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1 Introduction

The Lagrange stability of pendulum type equations is an important topic, which is proposed

by Moser[1]. Moser[2], Levi[3] and You[4] investigated such topic for the periodic situation,

respectively. In particular, You obtained a sufficient and necessary condition for Lagrange

stability of the equation (1.1) in [4].

Recently, Bibikov[5] developed a KAM theorem for nearly integrable Hamiltonian systems

with one degree of freedom under the quasi-periodic perturbation. In fact, his KAM theorem

is of parameter type. Using this theorem he discussed the stability of equilibrium of a class

of the second order nonlinear differential equations.

In this note we study quasi-periodic pendulum type equations. Under the standard

Diophantine condition of frequency ω, a sufficient and necessary condition of Lagrange

stability for quasi-periodic pendulum type equations is obtained. This answers Moser’s

problem under the quasi-periodic case.
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We consider a nonlinear pendulum type equation
d2x

dt2
+ p(t, x) = 0, (1.1)

where

p(t, x+ 1) = p(t, x),

and p(t, x) is a quasi-periodic function in t with basic frequencies ω = (ω1, · · · , ωn), that is,

p(t, x) = f(ωt, x) (1.2)

for some function f(θ, x) defined on T n × T 1. Here T n = Rn/Zn is an n-dimensional torus.

Assume that f(θ, x) is a real analytic function on T n × T and the frequency ω satisfies

Diophantine condition as follows:

|〈k, ω〉| ≥ γ|k|−(n+1), 0 6= k ∈ Zn (1.3)

for a given γ > 0, where 〈 · , · 〉 denotes the usual inner product.

We are in a position to state the main result of this paper.

Theorem 1.1 Assume that (1.3) holds. Then system (1.1) is Lagrange stable if and only

if ∫

T n×T 1

f(θ, x)dθdx = 0. (1.4)

Moreover, if (1.3) and (1.4) hold, equation (1.1) possesses infinitely many quasi-periodic

solutions with n+ 1 basic frequencies (including ω1, · · · , ωn).

• Diophantine condition (1.3) can be replaced by a general form

|〈k, ω〉| ≥ γ|k|−τ∗ , 0 6= k ∈ Zn (1.5)

with some constant τ∗ > n. Here we assume (1.3) for the convenience of the proof of

Theorem 1.1.

• Huang[6] considered a class of almost periodic pendulum-type equations. He proved the

existence of unbounded solutions of the equations. Summing up the works developed

by Mose[2], Levi[3], You[4] and Huang[6], respectively, and Theorem 1.1, we can obtain

a satisfactory answer to Moser’s problem.

• Recently, Lin and Wang[7] have concerned with a dual quasi-periodic system as follows:
d2x

dt2
+
∂g

∂x
(t, x) = 0, (1.6)

where g(t, x) is quasi-periodic in t and x with frequencies Ω1 = (ω1, · · · , ωn) and

Ω2 = (ωn+1, · · · , ωn+m), respectively. Under the assumptions

(Ω1,Ω2) ∈ Oγ =
{
(Ω1,Ω2) ∈ Rn+m : |〈k,Ω1〉 + 〈l,Ω2〉| ≥ γ(|k| + |l|)−τ∗ ,

∀ 0 6= (k, l) ∈ Zn+m, τ∗ > n+m
}

and

∀ j ∈ N, ∃ A(j) ≥ j, s.t. (Ω1, A(j)Ω2) ∈ Oγ ,

they proved that all the solutions of (1.6) are bounded (see [7]). It is easy to find that

as m = 1, their modified Diophantine condition is stronger than (1.5); in addition,

the result of [7] is a sufficient condition to ensure Lagrange stability. This differs from

Theorem 1.1.
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• In [8] and [9], the authors developed a quasi-periodic monotonic twist theorem. For

the sake of simplicity, we should apply Bibikov’s lemma to prove our theorem, but

apply the monotonic twist theorem.

2 A KAM Theorem under Quasi-periodic Perturbations

In this section we give a KAM theorem with a quasi-periodic perturbation by using Bibikov’s

lemma (see [5]).

Let us consider a Hamiltonian system with Hamiltonian

H(x, y, ωt) =
1

2
y2 + P (x, y, ωt), (2.1)

where P (x, y, θ) is a function defined on T 1×R1×T n, and ω satisfies (1.3). Assume that P

is real analytic, that is, there is δ > 0 such that P is analytic on (T 1 ×R1 × T n) + δ. Here

D + δ is a complex neighborhood of D in Cr for any given subset D in Rr and fixed δ > 0.

Let

Aγ =
{
τ ∈ R1 : |〈k, ω〉 + lτ | > γ(|k| + |l|)−(n+1), 0 6= (k, l) ∈ Zn × Z

}
.

Theorem 2.1 There exists ε0 > 0 depending only on γ, δ and n such that, for any

interval (a, b), if |P | ≤ ε0 on (T 1 × (a, b) × T n) + δ, the following conclusions hold:

1) meas(Aγ

⋂
(a, b)) → b− a, as γ → 0+;

2) for every τ ∈ Aγ

⋂
(a, b), system (2.1) possesses an invariant torus I(τ,ω), which

is full of quasi-periodic motions with frequency (τ, ω). Moreover, this torus is a drift of

T 1 × {y = τ} × T n under some nearly identical transformation of coordinates.

Consider an auxiliary Hamiltonian of the form

H(ϕ, r, ωt, τ) = τr + P (ϕ, r, ωt, τ) (2.2)

with a parameter τ . Assume that P (ϕ, r, θ, τ) is real analytic on

D0 =
{
(ϕ, r, θ, τ) : |Im(ϕ, θ)| < ι0, Re(ϕ, θ) ∈ T × T n, |r| < δ0, τ ∈ Aγ +

1

2
γδ0

}
.

In order to prove Theorem 2.1 we need the following Bibikov’s lemma.

Bibikov’s Lemma
[5] 1) There exits ǫ0 > 0 depending only on δ0, ι0 and n such that if

|P | < ǫ0 on D0, then there exist a function τ0 : Aγ → R and a nearly identical transformation

of coordinates

ϕ = ψ + u(ψ, ωt, α), r = ρ+ v(ψ, ρ, ωt, α), α ∈ Aγ ,

which reduces Hamiltonian system
dϕ

dt
= τ +

∂P

∂r
(ϕ, r, ωt, τ),

dr

dt
= −∂P

∂ϕ
(ϕ, r, ωt, τ)

to the following form:
dψ

dt
= α+ Ψ(ψ, ρ, ωt, α),

dρ

dt
= B(ψ, ρ, ωt, α)

with τ = τ0(α) to satisfy

B(ψ, 0, ωt, α) =
∂B

∂ρ
(ψ, 0, ωt, α) = Ψ(ψ, 0, ωt, α) = 0.

2) meas(R1\Aγ) → 0, as γ → 0+.
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Proof of Theorem 2.1 Let ε = sup
(x,y,θ)∈(T 1×(a,b)×T n)+δ

|P (x, y, θ)|. Taking a parameter

τ ∈ (a, b), we introduce a transformation

x = x̃, y = τ +
√
εỹ (2.3)

and construct a new Hamiltonian

H̃(x̃, ỹ, ωt, τ) =
1√
ε

(
H(x, y, ωt) − 1

2
τ2

)

= τ ỹ +
√
ε

(
1

2
ỹ2 +

1

ε
P (x̃, τ +

√
εỹ, ωt)

)

= τ ỹ +
√
εP̃ (x̃, ỹ, ωt, τ), (2.4)

where

P̃ (x̃, ỹ, ωt, τ) =
1

2
ỹ2 +O(1).

By applying Bibikov’s lemma to (2.4) on

((
T 1×

(
− δ

2
,
δ

2

)
×T n

)
+
δ

2

)
×

(
(Aγ

⋂
(a, b))+

γδ

4

)
, we can prove Theorem 2.1.

3 Some Lemmas

This section is devoted to established some lemmas which will be used in the proof of

Theorem 1.1.

Write

h(θ) = −
∫

T 1

f(θ, x)dx, G(θ, x) =

∫ x

0

f(θ, s)ds+ h(θ)x. (3.1)

Then

G(θ + ei, x) = G(θ, x) = G(θ, x + 1), ei = (δi
1, δ

i
2, · · · , δi

n), i = 1, 2, · · · , n.
Here δi

i = 1 and δi
j = 0 as i 6= j. By using these notations, (1.1) can be rewritten as the

form
d2x

dt2
+
∂G

∂x
(ωt, x) = h(ωt). (3.2)

Equation (3.2) is equivalent to the system

dx

dt
= y +

∫ t

0

h(ωs)ds,
dy

dt
= −∂G

∂x
(ωt, x), (3.3)

which is a Hamiltonian system with Hamiltonian

H̃(x, y, t) =
1

2
y2 + y

∫ t

0

h(ωs)ds+G(ωt, x). (3.4)

Because of the real analyticity of f(θ, x) there is a positive constant δ such that h(θ) and

G(θ, x) are analytic on T n + δ and on (T n × T 1) + δ, respectively. It is clear that there is

M0 > 0 satisfying

max

{
|h(θ)|, |G(θ, x)|,

∣∣∣∣
∂G

∂θ
(θ, x)

∣∣∣∣
}
< M0, ∀(θ, x) ∈ (T n × T 1) + δ. (3.5)
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Lemma 3.1 Assume (1.3) and (1.4). Then, Hamiltonian (3.4) is the following

H̃(x, y, t) = H(x, y, ωt) =
1

2
y2 + yh̃(ωt) +G(ωt, x), (3.6)

and for all (θ, x) ∈ (T n × T 1) +
δ

2
,

max{|h̃(θ)|, |G(θ, x)|} < M (3.7)

with some positive constant M . Here

h̃(ωt) =

∫ t

0

h(ωt)dt.

Proof. Let the Fourier’s expansion of h be

h(θ) =
∑

k∈Zn

hke2π
√
−1〈k,θ〉. (3.8)

By (3.1) and (1.4),

h0 =

∫

T n

h(θ)dθ = 0.

Hence, ∫ t

0

h(ωt)dt =
∑

06=k∈Zn

hk

2π
√
−1〈k, ω〉

(
e2π

√
−1〈k,ωt〉 − 1

)
:
θ=ωt
= h̃(θ). (3.9)

From (3.9), (1.3), (3.5) and Cauchy’s formula, on T n +
δ

2
,

|h̃(θ)| ≤
∑

06=k∈Zn

|hk|
|〈k, ω〉|

∣∣∣∣e
2π

√
−1〈k,ωt〉 − 1

∣∣∣∣

≤ 2M0

γ

∞∑

j=1

2nj2n

e
πδj
2

≤ 2n+1

γ

(
4n+ 4

δeπ

)2n+2 ∞∑

j=1

1

j2
M0. (3.10)

Here the inequality

j2n+2e

−πδj
2 ≤

(
4n+ 4

δeπ

)2n+2

which is obtained by finding the maximum of the function l(x) = x2n+2e
−πδx

2 (0 < x <∞),

is used.

From (3.10) and (3.5), it follows that, on (T n × T 1) +
δ

2
, (3.7) holds. Thus, we end the

proof of Lemma 3.1.

Let

σ1 = 2
√

2M + 1, σ2 =
σ1 +

√
σ2

1 − 8M

2
.

Lemma 3.2 There exists a canonical coordinate transformation Φ depending periodically

on parameter θ ∈ T n of the form

Φ : x = X + u(X,Y, θ), y = Y − [h̃]θ + v(X,Y, θ)
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such that if y /∈ (−σ1, σ1), one has

|y − Y + [h̃]θ| <
2M

|Y − [h̃]θ|
, (3.11)

where

[h̃]θ =

∫

T n

h̃(θ)dθ.

Moreover, (3.6) is changed to

H++(X,Y, θ) =
1

2
Y 2 + P (X,Y, θ) (3.12)

with the estimate

|P | < c

|Y − [h̃]θ|

on (T 1 × (R1\(−σ2 + [h̃]θ, σ2 + [h̃]θ)) × T n) +
δ

3
. Here c is a positive constant depending

only on δ, M , M0 and ω.

Proof. First we construct a symplectic coordinate transformation Φ1 by a generating

function xY∗ + S1(x, Y∗, θ), that is,

Φ1 : X∗ = x+
∂S1

∂Y∗
, y = Y∗ +

∂S1

∂x
.

Then the new Hamiltonian is

H+ = H ◦ Φ1 +

〈
∂S1

∂θ
, w

〉

=
1

2

(
Y∗ +

∂S1

∂x

)2

+

(
Y∗ +

∂S1

∂x

)
h̃+G+

〈
∂S1

∂θ
, w

〉

=
1

2
Y 2
∗ + Y∗h̃+

∂S1

∂x
h̃+

1

2

(
∂S1

∂x

)2

+ Y∗
∂S1

∂x
+G+

〈
∂S1

∂θ
, w

〉
.

Let

Y∗
∂S1

∂x
+G(θ, x) = [G]x(θ), (3.13)

where

[G]x(θ) =

∫

T 1

G(θ, x)dx.

This leads to

S1(x, Y∗, θ) = − 1

Y∗

∫ x

0

(G(θ, s) − [G]x(θ))ds. (3.14)

By (3.14), (3.5) and the definition of Φ1,

|y| ≤ |Y∗| +
2M

|Y∗|
.

Hence, as |y| > σ1, we have

|Y∗| > σ2. (3.15)

According to ∫ x+1

0

(G(θ, s) − [G]x(θ))ds =

∫ x

0

(G(θ, s) − [G]x(θ))ds (3.16)
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and (3.15), we assert that S1 is defined on (T 1×(R1\(−σ2, σ2))×T n)+
δ

2
for a small positive

number δ. Denote

P̃ (X∗, Y∗, θ) =
∂S1

∂x
h̃(θ) +

1

2

(
∂S1

∂x

)2

+

〈
∂S1

∂θ
, ω

〉
, (3.17)

which and (3.13) imply that

H+ =
1

2
Y 2
∗ + Y∗h̃(θ) + P̃ (X∗, Y∗, θ), (3.18)

where we ignore [G]x in Hamiltonian because that [G]x is independent of X∗ and Y∗. By

(3.5), (3.7), (3.14) and (3.17), we have

|y − Y∗| ≤
2M

|Y∗|
, |P̃ | ≤ c

|Y∗|
, (3.19)

where c is a positive constant depending only on δ, M , M0 and ω.

Now introduce the second transformation Φ2 : (X,Y, θ) → (X∗, Y∗, θ) by a generating

function X∗(Y − [h̃]θ) + (Y − [h̃]θ)S2(θ). This shows that Φ2 satisfies the following formula:

Φ2 : X = X∗ + S2(θ), Y∗ = Y − [h̃]θ. (3.20)

Inserting (3.20) into (3.18) we reduce H+ into

H++ = H+ ◦ Φ2 +
(
Y − [h̃]θ

)〈
∂S2

∂θ
, w

〉

=
1

2

(
Y − [h̃]θ

)2

+ P̃ (X − S2(θ), Y − [h̃]θ, θ)

+
(
Y − [h̃]θ

)(
h̃(θ) +

〈
∂S2

∂θ
, w

〉)
.

Denote Φ = Φ1 ◦ Φ2. Let

h̃(θ) +

〈
∂S2

∂θ
, ω

〉
= [h̃]θ. (3.21)

Write h̃− [h̃]θ and S2 in the Fourier series form

h̃(θ) − [h̃]θ =
∑

06=k∈Zn

h̃ke2π
√
−1〈k,θ〉,

S2(θ) =
∑

06=k∈Zn

S2ke2π
√
−1〈k,θ〉.

By comparing the coefficients in the Fourier expansions of h̃ − [h̃]θ and S2, we derive that

(3.21) has a unique real analytic solution

S2(θ) = −
∑

06=k∈Zn

h̃k

2π〈k, ω〉e
2π

√
−1〈k,θ〉

with

S2(0) = [S2]θ = 0.

Similar to proving (3.10), we have

max

{
|S2|,

∣∣∣∣
∂S2

∂θ

∣∣∣∣
}
< c1 (3.22)

on T n+1 +
δ

3
for some positive constant c1. Put

P (X,Y, θ) = P̃ (X − S2(θ), Y − [h̃]θ, θ).

From (3.22), (3.20) and (3.19), we get the conclusion of the lemma.
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4 Proof of Theorem 1.1

We first prove the sufficiency. For any x0 ∈ T 1 and y0 ∈ R1, let X0 ∈ T 1 and Y0 ∈ R1 be

the corresponding coordinates under change Φ in Lemma 3.2. We denote by (X(t,X0, Y0),

Y (t,X0, Y0)) a solution of (3.12) with X(0) = X0, Y (0) = Y0. Consider Hamiltonian (3.6) on

(T 1 × (Y0 − 1, Y0 +1)×T n)+
δ

3
. Assume that |Y0| is large enough so that (Y0 − 1, Y0 +1) ⊂

R1\(−σ2 + [h̃]θ, σ2 + [h̃]θ) and

|P | < ε0. (4.1)

By Lemma 3.2 and Theorem 2.1, there are Y1, Y2 ∈ (Y0 − 1, Y0 + 1) with Y1 < Y0 < Y2 such

that two invariant tori I(Y1,ω) and I(Y2,ω) confine the solution (X(t,X0, Y0), Y (t,X0, Y0)) in

the domain enclosed by them (in fact, in the coordinates (X,Y, t), the invariant torus is a

drift of the elliptic cylinder with t-axis). Thus, for all time t,

M1 < |Y (t,X0, Y1)| ≤ |Y (t,X0, Y0)| ≤ |Y (t,X0, Y2)| < M2 (4.2)

for some positive constants M1 and M2. By (3.11), we have

|y(t, x0, y0)| < M3 (4.3)

with some positive constant M3 > 0. According to (3.3), (4.2) and (3.10),

|x′(t, x0, y0)| < |y(t, x0, y0)| +
∣∣∣∣
∫ t

0

h(ωt)dt

∣∣∣∣ < M4

for some positive constant M4 depending on Y0, which implies that (1.4) is a sufficient

condition for the Lagrange stability of (1.1).

If Y0 cannot ensure (4.1) to hold, we choose Y+ such that |Y+| > |Y0| and (4.1) holds on

(T 1 × (Y+ − 1, Y+ + 1)×T n)+
δ

3
. A discussion similar to the above shows that Y (t,X0, Y+)

is bounded. Hence, Y (t,X0, Y0) is also bounded from the uniqueness of solutions. This also

proves the sufficient part of the theorem.

Now return to prove the necessary. Assume that (1.1) is Lagrange stable and∫

T n+1

f(θ, x)dθdx = h0 6= 0.

Without loss of generality, let h0 > 0. By (3.9) and (3.10), we have∣∣∣∣
∫ t

0

(h(ωt) − h0)dt

∣∣∣∣ ≤M5 (4.4)

for some positive constant M5.

Note that (3.2) is also equivalent to another system
dx

dt
= y,

dy

dt
= −∂G

∂x
(ωt, x) + h(ωt). (4.5)

Similar to [4], we can find a symplectic transformation, depending periodically on θ(= ωt),

of the form

x = u+ U(u, v, θ), y = v + V (u, v, θ)

with U = O(v−2), V = O(v−1), which reduces (4.5) into the system
du

dt
= v + q1(u, v, ωt),

dv

dt
= h(ωt) + q2(u, v, ωt)

with q1 = O(v−2), q2 = O(v−1). Here v is sufficiently large.
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Choose a sufficiently large v∗ such that |q2| ≤
1

2
h0 and |V | ≤ h0 when v ≥ v∗. Hence, as

v(0) ≥ v∗ + h0 +M5, we have

v(t) = v(0) +

∫ t

0

h(ωs)ds+

∫ t

0

q2(ωs, u, v)ds

≥ v(0) + h0t+

∫ t

0

(h(ωs) − h0)ds−
1

2
h0t

≥ v∗ + h0 +
1

2
h0t.

Hence,

y(t) ≥ v∗ + h0 +
1

2
h0t− |V (ωt, u, v)| ≥ v∗ +

1

2
h0t, (4.6)

which implies that y(t) → +∞ when t→ +∞. This leads to a contradiction. The necessary

is proved.

The proof of Theorem 1.1 is completed.
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