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than the Hölder condition on the second variable.

Key words: spaces of homogeneous type, weighted estimates, singular integral op-

erator, commutator, maximal operator

2000 MR subject classification: 42B20, 47A99

Document code: A

Article ID: 1674-5647(2010)01-0053-14

1 Introduction

We work on a space of homogeneous type. Let X be a set endowed with a positive Borel

regular measure µ and a symmetric quasi-metric d satisfying that there exists a constant

κ ≥ 1 such that for all x, y, z ∈ X ,

d(x, y) ≤ κ[d(x, z) + d(z, y)].

The triple (X , d, µ) is said to be a space of homogeneous type in the sense of Coifman and

Weiss[1], if µ satisfies the following doubling condition: there exists a constant C ≥ 1 such

that for all x ∈ X and r > 0,

µ(B(x, 2r)) ≤ Cµ(B(x, r)).

Moreover, if C is the smallest constant for which the measure µ verifies the doubling condi-

tion, then D = log2 C is called the doubling order of µ and we have
µ(B1)

µ(B2)
≤ Cµ

(rB1

rB2

)D

for all balls B2 ⊂ B1 ⊂ X ,

where rBi denotes the radius of Bi, i = 1, 2.

∗
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We remark that although all balls defined by d satisfy the axioms of complete system

of neighborhood in X , and therefore induce a topology in X , the balls B(x, r) for x ∈ X

and r > 0 need not to be open with respect to this topology. However, by a remarkable

result of Maćıas and Segovia in [2], we know that there exists another quasi-metric d̃ which

is equivalent to d such that the balls corresponding to d̃ are open in the topology induced

by d̃. Thus, throughout this paper, we assume that the balls B(x, r) for x ∈ X and r > 0

are open.

Let T be a linear L2(X )-bounded operator with kernel K in the sense that for all

f ∈ L2(X ) with bounded support and almost all x /∈ supp f ,

Tf(x) =

∫

X

K(x, y)f(y)dµ(y), (1.1)

where K is a locally integrable function on X × X \{(x, y) : x = y}. For b ∈ BMO(X ),

define the commutator generated by T and b by

Tbf(x) = b(x)Tf(x) − T (bf)(x), f ∈ L∞
0 (X ), (1.2)

where and in the following, L∞
0 (X ) denotes the set of bounded functions with bounded

support. The maximal operator associated with the commutator Tb is defined by

T ∗
b f(x) = sup

ǫ>0
|Tǫ; bf(x)|, (1.3)

where

Tǫ; b = b(x)Tǫf(x) − Tǫ(bf)(x), f ∈ L∞
0 (X ),

and Tǫ (ǫ > 0) is the truncated operator defined by

Tǫf(x) =

∫

d(x,y)>ǫ

K(x, y)f(y)dµ(y).

The operator T ∗
b has been considered by many authors. When the associated kernel K

satisfies the size condition

|K(x, y)| ≤
C

µ(x, d(x, y))
, x, y ∈ X , x 6= y (1.4)

and the Hölder smoothness conditions

|K(x, y) − K(x, y′)| ≤ C
(d(y, y′))η

µ(B(y, d(x, y)))(d(x, y))η
, if d(x, y) ≥ 2d(y, y′) (1.5)

and

|K(y, x) − K(y′, x)| ≤ C
(d(y, y′))η

µ(B(y, d(x, y)))(d(x, y))η
, if d(x, y) ≥ 2d(y, y′) (1.6)

with some η ∈ (0, 1], for the operator T ∗
b , Hu and Wang[3] proved Lp weighted estimates with

general weight, Hu et al.[4] established weighted endpoint estimates with general weight.

Whether one of the smoothness conditions can be replaced by the weaker one, it is of

considerable interest. To state our result, we first give some notations.

Let E be a measurable set with µ(E) < ∞. For any fixed l > 0 and a suitable function

f , set

‖f‖L(lgL)l, E = inf
{

λ > 0 :
1

µ(E)

∫

E

|f(x)|

λ
lgl

(

e +
|f(x)|

λ

)

dµ(x) ≤ 1
}

.

The maximal operator ML(lg L)l is defined by

ML(lg L)lf(x) = sup
B∋x

‖f‖L(lg L)l, B,
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where the supremum is taken over all balls containing x. Our main result can be stated as

follows.

Theorem 1.1 Let T be a linear L2(X )-bounded operator with kernel K in the sense of

(1.1) and b ∈ BMO(X ). Suppose that K satisfies (1.4), (1.5) and the following condition
∞
∑

k=1

k

∫

2kR<d(x, y)≤2k+1R

|K(y, x) − K(y′, x)|dµ(x) ≤ C (1.7)

for any R > 0 and y, y′ ∈ X with d(y, y′) < R, where C is independent of x, y, y′ and R.

Then

(1) for any p ∈ (1,∞) and δ > 0, there is a constant C > 0 such that for any weight w

and any f ∈ L∞
0 (X ),

∫

X

(T ∗
b f(x))pw(x)dµ(x) ≤ C

∫

X

|f(x)|pML(lg L)2p+1+δw(x)dµ(x); (1.8)

(2) for any δ > 0, there is a constant C > 0 such that for any λ > 0, any weight w and

any f ∈ L∞
0 (X ),

w({x ∈ X : |T ∗
b f(x)| > λ}) ≤ C

∫

X

|f(x)|

λ
lg

(

e +
|f(x)|

λ

)

ML(lg L)3+δw(x)dµ(x). (1.9)

Remark 1.1 The iteration of the Hardy-Littlewood maximal operators on the right-hand

sides of (1.8) and (1.9) are bigger than that of Theorem 1 in [3] and that of Theorem 1.3 in

[4] respectively. We guess that this is due to the weaker smoothness condition on the second

variable of the kernel K here.

Remark 1.2 We do not know if there is a Cotlar inequality linking the operators T ∗
b and

Tb when K satisfies (1.4), (1.5) and (1.7), so our argument in the proof of Theorem 1.1 is

fairly different from which was used in [5]. On the other hand, we do not have the sharp

estimate as Lemma 3 in [3], so the theorem of Lerner in [6] cannot be applied directly. To

overcome these difficulties, we use the sharp function M♯
0, s to estimate T ∗

b via the Calderón-

Zygmund decomposition.

We now make some conventions. Throughout this paper, we always denote by C a

positive constant which is independent of the main parameters, but it may vary from line

to line. Constant with subscript such as C2, does not change in different occurrences. For

a measurable set E and a weight w, χE denotes the characteristic function of E, and

w(E) =

∫

E

w(x)dµ(x).

Given λ > 0 and a ball B, λB denotes the ball with the same center as B and whose radius

is λ times that of B. For a fixed p with p ∈ (1,∞), p′ denotes the dual exponent of p,

namely, p′ = p/(p−1). For a locally integrable function f on X and a bounded measurable

set E, mE(f) denotes the mean value of f over E, that is,

mE(f) = [µ(E)]−1

∫

E

f(x)dµ(x).

For 0 < s < 1, the operators M0, s and M♯
0, s are defined by

M0, sf(x) = sup
B∋x

inf{t > 0 : µ({y ∈ B : |f(y)| > t}) < sµ(B)}
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and

M♯
0, sf(x) = sup

B∋x
inf
c∈C

inf{t > 0 : µ({y ∈ B : |f(y) − c| > t}) < sµ(B)}

for any locally integrable function f and x ∈ X . Let M be the Hardy-Littlewood maximal

operator and

Mδf(x) = (M(|f |δ)(x))
1
δ , δ > 0.

For a locally integrable function f , define the Fefferman-Stein sharp maximal function M♯f

as

M♯f(x) = sup
B∋x

1

µ(B)

∫

B

|f(y) − mB(f)|dµ(y),

where the supremum is taken over all balls B containing x. For fixed q ∈ (0, 1), let the sharp

maximal function be

M♯
qf(x) = (M♯(|f |q)(x))

1
q .

The commutator of the Hardy-Littlewood maximal operator is defined by

Mbf(x) = sup
B∋x

1

µ(B)

∫

B

|b(x) − b(y)||f(y)|dµ(y),

where b ∈ BMO(X ).

The following inequalities will be used in the proof of Theorem 1.1. Let

M = ML(log L)0 .

For α, β ∈ [0,∞) and any weight w, we have

ML(log L)α(ML(log L)βw)(x) ≤ CML(log L)α+β+1w(x) (1.10)

(see [3]). For any suitable function f , set

‖f‖exp{L}, E = inf
{

λ > 0 :
1

µ(E)

∫

E

exp
{ |f(x)|

λ

}

dµ(x) ≤ 2
}

.

Then the following generalization of Hölder’s inequality
1

µ(E)

∫

E

|f(x)g(x)|dµ(x) ≤ C‖f‖L lg L, E‖g‖exp{L}, E

holds for any suitable functions f and g; see [7] for details.

2 Some Lemmas

Lemma 2.1 Suppose that µ(X ) < ∞, 0 < δ < 1, and S is an operator which satisfies

the weak type estimate

µ({x ∈ X : |Sf(x)| > λ}) ≤ C0

∫

X

f(x)

λ
lg

(

e +
|f(x)|

λ

)

dµ(x), (2.1)

where C0 is independent of f and λ. Then there exists a positive constant C such that for

any x ∈ X ,
(

1

µ(X )

∫

X

|Sf(y)|δdµ(y)

)
1
δ

≤ CML lg Lf(x). (2.2)
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Proof. Repeating the proof of the Kolmogorov inequality, we see that there exists a positive

constant C such that for any f ∈ L∞
0 (X ),

(

1

µ(B)

∫

B

|Sf(y)|δdµ(y)

)
1
δ

≤ C‖f‖L lg L, B ,

where supp f ⊂ B. It is easily known that for any x ∈ X , there exists a ball B satisfying

that supp f ⊂ B and x ∈ B, such that for any nonnegative integer k,
(

1

µ(2kB)

∫

2kB

|Sf(y)|δdµ(y)

)
1
δ

≤ C‖f‖L lg L, 2kB ≤ CML lg Lf(x)

with C independent of x, f and B. Taking the limit k → ∞, we get (2.2). This completes

the proof.

Lemma 2.2 For any s with 0 < s < 1, there is a positive constant C such that for any

weight w and any nonnegative function f , which satisfies that µ({x ∈ X : f(x) > λ}) < ∞

for any λ > 0,

(1) if µ(X ) = ∞, then
∫

X

f(x)w(x)dµ(x) ≤ C

∫

X

M♯
0,sf(x)Mw(x)dµ(x);

(2) if µ(X ) < ∞, then
∫

X

f(x)w(x)dµ(x) ≤ C

∫

X

M♯
0, sf(x)Mw(x)dµ(x) + Cw(X )mX (f).

The proof of Lemma 2.2 is similar to the proof of Theorem 2.5 in [5], and is omitted.

For the setting of Euclidean space, this lemma was proved by Lerner in [6].

Lemma 2.3 Under the hypothesis of Theorem 1.1, for any s with 0 < s < 1, there exists

a constant C > 0 such that for any f ∈ L∞
0 (X ),

M♯
0, s(T

∗
b f)(x) ≤ C(‖b‖BMO(X )Ms(T

∗f)(x) + ‖b‖BMO(X )‖f‖L∞(X )).

Proof. Without loss of generality, we may assume that ‖b‖BMO(X ) = 1. By a trivial

computation, we see that for any s, q ∈ (0, 1) with q < s and any locally integrable function

f ,

M♯
0, sf(x) ≤ s−1/qM♯

qf(x)

and

M♯
q(T

∗
b f)(x) ≤ sup

B∋x
inf
c∈C

(

1

µ(B)

∫

B

|T ∗
b f(y) − c|qdµ(y)

)
1
q

.

Let f ∈ L∞
0 (X ). Our goal is now to prove that

sup
B∋x

inf
c∈C

(

1

µ(B)

∫

B

|T ∗
b f(y) − c|qdµ(y)

)
1
q

≤ CMs(T
∗f)(x) + C‖f‖L∞(X ) (2.3)

with C independent of f , x, and B. For each fixed x ∈ X and a ball B containing x,

decompose f as

f(y) = f1(y) + f2(y) = f(y)χC1B(y) + f(y)χX \C1B(y), C1 = κ(4κ2 + 1).

Notice that (mB(b) − b)f2 ∈ L2(X ). The Lp(X ) (1 < p < ∞) boundedness of T ∗ (see [5])

states that

sup
ǫ>0

|Tǫ((mB(b) − b)f2)(y)| < ∞, a.e. y ∈ X .
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Choose y0 ∈ B such that

sup
ǫ>0

|Tǫ((mB(b) − b)f2)(y0)| < ∞

and set

CB = T ∗((mB(b) − b)f2)(y0).

Write

Tǫ; bf(y) = Tǫ((mB(b) − b)f1)(y) + Tǫ((mB(b) − b)f2)(y) − (mB(b) − b(y))Tǫf(y).

Then for any y ∈ B,

|T ∗
b f(y) − CB| =

∣

∣

∣
sup
ǫ>0

|Tǫ; bf(y)| − sup
ǫ>0

|Tǫ((mB(b) − b)f2)(y0)|
∣

∣

∣

≤ sup
ǫ>0

∣

∣

∣
Tǫ; bf(y) − Tǫ((mB(b) − b)f2)(y0)

∣

∣

∣

≤ T ∗((mB(b) − b)f1

)

(y) + |mB(b) − b(y)|T ∗f(y)

+ sup
ǫ>0

∣

∣

∣
Tǫ((mB(b) − b)f2)(y) − Tǫ((mB(b) − b)f2)(y0)

∣

∣

∣

= I(y) + II(y) + III(y).

The Kolmogorov inequality, via the fact that T ∗ is bounded from L1(X ) to L1,∞(X ) (see

[5]), tells us that
(

1

µ(B)

∫

B

|I(y)|qdµ(y)

)
1
q

=

(

1

µ(B)

∫

B

|T ∗((mB(b) − b)f1

)

(y)|qdµ(y)

)
1
q

≤
C

µ(C1B)

∫

C1B

|mB(b) − b(y)||f(y)|dµ(y)

≤ C‖f‖L∞(X ).

On the other hand, a straightforward computation involving the Hölder inequality leads to

that
(

1

µ(B)

∫

B

|II(y)|qdµ(y)

)
1
q

≤ C

(

1

µ(B)

∫

B

|mB(b) − b(y)|q|T ∗f(y)|qdµ(y)

)
1
q

≤ C

(

1

µ(B)

∫

B

|T ∗f(y)|sdµ(y)

)
1
s

×

(

1

µ(B)

∫

B

|mB(b) − b(y)|
qs

s−q dµ(y)

)

s−q
qs

≤ CMs(T
∗f)(x).

It remains to estimate III(y). For each fixed point y ∈ B, we can write

III(y) = sup
ǫ>0

∣

∣

∣
Tǫ((mB(b) − b)f2)(y) − Tǫ((mB(b) − b)f2)(y0)

∣

∣

∣

≤

∫

X \C1B

|K(y, z)− K(y0, z)||mB(b) − b(z)||f(z)|dµ(z)

+ 2 sup
ǫ>0

∫

d(y, z)≤ǫ, d(y0, z)>ǫ

|K(y0, z)||mB(b) − b(z)||f2(z)|dµ(z)

= D1 + D2.
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The smoothness condition (1.7) states that

D1 ≤

∫

X \C1B

|K(y, z)− K(y0, z)||b(z)− mC1B(b)||f(z)|dµ(z)

≤ ‖f‖L∞(X )

∞
∑

k=1

|mC1B(b) − m2kC1B(b)|

∫

2kC1B\2k−1C1B

|K(y, z) − K(y0, z)|dµ(z)

+ ‖f‖L∞(X )

∞
∑

k=1

∫

2kC1B\2k−1C1B

|K(y, z)− K(y0, z)||b(z) − m2kC1B(b)|dµ(z)

≤ C‖f‖L∞(X )

∞
∑

k=1

∫

2kC1B\2k−1C1B

|K(y, z) − K(y0, z)||b(z)− m2kC1B(b)|dµ(z)

+ C‖f‖L∞(X ).

Recall that there is a positive constant C such that for any t1, t2 > 0,

t1t2 ≤ C(t1 lg(2 + t1) + exp{t2})

(see [4]). Thus by the John-Nirenberg inequality

‖b − mB(b)‖exp{L},B ≤ C‖b‖BMO(X ),

we have
∞
∑

k=1

∫

2kC1B\2k−1C1B

|K(y, z)− K(y0, z)||b(z) − m2kC1B(b)|dµ(z)

≤C

∞
∑

k=1

1

2kµ(2k−1C1B)

∫

2kC1B

exp{|b(z) − m2kC1B(b)|}dµ(z)

+ C
∞
∑

k=1

∫

2kC1B\2k−1C1B

|K(y, z)− K(y0, z)|

× lg(2 + 2kµ(2k−1C1B)|K(y, z)− K(y0, z)|)dµ(z)

≤C,

and so

D1 ≤ C‖f‖L∞(X ).

As for D2, it is easy to verify that

D2 ≤ C sup
ǫ>0

∫

ǫ<d(y0, z)≤Cǫ

|K(y0, z)f(z)||mB(b) − b(z)|dµ(z)

≤ C sup
ǫ>0

1

µ(B(y0, ǫ))

∫

d(y0, z)≤Cǫ

|mB(b) − b(z)||f(z)|dµ(z)

≤ C‖f‖L∞(X ).

Combining the estimates for the terms I, II and III yields the inequality (2.3), and then

completes the proof of Lemma 2.3.

3 Proof of Theorem 1.1

We first establish a weighted inequality for the composite operator M♯
0, sT

∗
b .
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Theorem 3.1 Let T be a linear L2(X )-bounded operator with kernel K in the sense of

(1.1) and b ∈ BMO(X ). Suppose that K satisfies the conditions (1.4), (1.5) and (1.7). Then

for any δ > 0, s ∈ (0, 1) and p ∈ (1,∞), there is a constant C > 0 such that for any weight

w and f ∈ L∞
0 (X ),

∫

X

(M♯
0, s(T

∗
b f)(x))pw(x)dµ(x) ≤ C

∫

X

|f(x)|pML(lg L)p+1+δw(x)dµ(x). (3.1)

Proof. Notice that for any p ∈ (1,∞), δ is an arbitrary positive number. By the

Marcinkiewicz interpolation theorem, we see that the proof of Theorem 3.1 can be reduced

to prove that for any δ > 0, s ∈ (0, 1) and p ∈ (1,∞), there is a constant C > 0 such that

for any weight w and any f ∈ L∞
0 (X ),

w({x ∈ X : M♯
0, s(T

∗
b f)(x) > Cλ}) ≤ Cλ−p

∫

X

|f(x)|pML(lg L)p+1+δw(x)dµ(x). (3.2)

If µ(X ) < ∞ and λp ≤ ‖f‖p
Lp(X )[µ(X )]−1, the inequality (3.2) is trivial. So it remains

to consider the case that λp > ‖f‖p
Lp(X )[µ(X )]−1. For each fixed f ∈ L∞

0 (X ) and λp >

‖f‖p
Lp(X )[µ(X )]−1, applying the Calderón-Zygmund decomposition (see [8]) to |f |p at level

λp, we can obtain a sequence of pairwise disjoint balls {Bj}
∞
j=1 and a constant C2 ≥ 1 such

that

mC2Bj (|f |
p) ≤ λp < mBj (|f |

p) (3.3)

and

mB(|f |p) ≤ λp

for every ball B centered at x ∈ X \ ∪j C2Bj . As in the proof of Lemma 2.10 in [8], set

V1 = C2B1 −
∞
⋃

n=2

Bn, Vj = C2Bj −

[ j−1
⋃

n=1

Vn ∪
∞
⋃

n=j+1

Bn

]

.

Then it follows that

Bj ⊂ Vj ⊂ C2Bj and
⋃

j

Vj =
⋃

j

C2Bj .

Decompose f as

f(x) = g(x) + h(x) = g(x) +
∑

j

hj(x),

where

g(x) = f(x)χX \
⋃

j

Vj
(x) +

∑

j

mVj (f)χVj (x)

and

hj(x) = (f(x) − mVj (f))χVj (x).

Although M♯
0, s is not sublinear, we can prove that for any locally integrable functions f1

and f2,

M♯
0, s(f1 + f2)(x) ≤ M♯

0, s/2f1(x) + M0, s/2f2(x).

So we have that

w({x ∈ X : M♯
0, s(T

∗
b f)(x) > Cλ})

≤ w({x ∈ X : M♯
0, s/2(T

∗
b g)(x) > Cλ}) + w({x ∈ X : M0, s/2(T

∗
b h)(x) > Cλ}). (3.4)
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Now we deal with the first term on the right of (3.4). Let

C3 = κ(4κ2 + 1)C2, Ω =
⋃

j

C3Bj

and

w∗ = wχX \Ω .

Following an argument similar to the case of Euclidean spaces (see [9], p.159), we can verify

that there exists a constant C > 0 depending only on the space X such that for any

x ∈ C2Bj,

Mw∗(x) ≤ C inf
y∈C2Bj

Mw∗(y).

Lemma 2.3 and the fact

T ∗g(x) ≤ C(M(Tg)(x) + ‖g‖L∞(X ))

(see [10]) tell us that

w({x ∈ X \Ω : M♯
0, s/2(T

∗
b g)(x) > Cλ})

≤ Cw({x ∈ X \Ω : M(T ∗g)(x) + ‖g‖L∞(X ) > Cλ})

≤ Cw({x ∈ X \Ω : ML lg L(Tg)(x) > Cλ})

≤ Cλ−p

∫

X

|Tg(x)|pMw∗(x)dµ(x),

≤ Cλ−p

∫

X

|g(x)|pML(lg L)p−1+δ(Mw∗)(x)dµ(x).

≤ Cλ−p

∫

X

|f(x)|pML(lg L)p+δw∗(x)dµ(x).

+ Cλ−p
∑

j

∫

Vj

|mVj (|f |)|
pML(lg L)p+δw∗(x)dµ(x),

where in the third to the last inequality we have invoked (1.10) and the inequalities
∫

X

(ML lg Lg′(x))pu(x)dµ(x) ≤ C

∫

X

|g′(x)|pMu(x)dµ(x)

(this conclusion is an easy consequence of Theorem 1.4 in [11]) and
∫

X

(Tg′(x))pu(x)dµ(x) ≤ C

∫

X

|g′(x)|pML(lg L)p−1+δu(x)dµ(x)

(this inequality can be obtained by the same lines to the proof of Lemma 4.3 in [5] with ob-

vious changes) for any weight u and any nonnegative functions g′. Moreover, an application

of Hölder inequality via (3.3) gives that
∫

Vj

|mVj (|f |)|
pML(log L)p+δw∗(x)dµ(x)

≤ Cλpµ(Vj) inf
y∈C2Bj

ML(lg L)p+δw∗(y)

≤ Cλpµ(Bj) inf
y∈C2Bj

ML(lg L)p+δw∗(y)

≤ C

∫

Bj

|f(x)|pML(lg L)p+δw(x)dµ(x).
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On the other hand, a simple computation states that

w(Ω) ≤ C
∑

j

w(C3Bj)

µ(C3Bj)
µ(Bj)

≤ C
∑

j

inf
y∈Bj

Mw(y)λ−p

∫

Bj

|f(x)|pdµ(x)

≤ Cλ−p

∫

X

|f(x)|pMw(x)dµ(x).

So we obtain that

w({x ∈ X : M♯
0, s/2(T

∗
b g)(x) > Cλ}) ≤ Cλ−p

∫

X

|f(x)|pML(lg L)p+δw(x)dµ(x).

Then we deal with the second term on the right of (3.4). Noting that for any s ∈ (0, 1),

{x ∈ X : M0, s/2(T
∗
b h)(x) > Cλ} ⊂ {x ∈ X : M(χ{y∈X :T∗

b h(x)>Cλ})(x) ≥ s/2},

we can obtain that

w({x ∈ X : M0, s/2(T
∗
b h)(x) > Cλ})

≤ w({x ∈ X : M(χ{y∈X :T∗

b h(x)>Cλ})(x) ≥ s/2})

≤ C21/ss−1/s sup
τ>C21/ss−1/s

τMw({x ∈ X : χ{y∈X :T∗

b h(x)>Cλ}(x) ≥ τ})

≤ C21/ss−1/s

∫

X

χ{y∈X :T∗

b h(x)>Cλ}Mw(x)dµ(x)

≤ C21/ss−1/sMw({x ∈ X \Ω : |T ∗
b h(x)| > Cλ}) + C21/ss−1/sMw(Ω),

where in the second inequality we have invoked the fact that for γ > 0 and any weight w,

w({x ∈ X : Msf(x) ≥ γ}) ≤ Cγ−1 sup
τ>Cγ

τMw({x ∈ X : |f(x)| ≥ τ})

(this inequality follows from a similar argument as in the case of Euclidean spaces; see [12],

P.651). It suffices to prove that

w({x ∈ X \Ω : |T ∗
b h(x)| > Cλ}) ≤ Cλ−p

∫

X

|f(x)|pML(lg L)p+δw(x)dµ(x), (3.5)

which implies that

w({x ∈ X : M0, s/2(T
∗
b h)(x) > Cλ}) ≤ Cλ−p

∫

X

|f(x)|pML(lg L)p+1+δw(x)dµ(x).

For each fixed x ∈ X \Ω , we define

J1(x, ǫ) = {j : for all y ∈ C2Bj , d(x, y) ≤ ǫ},

J2(x, ǫ) = {j : for all y ∈ C2Bj , d(x, y) > ǫ},

J3(x, ǫ) = {j : C2Bj ∩ {y ∈ X : d(x, y) > ǫ} 6= ∅

and C2Bj ∩ {y ∈ X : d(x, y) ≤ ǫ} 6= ∅}.
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It then follows that

|Tǫ; bh(x)| ≤
∣

∣

∣
Tǫ;b

(

∑

j∈J2(x,ǫ)

hj

)

(x)
∣

∣

∣
+

∣

∣

∣
Tǫ;b

(

∑

j∈J3(x,ǫ)

hj

)

(x)
∣

∣

∣

≤
∣

∣

∣

∑

j∈J2(x,ǫ)

(b(x) − mBj (b))Tǫhj(x)
∣

∣

∣
+

∣

∣

∣
Tǫ

(

∑

j

(b − mBj (b))hj

)

(x)
∣

∣

∣

+
∣

∣

∣
Tǫ

(

∑

j∈J3(x,ǫ)

(b − mBj (b))hj

)

(x)
∣

∣

∣
+

∣

∣

∣
Tǫ;b

(

∑

j∈J3(x,ǫ)

hj

)

(x)
∣

∣

∣

= Uǫ(x) + Vǫ(x) + Xǫ(x) + Yǫ(x).

For each fixed j, let yj and rj be the center and radius of Bj . Noticing that for x ∈ X \Ω

and j ∈ J2(x, ǫ), we have

Tǫhj(x) = Thj(x).

By the vanishing moment of hj we have

sup
ǫ>0

Uǫ(x) ≤
∑

j

|b(x) − mBj (b)|

∫

X

(d(y, yj))
η

µ(B(y, d(x, y)))(d(x, y))η
|hj(y)|dµ(y),

and so

w({x ∈ X \Ω : sup
ǫ>0

Uǫ(x) > Cλ})

≤ Cλ−1
∑

j

∫

X

|hj(x)|(d(y, yj))
η

∫

X \C3Bj

|b(x) − mBj (b)|w(x)

µ(B(y, d(x, y)))(d(x, y))η
dµ(x)dµ(y)

≤ Cλ−1
∑

j

∫

X

|hj(x)|(d(y, yj))
η

×
∞
∑

k=1

∫

2kC3Bj\2k−1C3Bj

|b(x) − mBj (b)|w(x)

µ(B(y, d(x, y)))(d(x, y))η
dµ(x)dµ(y)

≤ Cλ−1
∑

j

∫

X

|hj(x)|dµ(y) inf
y∈C3Bj

ML lg Lw(y)

≤ Cλ−p

∫

X

|f(x)|pML lg Lw(x)dµ(x),

where in the third inequality, we have used the fact that for each fixed j, y ∈ Vj and any

positive integer k, a standard argument involving the Hölder inequality and John-Nirenberg

inequality yields
∫

2kC3Bj\2k−1C3Bj

|b(x) − mBj (b)|w(x)

µ(B(y, d(x, y)))(d(x, y))η
dµ(x) ≤ Ck(2krj)

−η inf
z∈C3Bj

ML lg Lw(z).

On the other hand, because T ∗ is bounded from L(p+1)/2(X ,ML(lg L)(p+1)/2+δw) to

L(p+1)/2(X , w) (this conclusion can be obtained from [5] with some obvious change in the

proof there), we have

w({x ∈ X \Ω : sup
ǫ>0

Vǫ(x) > Cλ})

≤ Cλ− p+1
2

∑

j

∫

X

|b(x) − mBj (b)|
p+1
2 |hj(x)|

p+1
2 dµ(x) inf

y∈C3Bj

ML(lg L)(p+1)/2+δw(y)
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≤ Cλ− p+1
2

∑

j

µ(Vj)
p−1
2p

(
∫

Vj

|f(x)|pdµ(x)

)

p+1
2p

inf
y∈C3Bj

ML(lg L)(p+1)/2+δw(y)

≤ Cλ−p

∫

X

|f(x)|pML(lg L)(p+1)/2+δw(x)dµ(x).

Notice that for x ∈ X \Ω and j ∈ J3(x, ǫ), we have C2Bj ⊂ B(x, C4ǫ)\B(x, C5ǫ), where

C4 and C5 are two positive constants satisfying C4 > C5 . Therefore, for all x ∈ X \Ω ,

sup
ǫ>0

(Xǫ(x) + Yǫ(x)) ≤ CM
(

∑

j

|b − mBj (b)||hj |
)

(x) + CMb

(

∑

j

|hj|
)

(x),

which leads to

w({x ∈ X \Ω : sup
ǫ>0

(Xǫ(x) + Yǫ(x)) > Cλ})

≤ Cλ−p
∑

j

∫

Vj

|hj(x)|pdµ(x) inf
y∈C3Bj

ML(lg L)p+δw(y)

+ Cλ− p+1
2

∑

j

∫

Vj

|b(x) − mBj (b)|
p+1
2 |hj(x)|

p+1
2 dµ(x) inf

y∈C3Bj

Mw(y)

≤ Cλ−p

∫

X

|f(x)|pML(lg L)p+δw(x)dµ(x),

where in the first inequality we have used the boundedness of M (see [11]) and invoked a

consequence from [4] that for any weight u and g′ ∈ L∞
0 (X ),

∫

X

(Mbg
′(x))pu(x)dµ(x) ≤ C

∫

X

|g′(x)|pML(lg L)p+δu(x)dµ(x).

Combining the estimates for the terms sup
ǫ>0

Uǫ, sup
ǫ>0

Vǫ and sup
ǫ>0

(Xǫ + Yǫ) yields (3.5), and

then completes the proof of Theorem 3.1.

Proof of Theorem 1.1 We may assume that ML(lg L)2p+1+δw(x) is finite almost ev-

erywhere; otherwise there is nothing to prove. Fixed s with 0 < s < 1/2, Theorem 3.1

tells us that M♯
0, sT

∗
b is bounded from Lp(X ,ML(lg L)p+1+δw) to Lp(X , w). For each fixed

p ∈ (1,∞) and δ > 0, choose q = 3p/(3p + δ) and γ = p/q. It follows from the duality that
(

∫

X

(T ∗
b f(x))pw(x)dµ(x)

)
1
γ

= sup
h≥0,‖h‖

Lγ′
(X ,w1−γ′

)
≤1

∫

X

(T ∗
b f(x))qh(x)dµ(x).

Lemma 2.2 states that if µ(X ) = ∞,
∫

X

(T ∗
b f(x))qh(x)dµ(x) ≤ C

∫

X

(M♯
0,s(T

∗
b f)(x))qMh(x)dµ(x)

≤ C

(
∫

X

(M♯
0,s(T

∗
b f)(x))pML(lg L)γ−1+δ/3w(x)dµ(x)

)
1
γ

×

(
∫

X

(Mh(x))γ′

(ML(lg L)γ−1+δ/3w(x))1−γ′

dµ(x)

)
1

γ′

≤ C

(
∫

X

|f(x)|pML(lg L)2p+1+δw(x)dµ(x)

)
1
γ

×

(
∫

X

|h(x)|γ
′

w(x)1−γ′

dµ(x)

)
1

γ′
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≤ C

(
∫

X

|f(x)|pML(lg L)2p+1+δw(x)dµ(x)

)
1
γ

,

where in the third inequality, we have invoked (1.10) and the following inequality that for

any weight u and g ∈ Lγ′

(X , u1−γ′

),
∫

X

(Mg(x))γ′

(ML(lg L)γ−1+δu(x))1−γ′

dµ(x) ≤ C

∫

X

|g(x)|γ
′

u(x)1−γ′

dµ(x)

(see [3]); if µ(X ) < ∞, we firstly prove that T ∗
b is an operator satisfying (2.1). For s ∈

(0, 1/2), we have

M♯
sf ≤ CMM♯

0, sf

and

‖Mf‖Lp(X ) ≤ C‖M♯f‖Lp(X )

(these two inequalities can be proven as in the case of Euclidean spaces; see the proofs of

Lemma 3.7 in [13] and Theorem 5 in [14]), and so
∫

X

|T ∗
b f(x)|pdµ(x) ≤

∫

X

(M(|T ∗
b f |s)(x))p/sdµ(x)

≤ C

∫

X

(M♯(|T ∗
b f |s)(x))p/sdµ(x)

≤ C‖MM♯
0,s(T

∗
b f)‖p

Lp(X )

≤ C‖M♯
0,s(T

∗
b f)‖p

Lp(X )

≤ C‖f‖p
Lp(X ),

where in the last inequality we have used Theorem 3.1. Using the same argument as in the

proof of Theorem 1.3 in [4], we know that T ∗
b satisfies the weak type estimate (2.1). With

Lemma 2.1 we can obtain that

h(X )mX ((T ∗
b f)q) ≤ C

∫

X

(ML lg Lf(x))qh(x)dµ(x)

≤ C

(
∫

X

(ML lg Lf(x))pw(x)dµ(x)

)1/γ

×

(
∫

X

h(x)γ′

w(x)1−γ′

dµ(x)

)1/γ′

≤ C

(
∫

X

|f(x)|pMw(x)dµ(x)

)1/γ

.

Consequently,
∫

X

(T ∗
b f(x))qh(x)dµ(x) ≤ C

(
∫

X

|f(x)|pML(lg L)2p+1+δw(x)dµ(x)

)
1
γ

+ Ch(X )mX ((T ∗
b f)q)

≤ C

(
∫

X

|f(x)|pML(lg L)2p+1+δw(x)dµ(x)

)
1
γ

,

which implies that (1.8) is true. Repeating the argument used in the proof of Theorem 1.3

in [4] we can get (1.9), and then we complete the proof of Theorem 1.1.
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