a > 0 and D > 1. There exists R > 0 such

that

‖f(t, x) − f(t, y)‖ ≤ R‖x − y‖, t ∈ T, x, y ∈ R
n.

Assume also that Q(σ(t))f(t, x) = Q(σ(t))f(t, Q(t)x), where Q(t) = I − P (t). If R is

sufficiently small, then there exist constants N > 0 and d > 0 such that

‖z(t)‖2 ≥ Ned(t, τ)‖z(τ)‖2, t ≥ τ, t ∈ T, (4.2)

whenever z(τ) ∈ Fu
τ . Here Fu

τ is the same as the one in the proof of Theorem 3.2.

Proof. Set H(t, x) = 〈S(t)x, x〉, t ∈ T, x ∈ R
n with S(t) given by (3.8). If x ∈ Fu

τ , we

have x(t) = T (t, τ)x ∈ Fu
t for each t ≥ τ , t, τ ∈ T, and

H(t, x(t)) = −
∫ t

−∞

‖T (σ(v), τ)Q(τ)x‖2ea⊖c(t, σ(v))∆v

≤ −
∫ τ

−∞

‖T (σ(v), τ)Q(τ)x‖2ea⊖c(τ, σ(v))∆vea⊖c(t, τ)

= ea⊖c(t, τ)H(τ, x).

Then

µ(t)H∆(t, x(t)) = H(σ(t), x(σ(t))) − H(t, x(t))

≤ [ea⊖c(σ(t), t) − 1]H(t, x(t))

=
[

exp
{

∫ σ(t)

t

1

µ(t)
ln(1 + µ(v)a ⊖ c)∆v

}

− 1
]

H(t, x(t))

= µ(t)(a ⊖ c)H(t, x(t)).

Thus,

H∆(t, x(t)) ≤ (a ⊖ c)H(t, x(t)). (4.3)

Since H(t, x(t)) = 〈S(t)x(t), x(t)〉, we have

H∆(t, x(t)) = 〈S(t)x(t), x(t)〉∆

= 〈S∆(t)x(t), x(t)〉 + 〈S(σ(t))x∆(t), x(t)〉 + 〈S(σ(t))x(σ(t)), x∆(t)〉
= 〈[S∆(t) + S(σ(t))A(t) + A∗(t)S(σ(t)) + µ(t)A∗(t)S(σ(t))A(t)]x(t), x(t)〉.

Then by (4.3) we get

S∆(t) + S(σ(t))A(t) + A∗(t)S(σ(t)) + µ(t)A∗(t)S(σ(t))A(t) ≤ (a ⊖ c)S(t).

Suppose that y(t) is a solution of the equation (4.1) satisfying y(τ) ∈ Fu
τ . Let z(t) :=

Q(t)y(t). By (3.2), we know that

Q(t) = T (t, s)Q(s)T (s, t). (4.4)

Differentiating (4.4) on both sides, we obtain

Q∆(t) = A(t)Q(t) − Q(σ(t))A(t).

Then

z∆(t) = Q∆(t)y(t) + Q(σ(t))y∆(t)
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= A(t)Q(t)y(t) + Q(σ(t))f(t, y(t)).

Hence, we have

H∆(t, z(t)) = 〈S(t)Q(t)y(t), Q(t)y(t)〉∆

= 〈S∆(t)Q(t)y(t), Q(t)y(t)〉 + 〈S(σ(t))Q∆(t)y(t), Q(t)y(t)〉
+ 〈S(σ(t))Q(σ(t))y∆(t), Q(t)y(t)〉
+ 〈S(σ(t))Q(σ(t))y(σ(t)), Q∆(t)y(t)〉
+ 〈S(σ(t))Q(σ(t))y(σ(t)), Q(σ(t))y∆(t)〉.

= 〈S∆(t)z(t), z(t)〉 + 〈S(σ(t))A(t)z(t), z(t)〉
+ 〈S(σ(t))Q(σ(t))f(t, z(t)), z(t)〉
+ 〈S(σ(t))z(σ(t)), A(t)z(t)〉
+ 〈S(σ(t))z(σ(t)), Q(σ(t))f(t, z(t))〉

= 〈[S∆(t) + S(σ(t))A(t) + A∗(t)S(σ(t))

+ µ(t)A∗(t)S(σ(t))A(t)]z(t), z(t)〉
+ 〈[µ(t)A(t)z(t) + z(t) + z(σ(t))], S(σ(t))Q(σ(t))f(t, z(t))〉

≤ (a ⊖ c)H(t, z(t)) + 〈2µ(t)A(t)z(t), S(σ(t))Q(σ(t))f(t, z(t))〉
+ 〈2z(t), S(σ(t))Q(σ(t))f(t, z(t))〉
+ 〈µ(t)S(σ(t))Q(σ(t))f(t, z(t)), Q(σ(t))f(t, z(t))〉. (4.5)

Since S(t) is defined by (3.8) and P (t)Q(t) = 0, we have

〈µ(t)S(σ(t))Q(σ(t))f(t, z(t)), Q(σ(t))f(t, z(t))〉

= − µ(t)

∫ σ

−∞

(t)‖T (σ(v), σ(τ))Q(σ(τ))Q(σ(t))f(t, z(t))‖2ea⊖c(σ(t), σ(v))∆v ≤ 0. (4.6)

By the formula of variation of constant, it follows that

T (σ(t), t) = I +

∫ σ(t)

t

A(s)T (s, t)∆s = Id + µ(t)A(t)T (t, t) = Id + µ(t)A(t).

From (3.11), we have

‖T (σ(t), t)‖ ≤ De⊖a(σ(t), t) + Deb(σ(t), t) =
D

1 + µ(t)a
+ D + Dbµ(t).

Therefore,

‖Id + µ(t)A(t)‖ ≤ D

1 + µ(t)a
+ D + Dbµ(t) ≤ 2D + DbM.

Then we have

‖µ(t)A(t)‖ ≤ ‖Id + µ(t)A(t)‖ + ‖Id‖ ≤ 2D + DbM + 1. (4.7)

From (3.10), we get

‖S(t)‖ ≤
( 2

a + c
+ M

)

D2. (4.8)

By (4.5)–(4.8),

H∆(t, z(t)) ≤ (a ⊖ c)H(t, z(t)) + 2‖µ(t)A(t)‖‖z(t)‖‖S(σ(t))‖‖Q(σ(t))‖‖f(t, z(t))‖
+ 2‖z(t)‖‖S(σ(t))‖‖Q(σ(t))‖‖f(t, z(t))‖
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≤ (a ⊖ c)H(t, z(t)) + 2(2D + DbM + 2)DR
( 2

a + c
+ M

)

D2‖z(t)‖2

≤ (a ⊖ c)H(t, z(t)) + 2K2D3R(2D + DbM + 2)
( 2

a + c
+ M

)

|H(t, z(t))|

= (a ⊖ c)H(t, z(t)) + E|H(t, z(t))| ≤ (E − a + c)|H(t, z(t))|, (4.9)

where

E = 2K2D3R(2D + DbM + 2)
( 2

a + c
+ M

)

.

Set u(t) := H(t, z(t)). Let R be sufficiently small so that a − c − E > 0. Thus, by (4.9)

we have u∆(t) ≤ (a − c − E)u(t). Then

[u(t)e⊖(a−c−E)(t, τ)]∆t = u∆(t)e⊖(a−c−E)(σ(t), τ) + u(t)(⊖(a − c − E))e⊖(a−c−E)(t, τ)

≤ [u∆(t) − (a − c − E)u(t)]e⊖(a−c−E)(t, τ) ≤ 0.

Therefore,

u(t)e⊖(a−c−E)(t, τ) − u(τ) =

∫ t

τ

[u(v)e⊖(a−c−E)(v, τ)]∆v ∆v ≤ 0.

That is, H(t, z(t)) ≤ ea−c−E(t, τ)H(τ, z(τ)) ≤ 0. It follows that

|H(t, z(t))| ≥ ea−c−E(t, τ)|H(τ, z(τ))|. (4.10)

By (3.10), (3.15) and (4.10), we have

‖z(t)‖2 ≥ |H(t, z(t))|
( 2

a + c
+ M

)

D2

≥ ea−c−E(t, τ)|H(τ, z(τ))|
( 2

a + c
+ M

)

D2

≥ ea−c−E(t, τ)‖z(τ)‖2

K2D2
( 2

a + c
+ M

)
.

Let N :=
1

K2D2
( 2

a + c
+ M

)
and d = a− c−E. Then (4.2) holds. The proof is completed.
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