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Abstract: In this paper, we consider electromagnetic scattering problems for two-

dimensional overfilled cavities. A half ringy absorbing perfectly matched layer (PML)

is introduced to enclose the cavity, and the PML formulations for both TM and

TE polarizations are presented. Existence, uniqueness and convergence of the PML

solutions are considered. Numerical experiments demonstrate that the PML method

is efficient and accurate for solving cavity scattering problems.
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1 Introduction

The problem of calculating electromagnetic scattering from open cavities, such as jet inlet

and exit of airplane, is of high interest in certain military and defense applications, be-

cause open cavities usually cause strong radar echo and can be easily found. Researchers in

the engineering community have raised many methods to solve scattering problems involv-

ing cavities filled with penetrable material, which include high and low frequency method

(see [1]–[3]), the method of moment (see [4] and [5]) and Finite element-Boundary integral

equation method (see [6]–[8]). Analysis of cavity scattering problems can also be found in

mathematic area (see [9]–[12]). It is a common assumption that the cavity opening coincides

with the aperture on an infinite ground plane, and hence simplifying the modelling of the

exterior (to the cavity) domain. This limits the applications of these methods since many

cavity openings are not planar. For determining the fields scattered by overfilled cavities,

we have to find new ways.

In [13], a mathematical model characterizing the scattering by overfilled cavities was

developed and proved to be well posed. For solving overfilled cavity scattering problems,
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[14]–[16] presented a method and [16] gave the corresponding mathematical analysis. Al-

though this method reduces the infinite computational domain exactly to a finite one, the

numerical implementation is difficult, because the boundary condition imposed on the arti-

ficial semicircle includes the DtN operator.

Zhang and Ma presented a PML method in [17] to solve cavity scattering problems which

can also be used to solve overfilled cavity scattering problems. But they only consider the

case of TM polarization. Basing on the works of Aihua Wood on overfilled cavity scattering

(see [14]–[16]) and Chen et al.[18] on PML technique for obstacle scattering, by introducing

symmetrical prolongation, we present a PML method to solve cavity scattering problems,

for both TM and TE polarizations. Our method also reduces the infinite computational

domain to a finite one that enclosed by a half ringy PML layer. The PML formulations for

both TM polarization and TE polarization of cavity scattering are presented. We establish

the existence and uniqueness of the PML solutions, and we also prove that the PML solu-

tions converge exponentially to the exact solutions derived by the DtN method. Numerical

computations demonstrate that our method is effective and its numerical computing is easy

to be implemented on the PDE toolbox of MATLAB or other finite element softwares.

2 Problem Setting

Let Ω ⊂ R2 be the cross-section of a z-invariant trough in the infinite ground plane such

that its fillings protrude above the ground plane. Denote S as the cavity wall, and Γ the

cavity aperture so that ∂Ω = S ∪Γ . The infinite ground plane excluding the cavity opening

is denoted as Γext, the infinite homogenous region above the cavity as U = R2
+\Ω.

Given the incident electromagnetic wave (Ei, Hi), we wish to determine the resulting

scattering field (Es, Hs).

Due to the uniformity in the z-axis, the scattering problem can be decomposed into

two fundamental polarizations: transverse magnetic (TM) and transverse electric (TE). Its

solution can be expressed as a linear combination of the solutions to TM and TE problems.

In the TM polarization, the magnetic field H is transverse to the z-axis so that E and

H are of the form

E = (0, 0, Ez), H = (Hx, Hy, 0).

In this case, by setting u = Ez, we can determine E and H by u which satisfies the scattering

problem with the following form:

(TM)

{
∆u + k2εru = 0 in Ω ∪ U ,

u = 0 on S ∪ Γext.

u naturally satisfies the continuity conditions on Γ :

u|Γ+ = u|Γ−,
∂u

∂n

∣∣∣
Γ+

=
∂u

∂n

∣∣∣
Γ−

.

εr = ε/ε0 is the relative electric permittivity and k is the free space wave number. We

assume Reεr ≥ α > 0, Imεr ≥ 0, and εr ∈ L∞(Ω). The homogeneous region U above the
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protruding cavity is assumed to be air and hence its permittivity is εr = 1. In U , the total

field can be decomposed as

u = ui + ur + us,

where ui is the incident field, ur the reflected field, and us the scattered field. The reflected

field exists due to the presence of the infinite ground plane. For the TM polarization, the

incident and reflected fields satisfy

ui + ur = 0 on Γext ∈ {(x, y) : y = 0},
and the scattered field us of the scattering problem (TM) satisfies the Sommerfeld radiation

condition

lim
r→∞

√
r
(∂us

∂r
− ikus

)
= 0, r = |x|.

Similarly, in the TE polarization, the electric field E is transverse to the z-axis so that

E and H are of the form

E = (Ex, Ey, 0), H = (0, 0, Hz).

By setting u = Hz, we can determine E and H by u which satisfies the scattering problem

with the following form:

(TE)





∇ ·

( 1

εr
∇u

)
+ k2u = 0 in Ω ∪ U ,

∂u/∂n = 0 on S ∪ Γext.

u naturally satisfies the continuity conditions on Γ :

u|Γ+ = u|Γ−,
∂u

∂n

∣∣∣
Γ+

=
1

εr

∂u

∂n

∣∣∣
Γ−

.

In U , the total field can be decomposed as

u = ui + ur + us,

where

∂ui/∂n + ∂ur/∂n = 0 on Γext ∈ {(x, y) : y = 0},
and the scattered field us of the scattering problem (TE) satisfies the Sommerfeld radiation

condition

lim
r→∞

√
r
(∂us

∂r
− ikus

)
= 0, r = |x|.

3 The PML Method for TE Polarization

We introduce the PML layer

Ω+
PML = {x ∈ R

2
+; R < |x| < ρ}.

Let

Br = {x; |x| ≤ r}, Γr = ∂Br,

ΩPML = {x ∈ R
2; R < |x| < ρ}, Γ+

r = Γr ∩ {(x, y); y ≥ 0},
B+

r = Br ∩ {(x, y); y ≥ 0}, Ωr = B+
r ∪ Ω̄,

Γ0 = {(x, 0); R < |x| < ρ}, S1 = Γext\{(x, 0); |x| > R}.
See Fig. 3.1.
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Fig. 3.1 Overfilled cavity with PML layer.

Throughout the paper we assume ρ ≤ CR for some generic fixed constant C > 0.

Let α(r) = 1 + iσ(r) be the model medium property of PML layer which satisfies

σ ∈ C(R), σ ≥ 0 and σ = 0, r ≤ R.

Denote by r̃ the complex radius defined by

r̃ = r̃(r) =





r, if r ≤ R;
∫ r

0

α(t)dt = rβ(r), if r ≥ R.

Following [19], we introduce the PML equation

∇ · (A∇w) + αβk2w = 0 in Ω+
PML, (3.1)

where A = A(r, θ) is a matrix as follows:

A(r, θ) =




β

α
cos2 θ +

α

β
sin2 θ cos θ sin θ

(β

α
− α

β

)

cos θ sin θ
(β

α
− α

β

) β

α
sin2 θ +

α

β
cos2 θ


 ,

so in polar coordinates, A satisfies

∇ · (A∇) =
1

r

∂

∂r

(βr

α

∂

∂r

)
+

α

βr2

∂2

∂θ2
.

The PML scattering solution ûs in Ωρ corresponding to the scattered field û of (TE) is

defined as the solution of the system



∇ ·

( 1

εr
A∇ûs

)
+ αβk2ûs = h(x) in Ωρ,

∂ûs/∂n = p(x) on S ∪ S1 ∪ Γ0, ûs = 0 on Γ+
ρ ,

(3.2)

where

h(x) = (ε−1
r k2 − k2)(ui + us),

p(x) = −∂(ui + ur)/∂n on S

and

p(x) = 0 on Γ0 ∪ S1.

The PML problem (3.2) in Ωρ can be reformulated in ΩR by imposing the boundary condi-

tion
∂ûs

∂n

∣∣∣
Γ+

R

= T̂0û
s,
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where the operator T̂0 : H1/2(Γ+
R ) → H−1/2(Γ+

R ) is defined as follows: given f ∈ H1/2(Γ+
R ),

T̂0f =
∂ζ

∂n

∣∣∣
Γ+

R

,

where ζ ∈ H1(Ω+
PML) satisfies

(P0)





∇ · (A∇ζ) + αβk2ζ = 0 in Ω+
PML,

ζ = f on Γ+
R , ζ = 0 on Γ+

ρ ,

∂ζ/∂n = 0 on Γ0.

Denote by

û := ui + ur + ûs

the PML total solution. From the discussion above, the normal derivative of the total field

can be decomposed into
∂û

∂r
=

∂ui

∂r
+

∂ur

∂r
+

∂ûs

∂r

=
∂ui

∂n
+

∂ur

∂n
+ T̂0û

s

≡ g(θ) + T̂0û − T̂0(u
i + ur).

We can now reduce the PML problem (3.2) in Ωρ to the following PML problem in ΩR:

(TEPML)





∇ ·
( 1

εr
∇ûs

)
+ k2û = 0 in ΩR,

∂û

∂n
− T̂0û = g(θ) − T̂0(u

i + ur) on Γ+
R ,

∂û

∂n
= 0 on S1 ∪ S.

As showed in [15], we can exactly reduce the problem (TE) defined in the infinite domain

Ω ∪ U to the following problem in ΩR:

(TEEXA)






∇ ·
( 1

εr
∇ûs

)
+ k2u = 0 in ΩR,

∂u

∂n
− T0u = g(θ) − T0(u

i + ur) on Γ+
R ,

∂u

∂n
= 0 on S1 ∪ S,

where the DtN operator T0 on Γ+
R is defined as follows: for any u ∈ H1/2(Γ+

R )

T0u = k
u0

2

H
(1)
0

′
(kR)

H
(1)
0 (kR)

+ k
∞∑

n=1

un
H

(1)
n

′
(kR)

H
(1)
n (kR)

cos(nθ),

where

un =
2

π

∫ π

0

u cos(nθ′)dθ′, n = 0, 1, 2, · · ·

To proceed, we introduce the following notations. For any function ξ defined on

Γa = {x ∈ R
2 : |x| = a}

and ξ+ defined on

Γ+
a = {x ∈ R

2
+ : |x| = a},

we define

‖ξ‖2
H±1/2(Γa) = 2π

∑

n∈Z

(1 + n2)±1/2|ξ̂n|2,
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‖ξ+‖2
H±1/2(Γ+

a )
= π|ξ̂+

0 |2 +
π

2

∞∑

n=1

(1 + n2)±1/2|ξ̂+
n |2,

where

ξ̂n = 1/(2π)

∫ 2π

0

ξe−inθdθ

and

ξ̂+
0 = 1/π

∫ π

0

ξ+dθ,

ξ̂+
n = 2/π

∫ π

0

ξ+ cos(nθ)dθ.

The operator T̂ : H1/2(ΓR) → H−1/2(ΓR) is defined as follows: Given f ∈ H1/2(ΓR),

T̂ f =
∂ζ

∂n

∣∣∣
ΓR

,

where ζ ∈ H1(ΩPML) satisfies

(P)

{
∇ · (A∇ζ) + αβk2ζ = 0 in ΩPML,

ζ = f on ΓR, ζ = 0 on Γρ.

The Dirichlet-to-Neumann (DtN) operator T on ΓR is defined as follows: for any u ∈
H1/2(ΓR),

Tu = k
∑

n∈Z

H
(1)
n

′
(kR)

H
(1)
n (kR)

uneinθ, un =
1

2π

∫ 2π

0

ue−inθdθ.

We make the following assumptions:

(H1) σ = σ0

( r − R

ρ − R

)m

for some constant σ0 > 0 and some integer m ≥ 1;

(H2) There exists a unique weak solution to the Dirichlet PML problem (P).

For sufficiently large σ0, (H2) can be proved to hold (see [18]).

Lemma 3.1 Let (H1) and (H2) be satisfied. For u ∈ H1/2(Γ+
R ), we have

‖T0u − T̂0u‖H−1/2(Γ+

R ) ≤ CĈ−1(1 + kR)2|α0|2e−kIm(ρ̃)
(
1− R

2

|ρ̃|2

)1/2

‖u‖H1/2(Γ+

R ),

where

α0 = 1 + iσ0, ρ̃ = ρ + iσ0(ρ − R)/(m + 1),

C > 0 is a constant independent of k, R, ρ and σ0, and Ĉ ≤ 1.

Proof. We denote by xρ the reflection of x about x-axis. We prolongate u ∈ H1/2(Γ+
R )

with

u(x) = u(xρ),

and the function after prolongation is denoted by u1 ∈ H1/2(ΓR). We conclude with simple

calculation that

(T0u)(x) = (Tu1)(x), x ∈ Γ+
R and (Tu1)(x) = (Tu1)(xρ). (3.3)

Let the boundary function

f(x) = u1(x)
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on ΓR for the problem (P) which defines T̂ , and let

f(x) = u(x)

on Γ+
R for the problem (P0) which defines T̂0. We can prove the equivalence of the two

problems (P) and (P0).

If a function ζ(x) solves (P), then by the assumption that the boundary function

f(x) = u1(x)

is even with respect to y-axis and the symmetry of ΩPML, clearly, the function ζ(xρ) also

solves (P). Hence, from the assumption (H2), we know

ζ(x) = ζ(xρ)

which implies that

∂ζ(x)/∂n = ∂ζ(xρ)/∂n on Γ0.

But

∂ζ(x)/∂n = −∂ζ(xρ)/∂n on Γ0.

Hence, we conclude that

∂ζ(x)/∂n = 0 on Γ0,

which implies that ζ(x) is the solution of (P0). On the other hand, a solution ζ(x) for (P0)

can be defined to be a solution for (P) via

ζ(x) = ζ(xρ).

By the equivalence of (P) and (P0) and the definitions of T̂ and T̂0, we conclude that

(T̂0u)(x) = (T̂ u1)(x), x ∈ Γ+
R and (T̂ u1)(x) = (T̂ u1)(xρ). (3.4)

Upon using Lemma 2.5 in [18] and (3.3) and (3.4), we have

‖T0u − T̂0u‖H−1/2(Γ+

R ) = ‖Tu1 − T̂ u1‖H−1/2(Γ+

R )

=
1

2
‖Tu1 − T̂ u1‖H−1/2(ΓR)

≤ CĈ−1(1 + kR)2|α0|2e−kIm(ρ̃)
(
1− R2

|ρ̃|2

)1/2

‖u1‖H1/2(ΓR)

= 2CĈ−1(1 + kR)2|α0|2e−kIm(ρ̃)
(
1− R2

|ρ̃|2

)1/2

‖u‖H1/2(Γ+

R ).

We complete the proof by replacing 2C with C.

In the following part of this section, we will derive the variational formulation of the

PML problem (TEPML) and prove the existence and uniqueness of the PML solution û. We

will also consider the convergence of the PML solution ûs.

Define the space W := H1(ΩR).

The variational formulation of (TEPML) is as follows: find û ∈ W such that

b̂TE(û, w) = Ĝ(w), ∀w ∈ W, (3.5)

where

b̂TE(û, w) =

∫

ΩR

(ε−1
r ∇û · ∇w̄ − k2ûw̄)dxdy −

∫

Γ+

R

T̂0(û)w̄ds,

Ĝ(w) =

∫

Γ+

R

[g(θ) − T̂0(u
i + ur)]w̄ds.
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The variational formulation of (TEEXA) is as follows: find u ∈ W such that

bTE(u, w) = G(w), ∀w ∈ W, (3.6)

where

bTE(u, w) =

∫

ΩR

(ε−1
r ∇u · ∇w̄ − k2uw̄)dxdy −

∫

Γ+

R

T0(u)w̄ds,

G(w) =

∫

Γ+

R

[g(θ) − T0(u
i + ur)]w̄ds.

Lemma 3.2 The variational problem (3.6) has a unique solution u ∈ W .

Proof. We split bTE(u, w) into b0(u, w) + b1(u, w) with

b0(u, w) =

∫

ΩR

(ε−1
r ∇u · ∇w̄ + uw̄)dxdy −

∫

Γ+

R

T ′
0(u)w̄ds,

b1(u, w) = −
∫

ΩR

(k2 + 1)uw̄dxdy +

∫

Γ+

R

(T ′
0(u) − T0(u))w̄ds,

where T ′
0 is defined as follows: for any u ∈ H1/2(ΓR)

T ′
0u = − 1

π

∫ π

0

udθ − 2

π

∞∑

n=1

n cos(nθ)

R

∫ π

0

cos(nθ)udθ.

We see directly from the orthogonality of cos(nθ) that −T ′
0 is strictly coercive, i.e.,

−
∫

Γ+

R

T ′
0(u)ūds ≥ c‖u‖H1/2(Γ+

R ).

So we can conclude directly that b0(u, w) is strictly coercive with respect to u.

Hankel functions H
(1)
n (t) satisfy the recurrence relation

tH(1)
n

′
(t) + nH(1)

n (t) = tH
(1)
n−1(t)

(see [20]), i.e.,

tH
(1)
n

′
(t)

H
(1)
n (t)

= −n +
tH

(1)
n−1(t)

H
(1)
n (t)

. (3.7)

H
(1)
n (t) also have the following asymptotic behavior (see [20]):

H(1)
n (t) =

2n(n − 1)!

πitn

(
1 + O

( 1

n

))
, n → ∞. (3.8)

By (3.7) and (3.8) we have

kRH
(1)
n

′
(kR)

H
(1)
n (kR)

= −n + O
( 1

n

)
, n → ∞

which implies that the difference operator T ′
0−T0 is compact from H1/2(Γ+

R ) to H−1/2(Γ+
R )

since T ′
0−T0 is bounded from H1/2(Γ+

R ) to H1/2(Γ+
R ) and the imbedding from H1/2(Γ+

R ) into

H−1/2(Γ+
R ) is compact. So from the compactness of T ′

0−T0 and the imbedding W ∈ L2(ΩR),

we conclude that b1(u, w) is compact with respect to u.

By the theorem of Lax-Milgram and Fredholm alternative, we complete the proof.

The following theorem is the main result of this section.
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Theorem 3.1 Let (H1) and (H2) be satisfied. Then for sufficiently large σ0, the varia-

tional formulation (3.5) of the problem (TEPML) has a unique solution û ∈ H1(ΩR). More-

over, we have the following estimate:

‖us − ûs‖H1(ΩR) ≤ CĈ−1(1 + kR)2|α0|2e−kIm(ρ̃)
(
1− R2

|ρ̃|2

)1/2

‖ûs‖H1/2(Γ+

R ), (3.9)

where

α0 = 1 + iσ0, ρ̃ = ρ + iσ0(ρ − R)/(m + 1),

C > 0 is a constant independent of k, ρ and σ0, and Ĉ ≤ 1.

Proof. For proving that the variational formulation (3.5) has a unique solution, we resort

to the general existence and uniqueness result for sesquilinear forms in [21]. The key point

is to show the inf-sup condition for the sesquilinear form b̂TE : W × W → C, i.e.,

sup
06=w∈W

|b̂TE(û, w)|
‖w‖H1

≥ C‖û‖H1 , ∀u ∈ W. (3.10)

The following inequality is obvious:

|b̂TE(û, w)| ≥ |bTE(û, w)| −
∣∣∣
∫

Γ+

R

(T0 − T̂0)ûw̄ds
∣∣∣. (3.11)

We have showed in Lemma 3.2 that the variational formulation (3.6) of (TEEXA) has a

unique solution. The general theory in [21] implies that there exists a constant C0 > 0 such

that the following inf-sup condition holds:

sup
06=w∈W

|bTE(u, w)|
‖w‖H1

≥ C0‖u‖H1 , ∀u ∈ W. (3.12)

By Lemma 3.1, we have

‖(T0 − T̂0)û‖H−1/2(Γ+

R ) = sup
w∈H1/2(Γ+

R )

|〈(T0 − T̂0)û, w〉Γ+

R
|

‖w‖H1/2(Γ+

R )

≤ Cσ0
‖u‖H1/2(Γ+

R ),

where Cσ0
is the coefficient in the inequality of Lemma 3.1. Although the coefficient depends

not only on σ0, it is sufficient small when σ0 is sufficient large. We know from the equality

above and the Trace theorem that there exists a constant C′ > 0 such that∣∣∣
∫

Γ+

R

(T0 − T̂0)ûwds
∣∣∣ ≤ Cσ0

‖u‖H1/2(Γ+

R )‖w‖H1/2(Γ+

R )

≤ Cσ0
C′‖u‖H1(ΩR)‖w‖H1(ΩR). (3.13)

Then by (3.11)–(3.13), we conclude that b̂TE satisfies the inf-sup condition (3.10).

We now prove the error estimate (3.9). By (3.5) and (3.6)

bTE(u − û, w) = b̂TE(û, w) −
∫

Γ+

R

(T0 − T̂0)(u
i + ur)w̄ds − bTE(û, w)

=

∫

Γ+

R

(T0 − T̂0)ûw̄ds −
∫

Γ+

R

(T0 − T̂0)(u
i + ur)w̄ds

=

∫

Γ+

R

(T0 − T̂0)û
sw̄ds.

This implies (3.9) upon using Lemma 3.1 and (3.12). We thus complete the proof.
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4 The PML Method for TM Polarization

We introduce the same PML layer Ω+
PML in TM polarization as that in TE polarization. We

also introduce the same model medium property α and PML equation (3.1).

The PML scattering solution ûs in Ωρ corresponding to the scattered field usof (TM) is

defined as the solution of the following system:{
∇ · (A∇ûs) + αβk2εrû

s = h(x) in Ωρ,

ûs = q(x) on S ∪ S1 ∪ Γ0, ûs = 0 on Γ+
ρ ,

(4.1)

where

h(x) = (k2 − k2εr)(u
i + ur),

q(x) = −(ui + ur) on S

and

q(x) = 0 on Γ0 ∪ S1.

The PML problem (4.1) in Ωρ can be reformulated in ΩR by imposing the boundary condi-

tion
∂ûs

∂n

∣∣∣
Γ+

R

= T̂1û
s,

where the operator T̂1 : H1/2(Γ+
R ) → H−1/2(Γ+

R ) is defined as follows: Given f ∈ H1/2(Γ+
R ),

T̂1f =
∂ζ

∂n

∣∣∣
Γ+

R

,

where ζ ∈ H1(Ω+
PML) satisfies

(P1)

{
∇ · (A∇ζ) + αβk2ζ = 0 in Ω+

PML,

ζ = f on Γ+
R , ζ = 0 on Γ+

ρ ∪ Γ0.

Denote by û := ui + ur + ûs the PML total solution. Like the discussion in the last

section, we can reduce the PML problem (4.1) in Ωρ to the following PML problem in ΩR:

(TMPML)





∆û + k2εrû = 0 in ΩR,

∂û

∂n
− T̂1û = g(θ) − T̂1(u

i + ur) on Γ+
R ,

û = 0 on S1 ∪ S.

As showed in [15], we can reformulate the problem (TM) defined in the infinite domain

Ω ∪ U exactly to the following problem in ΩR:

(TMEXA)





∆u + k2εru = 0 in ΩR,

∂u

∂n
− T1u = g(θ) − T1(u

i + ur) on Γ+
R ,

u = 0 on S1 ∪ S,

where the DtN operator T1 on Γ+
R is defined as follows: for any u ∈ H1/2(Γ+

R )

T1u = k

∞∑

n=1

H
(1)
n

′
(kR)

H
(1)
n (kR)

sin(nθ)un, un =
2

π

∫ π

0

u sin(nθ′)dθ′.

Here, we introduce another definition of ‖ · ‖2
H±1/2(Γ+

a )
. For any function ξ+ defined on

Γ+
a = {x ∈ R

2
+ : |x| = a},
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we can also define ‖ · ‖H±1/2(Γ+
a ) as follows:

‖ξ+‖2
H1/2(Γ+

a )
=

π

2

∞∑

n=1

(1 + n2)1/2|ξ̂+
n |2,

‖ξ+‖2
H−1/2(Γ+

a )
=

π

2

∞∑

n=1

(1 + n2)−1/2|ξ̂+
n |2,

where

ξ̂+
n = 2/π

∫ π

0

ξ+ sin(nθ)dθ.

Lemma 4.1 Let (H1) and (H2) be satisfied. For u ∈ H1/2(Γ+
R ), we have

‖T1u − T̂1u‖H−1/2(Γ+

R ) ≤ CĈ−1(1 + kR)2|α0|2e−kIm(ρ̃)
(
1− R2

|ρ̃|2

)1/2

‖u‖H1/2(Γ+

R ),

where

α0 = 1 + iσ0,

ρ̃ = ρ + iσ0(ρ − R)/(m + 1),

C > 0 is a constant independent of k, R, ρ and σ0, and Ĉ ≤ 1.

Proof. We also denote by xρ the reflection of x about x-axis. We prolongate u ∈ H1/2(Γ+
R )

with

u(x) = −u(xρ),

and the function after prolongation is denoted by u2 ∈ H1/2(ΓR). We conclude with simple

calculation that

(T1u)(x) = (Tu2)(x), x ∈ Γ+
R and (Tu2)(x) = −(Tu2)(xρ). (4.2)

Let the boundary function

f(x) = u2(x)

on ΓR for the problem (P) which defines T̂ , and let

f(x) = u(x)

on Γ+
R for the problem (P1) which defines T̂1. Using the idea of [22], we can prove the

equivalence of the two problems (P) and (P1).

If a function ζ(x) solves (P), then by the assumption that the boundary function

f(x) = u2(x)

is odd with respect to y-axis and the symmetry of ΩPML, clearly, the function −ζ(xρ) also

solves (P). Hence, from the assumption (H2), we conclude that

ζ(x) = −ζ(xρ),

that is,

ζ(x) = 0 on Γ0,

so ζ(x) is also the solution of (P1). On the other hand, a solution ζ(x) for (P1) can be

defined to be a solution for (P) via

ζ(x) = −ζ(xρ).
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By the equivalence of (P) and (P1) and the definitions of T̂ and T̂1, we conclude that

(T̂1u)(x) = (T̂ u2)(x), x ∈ Γ+
R and (T̂ u2)(x) = −(T̂ u2)(xρ). (4.3)

Upon using Lemma 2.5 in [18] and (4.2) and (4.3), we have

‖T1u − T̂1u‖H−1/2(Γ+

R ) = ‖Tu2 − T̂ u2‖H−1/2(Γ+

R )

=
1

2
‖Tu2 − T̂ u2‖H−1/2(ΓR)

≤ CĈ−1(1 + kR)2|α0|2e−kIm(ρ̃)
(
1− R2

|ρ̃|2

)1/2

‖u2‖H1/2(ΓR)

= 2CĈ−1(1 + kR)2|α0|2e−kIm(ρ̃)
(
1− R2

|ρ̃|2

)
1/2

‖u‖H1/2(Γ+

R ).

We complete the proof by replacing 2C with C.

We also have the conclusion of Theorem 3.1 for the case of TM. We omit the deduction

here, because it is almost the same as that in the TE polarization.

5 Numerical Experiment

In this section, we always take

k = 2π, ρ = 6 and R = 2.

Let m = 2 in assumption (H1), so

σ = σ0

( r − R

ρ − R

)2

.

According to the error estimates in Theorem 3.1 and Theorem 4.1, we choose σ0 such that

the exponentially decaying factor

e
−kIm(ρ̃)

(
1− R2

|ρ̃|2

)1/2

≈ 10−8.

Example 5.1 This example will demonstrate the accuracy of the PML method for scatter-

ing problems in half-space. Considering the scattering problems for the perturbed half-plane

showed in Fig. 5.1: find radiating solutions u1 and u2 satisfying

−6 −2 −1 0 1 2 6

6

2

1

0
D

S

Γ Γ

PML

Fig. 5.1 Perturbed half plane






∆u1 + k2u1 = 0, in R
2
+\D̄,

u1 = 0, on Γ ,

u1 = 2H
(1)
1 (k) sin θ, on S
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and 



∆u2 + k2u2 = 0, in R2
+\D̄,

∂u2/∂n = 0, on Γ,

u2 = 2H
(1)
1 (k) cos θ, on S

respectively. The exact solutions of the two scattering problems are known as

u1 = 2H
(1)
1 (kr) sin θ

and

u2 = 2H
(1)
1 (kr) cos θ, r = |x|.

We take different values for σ0 with 1, 2, 3. Fig. 5.2 shows that the PML solutions with

different absorbing property σ0 are close to the exact solutions u1 and u2 on Γ+
R for the two

problems.
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Fig. 5.2 The real part of the exact solutions and the PML solutions with different σ0

on Γ+

R
for the two problems in Example 5.1.

Example 5.2 In this example, we use the PML method to solve an overfilled cavity

scattering problem. The cavity wall is a semicircle of radius 1 and the protruding portion is

a segment of a circle centering at (−1, 0) and of radius
√

2, as showed in Fig. 5.3. εr equals

4−i for filled media in the cavity.

−6 −2 −1 0 1 2 6

6

2

1

0

PML

Fig. 5.3 Overfilled cavity

We assume

ui = eαx+βy.
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Then

ur = −eαx−βy

for TM polarization and

ur = eαx−βy

for TE polarization, where α = ik cos(θinc), β = ik sin(θinc), and θinc is the incident angle.

As showed in Example 5.1, the PML solution with σ0 = 2 is close to the exact solution u1

and u2, so we choose medium property σ0 = 2 in this example too.

Fig. 5.4 shows that the real part of the scattered fields for TM and TE polarizations

are both perfectly symmetric and both decay in the PML layer with θinc = π/2. Fig. 5.5

shows the perfect linkage between the numerical solutions in the interior domain and the

analytical solutions in the exterior. Fig. 5.6 shows the RCS for the TM polarization with

θinc = π/2. We compute the RCS for TM polarization by using the analytical formulation

σ(θ) =
16

kπ2

∣∣∣∣
∞∑

n=1

e−inπ/2 sin(nθ)

H
(1)
n (kR)

∫ π

0

us(R, θ) sin(nθ)dθ

∣∣∣∣
2

and we compute the RCS for TE polarization by the analytical formulation

σ(θ) =
4

kπ2

∣∣∣∣
1

H
(1)
n (kR)

∫ π

0

us(R, θ)dθ + 2

∞∑

n=1

e−inπ/2 cos(nθ)

H
(1)
n (kR)

∫ π

0

us(R, θ) cos(nθ)dθ

∣∣∣∣
2

.
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Fig. 5.4 Contours of the real part of the scattered field for TM polarization and for

TE polarization in the computing domain, respectively. The incident angle

θinc = π/2.
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Fig. 5.5 Linkages of the real part of the scattered field on Γ+

R
for TM polarization and

for TE polarization, respectively. The observing angle θ = θinc = π/2.
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Fig. 5.6 RCS of the overfilled cavity for TM polarization.
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