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Abstract: The quasi-periodic pendulum type equations are considered. A sufficient
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The result obtained answers a problem proposed by Moser under the quasi-periodic
case.

Key words: Lagrange stability, pendulum type equation, KAM theorem

2000 MR subject classification: 37J40

Document code: A

Article ID: 1674-5647(2010)01-0076-09

1 Introduction

The Lagrange stability of pendulum type equations is an important topic, which is proposed
by Moser[!l. Moser?, Levil® and Youl* investigated such topic for the periodic situation,
respectively. In particular, You obtained a sufficient and necessary condition for Lagrange
stability of the equation (1.1) in [4].

Recently, Bibikov!®! developed a KAM theorem for nearly integrable Hamiltonian systems
with one degree of freedom under the quasi-periodic perturbation. In fact, his KAM theorem
is of parameter type. Using this theorem he discussed the stability of equilibrium of a class
of the second order nonlinear differential equations.

In this note we study quasi-periodic pendulum type equations. Under the standard
Diophantine condition of frequency w, a sufficient and necessary condition of Lagrange
stability for quasi-periodic pendulum type equations is obtained. This answers Moser’s

problem under the quasi-periodic case.
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We consider a nonlinear pendulum type equation

d?z
where
p(t,x+1) = p(t, z),
and p(t, x) is a quasi-periodic function in ¢ with basic frequencies w = (w1, - ,wy,), that is,

p(t,2) = f(wt, ) (1.2)
for some function f(6,z) defined on 7™ x T*. Here T" = R™/Z™ is an n-dimensional torus.
Assume that f(6,x) is a real analytic function on 7" x T and the frequency w satisfies
Diophantine condition as follows:
|(k,w)| 2 Ak~ 0# ke 2" (1.3)
for a given v > 0, where ( - ,- ) denotes the usual inner product.
We are in a position to state the main result of this paper.

Theorem 1.1  Assume that (1.3) holds. Then system (1.1) is Lagrange stable if and only
if
/ f(0,2)dodz = 0. (1.4)
TrnxT?!

Moreover, if (1.3) and (1.4) hold, equation (1.1) possesses infinitely many quasi-periodic
solutions with n + 1 basic frequencies (including wy, -+ ,wy).

e Diophantine condition (1.3) can be replaced by a general form
(el = k™™, 0#kez" (1.5)
with some constant 7, > n. Here we assume (1.3) for the convenience of the proof of
Theorem 1.1.

¢ Huang!®

considered a class of almost periodic pendulum-type equations. He proved the
existence of unbounded solutions of the equations. Summing up the works developed
by Mosel?!, Levil¥!, Youl¥ and Huangl%, respectively, and Theorem 1.1, we can obtain

a satisfactory answer to Moser’s problem.

e Recently, Lin and Wang!” have concerned with a dual quasi-periodic system as follows:

d?z  Og

— + —(t,x) =0 1.6

o+ o (ta) =0, (16)
where g(t,z) is quasi-periodic in ¢ and z with frequencies 2' = (wy, -+ ,w,) and
2?2 = (Wniy1, s Wnim), respectively. Under the assumptions

(21, 0%) € Oy = {(2%,2%) € R™™ + |(k, Q%) + {1, Q)| = (k[ + 1)) ™™,
VO#(k1)eZ"™, 7. >n+m}
and
VijieEN, 3A®G) >, st. (21, A(j)2?) € O,,
they proved that all the solutions of (1.6) are bounded (see [7]). It is easy to find that
as m = 1, their modified Diophantine condition is stronger than (1.5); in addition,

the result of [7] is a sufficient condition to ensure Lagrange stability. This differs from
Theorem 1.1.
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e In [8] and [9], the authors developed a quasi-periodic monotonic twist theorem. For
the sake of simplicity, we should apply Bibikov’s lemma to prove our theorem, but
apply the monotonic twist theorem.

2 A KAM Theorem under Quasi-periodic Perturbations

In this section we give a KAM theorem with a quasi-periodic perturbation by using Bibikov’s
lemma (see [5]).
Let us consider a Hamiltonian system with Hamiltonian
1

H(xayaWt) = §y2+P(x,y,wt), (21)
where P(z,y,0) is a function defined on T x R' x T", and w satisfies (1.3). Assume that P
is real analytic, that is, there is § > 0 such that P is analytic on (T! x R' x T™) + 6. Here
D + 4 is a complex neighborhood of D in C" for any given subset D in R" and fixed § > 0.
Let

Ay = {1 € R : |(k,w) + 17| > 7(|k| + 1)V, 0 (k,1) € Z" x Z}.

Theorem 2.1  There exists €9 > 0 depending only on v, § and n such that, for any
interval (a,b), if |P| < &g on (T* x (a,b) x T™) + 6, the following conclusions hold:

1) meas(A, ((a,b)) = b—a, asy — 0T

2) for every T € A,(\(a,b), system (2.1) possesses an invariant torus I, .y, which
is full of quasi-periodic motions with frequency (7,w). Moreover, this torus is a drift of
T! x {y = 7} x T™ under some nearly identical transformation of coordinates.

Consider an auxiliary Hamiltonian of the form
H(p,r,wt,7) =711+ P(p,r,wt, T) (2.2)
with a parameter 7. Assume that P(p,r,0,7) is real analytic on
Dy = {(cp,r,@,T) :Im(ep, 8)| < o, Re(p,8) € T x T, |r| <o, 7 € Ay + %750}.
In order to prove Theorem 2.1 we need the following Bibikov’s lemma.

Bibikov’s Lemmal’

1) There exits eg > 0 depending only on 0y, to and n such that if
P| < €y on Dy, then there exist a function 19 : Av — R and a nearly identical transformation
¥
of coordinates
50:11)4»“(@/};“}@0‘); T:PJFU(?/%PaWtaOé);OéGAw

which reduces Hamiltonian system

dep +8P( ot 7) dr 8P( rwt, 7)
= wt, T — = -0 wt, T
dt gr VIR T T
to the following form:
d d
d—zf =a+ Uy, p,wt,a), —d? = By, p,wt,q)

with 7 = 19(a) to satisfy
B
B(¢,0,wt,a) = g—p(w,O,wt,a) = ¥U(¢,0,wt,a) = 0.
2) meas(R'\A4,) — 0, as v — 0%,
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Proof of Theorem 2.1 Let e = sup |P(x,y,0)|. Taking a parameter
(z,y,0)€(Trx (a,b)xT™)+6
7 € (a,b), we introduce a transformation

r=7, y=T+Vey (2.3)

and construct a new Hamiltonian

~ 1 1
H(Z,y,wt,7) = — | H(z,y,wt) — —72
\/§< 2

- 1 1 -
— 1+ V2 (57 LR V)

= Tg+ \/Eﬁ(fa ga wt, T)v (24)
where

1
P(Ea ga Wta’r) = 5@2 + O(]‘)

By applying Bibikov’s lemma to (2.4) on ((T1 X ( g, g) X T”) + g) X ((Av n(a, b))+

gl

1 ), we can prove Theorem 2.1.

3 Some Lemmas

This section is devoted to established some lemmas which will be used in the proof of
Theorem 1.1.
Write

h(f) = — f(0,z)dx, G0,z) = /0z f(8,s)ds + h(f)x. (3.1)

Tl
Then
G(9+€i,l‘):G(9,IC):G(9,1C+1), ei:(aiv(séa"'v(szz)a 1=1,2,---,n.

Here 6! = 1 and (5;» =0 as i # j. By using these notations, (1.1) can be rewritten as the

form
d’z  90G
ﬁ + %(wt,x) = h(wt). (32)
Equation (3.2) is equivalent to the system
dx ¢ dy oG
— = h d — = ——(wt 3.3
T vt [ s, =T, (33)
which is a Hamiltonian system with Hamiltonian
~ 1 t
H(z,y,t) = §y2 + y/ h(ws)ds + G(wt, x). (3.4)
0

Because of the real analyticity of f(6,z) there is a positive constant 0 such that h(6) and
G(0,x) are analytic on T™ + 6 and on (T™ x T1) + §, respectively. It is clear that there is
My > 0 satisfying

oG

max{|h(9)|, |G(0, )|, ‘@(9,3:)

} <My,  ¥(0,r)€ (T" xT") +6. (3.5)



80 COMM. MATH. RES. VOL. 26

Lemma 3.1  Assume (1.3) and (1.4). Then, Hamiltonian (3.4) is the following
~ 1 ~
H(z,y,t) = H(w,y,wt) = 5y* + yh(wt) + G(wt, z), (3.6)

and for all (0,z) € (T™ x Tt) +

N |

max{|h(0)|, |G(8, )]} < M (3.7)

with some positive constant M. Here

h(wt) = / t h(wt)dt.

0

Proof.  Let the Fourier’s expansion of h be

0) = > hye?™V IR0, (3.8)
kEZ"
By (3.1) and (1.4),

ho = / h(6)d6 = 0.

Hence,

hi 2m/=1{k,wt) f=wt 7
hwt k(2L 1) P22 ). (3.9)
O#%Zn 2y —1{k, w) ( )

5
From (3.9), (1.3), (3.5) and Cauchy’s formula, on T + —

27
o) s Y A fervaTien
2 Tk
2 M > 2nj2n
S - wéj

TS er

ontl f4p 44\ "2 1
() L 3.10)

5 der

Here the inequality
—7dj

2n+2
j2n+26 9 S (4n+4)
der

which is obtained by finding the maximum of the function I(x) =

(O < x < 00),
is used.

From (3.10) and (3.5), it follows that, on (T™ x T*) + g, (3.7) holds. Thus, we end the
proof of Lemma 3.1.

Let

09 =

Jo? —8M
o1 = 2V2M + 1, 701++.

Lemma 3.2  There exists a canonical coordinate transformation @ depending periodically
on parameter € T™ of the form

b:x=X+ulX,Y,0), y=Y —[hlo+v(X,Y,0)
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such that if y ¢ (—o1,01), one has
2M

ly =Y + [hlg] < ———=—, (3.11)
Y — [h]ol
where
hlo = | h(6)do.
Tn
Moreover, (3.6) is changed to
1
Hoy(X,Y,0) = Y2+ P(X,Y,0) (3.12)
with the estimate
|P| < S —
Y — [hle|

~ ~ )
on (T* x (R*\(—02 + [h]g, 02 + [h]g)) x T™) + 3 Here c is a positive constant depending
only on 6, M, My and w.

Proof. First we construct a symplectic coordinate transformation ®; by a generating
function xYi + 51 (z, Yy, ), that is,
851 aSl
P X==x =Y.+ —
! v, T

Then the new Hamiltonian is

051
H+HO¢1+<89 >

) e ) ()

:%YEJFY*M%H (as> Y%+G+<851 w>.

0 09’
Let e
Y, 22 4 G0, 7) = [G).(0), (3.13)
ox
where
[G]:(0) = G(0,x)dx
T1
This leads to
1 xr
Si(z,Y.,0) = —?/ (G0, 5) — [GL.(6))ds. (3.14)
x Jo
By (3.14), (3.5) and the definition of ¢,
2M
Yyl < |Yi| +
bl <I¥]+ 5
Hence, as |y| > o1, we have
Y| > o2. (3.15)

According to

x+1 x
A «ww—wmwmzéﬁ@wﬁ@mms (3.16)
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5
and (3.15), we assert that S is defined on (T x (R*\(—02,02)) x T™)+ 3 for a small positive
number §. Denote

_ 08+ 1/08:\> /0S;
P v0) = 000 + 5 () + (G 3.17)
which and (3.13) imply that
1 ~ ~
Hy = 3Y2 + Yh(0) + P(X..Y..6), (3.18)

where we ignore [G], in Hamiltonian because that [G], is independent of X, and Y.. By
(3.5), (3.7), (3.14) and (3.17), we have
2M ~ c
Y] Y|
where c is a positive constant depending only on §, M, My and w.
Now introduce the second transformation &5 : (X,Y,0) — (X.,Yi,0) by a generating

function X, (Y — [h]g) + (Y — [h]9)S2(0). This shows that &, satisfies the following formula:

By X =X, + 8(0), Y.=Y —[hs. (3.20)
Inserting (3.20) into (3.18) we reduce H into

= oS
H++ = H+ o @2 + (Y — [h]9> <a—92,w>

= 2 (Y )"+ PX — $2(0),Y [}, )

+ (Y - [ﬁ]e) <iL(9) + <%,w>) .

h(8) + <%,w> = [hls. (3.21)

Denote @ = &1 o &5. Let

Write i — [h]g and Sy in the Fourier series form
hO) = [hlo = D Iy TR0,
0#£kezZ™
Sa(f) = D Sppe?V IR,
0#£kezZm
By comparing the coefficients in the Fourier expansions of h — [h]g and Sa, we derive that

(3.21) has a unique real analytic solution
b ony=T(k,0)
S0 - Y
with
S2(0) = [Sa]p = 0.
Similar to proving (3.10), we have

max{|52|7 05

00

} <a (3.22)

é
on Tn+! + 3 for some positive constant ¢;. Put

P(X,Y,0) = P(X — S5(0),Y — [h]o,0).
From (3.22), (3.20) and (3.19), we get the conclusion of the lemma.
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4 Proof of Theorem 1.1

We first prove the sufficiency. For any xo € T' and yg € R', let Xg € T! and Yy € R! be

the corresponding coordinates under change ¢ in Lemma 3.2. We denote by (X (¢, Xo, Yo),

Y (t, Xo,Y0)) a solution of (3.12) with X (0) = Xy, Y(0) = Y. Consider Hamiltonian (3.6) on
)

(TYx (Yo—1,Yo+1) xT™) + 3 Assume that |Yp| is large enough so that (Yo —1,Yp+1) C

R\ (=02 + [h]e, 02 + [h]e) and
|P| < &o. (4.1)

By Lemma 3.2 and Theorem 2.1, there are Y1, Y2 € (Yo — 1,Yp + 1) with Y1 < Yy < Y3 such
that two invariant tori I(y, .y and I(y, ., confine the solution (X (¢, Xo,Yo), Y (£, Xo,Yp)) in
the domain enclosed by them (in fact, in the coordinates (X,Y,t), the invariant torus is a

drift of the elliptic cylinder with t-axis). Thus, for all time ¢,

M; < |Y(t,X0,Y1)| < |Y(t,X0,Y0)| < |Y(t,XQ,Yé)| < M, (42)
for some positive constants M; and Ms. By (3.11), we have
ly(t, zo, yo)| < Mj (4.3)

with some positive constant Mg > 0. According to (3.3), (4.2) and (3.10),

t
12/t 20,50)| < [y(t, 20, 50)| + \ |
0

for some positive constant M, depending on Yj, which implies that (1.4) is a sufficient

< My

condition for the Lagrange stability of (1.1).
If Yy cannot ensure (4.1) to hold, we choose Y, such that |Y,| > |Yp| and (4.1) holds on

(TP x (Y, =1,V +1)xT™) + g A discussion similar to the above shows that Y (¢, Xo, Yy )
is bounded. Hence, Y (¢, Xo, Yp) is also bounded from the uniqueness of solutions. This also
proves the sufficient part of the theorem.

Now return to prove the necessary. Assume that (1.1) is Lagrange stable and

/ f(0,2)d0dz = hg # 0.
Tn+1
Without loss of generality, let ho > 0. By (3.9) and (3.10), we have

‘ /O t(h(wt) - ho)dt‘ < Ms (4.4)

for some positive constant Ms5.
Note that (3.2) is also equivalent to another system
dx dy oG
- = = = ———(wt h(wt). 4.5
oy D= Sheta) +hien (15)
Similar to [4], we can find a symplectic transformation, depending periodically on (= wt),
of the form

x=u+U(u,v,0), y=v+V(u,v,0)

with U = O(v=2), V = O(v~!), which reduces (4.5) into the system
du dv

5 =Y + ¢1 (u, v, wt), i h(wt) + g2 (u, v, wt)
with g1 = O(v=2), g2 = O(v™!). Here v is sufficiently large.
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1
Choose a sufficiently large v, such that |ga| < §h0 and |V| < hg when v > v,. Hence, as

v(0) > vy + ho + M5, we have

v(t) = v(0) —|—/O h(ws)ds—i—/o g2 (ws, u, v)ds
> v(0) + hot + /t(h(ws) — ho)ds — %hot

1
> Uy + hO + §h0t

Hence,

1 1
y(t) > ve + ho + §h0t — [V(wt,u,v)| > ve + §h0t’ (4.6)

which implies that y(¢) — +00 when ¢ — +o00. This leads to a contradiction. The necessary

is proved.

The proof of Theorem 1.1 is completed.
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