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1 Introduction

The Cahn-Hilliard (C-H for short) equation was originally proposed by Cahn and Hilliard to
simulate binary alloys. It has subsequently been adopted to model many physical situations
such as phase transitions and interface dynamics in multi-phase fluids (see [1]). In this

paper, we consider an initial-boundary value problem for a class of C-H equation which is

of the form
% + D[m(x,t)(D3*u — DA(u))] = 0, (t,z) € Qr = (0,T] x (0, 1), (1.1)
Du(x,t) = D3u(x,t) =0, r=0,1, 0<t<T, (1.2)
u(z, 0) = uo, z € (0,1), (1.3)

where D = 3 and typically
ox
A(s) = —5 + 7152 + 725>, 2 > 0.

Here u(z,t) represents a relative concentration of one component in binary mixture. The
function m(x, t) is the mobility, which restricts diffusion of both components to the interfacial

region only. Throughout this paper, we assume that
0 <mo <m(x,t) < My, |ml(z,t)] <M, V(z,t) € Qr, (1.4)

where mg, My and M7 are positive constants.
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In the past years, the C-H equation with constant mobility has been intensively studied,
and there have been many outstanding results concerning the existence, regularity and
special properties of the solution in [2] and [3]. Numerical methods for C-H equation can
be found in [3]-[10]. These numerical computation techniques contained the finite element
methods (see [5] and [11]), the finite difference methods (see [6] and [8]), and spectral the
formulations (see [4] and [10]). In recent years, the equation with concentration dependent
mobility has also caused much attention.

The layout of the paper is as follows: in Section 2, we consider a full-discretization
implicit scheme and some corresponding estimates. In Section 3, we study the convergence
property of this fully discrete spectral approximation. Finally, we perform some numerical
experiments which illustrate our results in Section 4.

2 Full-discretization Spectral Method and Some Esti-
mates

In this section we set up a full-discretization scheme for equation (1.1) and analyze the
boundedness of its solution. Let || - || and |- | be the norm and semi-norm of the Soboliv
spaces H¥(0,1)(k € N), respectively. Let (-, -) be the standard L? inner product over (0, 1).
Define

L9(0,1) = {v: ol = esssup fu] < +oc}.
z€(0,1)

HE(0,1) = {v e H*(0,1); DU|3;=O , =0},

T
L0, T3H™(0.1) = {ue H(0.1); [ ulfidt < +oc).
0
Denote by
Sy = span{cosknz,k=0,1,2,-- -, N}
for any integer N > 0. Define an orthogonal projection operator Py : Hz — Sy by
(Pyu,vn) = (u,vn), Yoy € Sn. (2.1)
The weak solution for the initial boundary value problem (1.1)—(1.3) is equivalent to the
solution of the following equations
(ug,v) + (D*u — A(u), D(mDv)) = 0, Yo € H%(0,1), (2.2)
(u(+,0),v) = (ug,v), Vo € Hp,(0,1). (2.3)
Moreover, the existence of the weak solution of this problem was introduced and some
boundedness about the weak solution was given in [12].

Theorem 2.11"2  Assume that ug € H%(0,1) and (1.4) is satisfied. Then there exists
a unique weak solution u € H*Y(Qr) of the initial-boundary value problem (1.1)-(1.3).
Furthermore, we have

1Du(z, )| <C, |lullo <C, 0<t<T, (2.4)

t
D%z, )2 < C, / ID4u(z,t)|2ds < C,  0<t<T, (2.5)
0
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where C = C(m,ug,v1,72) > 0 is a constant.

Let At = T/k for a positive integer k. The full-discretization spectral method for
equations (1.1)-(1.3) is read as: find U (z) € Sy (j = 0,1,2,---,k) such that for any
v € Sy there hold

Uj+1_Uj D2Uj+1 D2Uj N ) ) o
(M, v) + (M — PNAULT UL, D(mJ"’EDv)) =0, (26

At 2
(URs0) = (uo,v), (2.7)
where
mits = m(z,t;, 1), tivy = %(ﬁjJrl +t5), t; = jAt
and
i6,0) = Z(6 + 6 + Pt 06 + D@ 4ot ) - 56+ ). (28)

The solution U ]J\, has the following property:

Lemma 2.1  Assume that UJJ\., €Sy (j=1,2,--- k) is a solution of the equations (2.6)
and (2.7). Then there exists a positive constant C = C(ug,T) such that

DU <€ Ukl < C. (2.9)

Proof. Define a discrete energy function at time ¢; by
) 1 j j
F(j) = ZIDUXN* + (H(U), 1.
Noticing that

L PG+ 1) - FG) = (- L0 + U + Py AULLUY Uv" - UR
S (FG+1) = F() = (= 50203 +U%) + PhAWRH, UR), =)
1 . . L "
< - m0H§D3(UJ{,+1 +UL) — DPyAUET, U;,)H
<0.

Then by recursion, we obtain
F(j) < F(0)=C,

where C' is a constant depending on ug. Applying Young inequality, we get
(U4 e} + Crer U <e(U])* + C.
Choosing ¢ such that
1 1 72
(3'71| * 2)5 %
we have
L Pl 1 iv3p Lorine
HU Az > | (3900)" = 30 - 5Uk)?)da
0 o \4 3 2
1
> 2 [ (U)o - K,
0
where K is a positive constant depending on «; and 7. Then we have

1 . T
SIPULIE+ 2 [ W3t < PO+ K.
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Therefore
DUl <C, Ul <C. (2.10)
From the embedding theorem it follows that
10l < €,

where C' = C(m, ug,v1,72) > 0 is a constant.

3 The Convergence of the Full-discretization Scheme

In this section, we analyze the error estimates between the numerical solution UJ{, and the
exact solution u(t;). According to the properties of the projection operator Py, we only
need to analyze the error between Pyu(t;) and U%. Denoted by w/ = u(t;), ¢/ = Pyu/ — U},
and 1/ = u/ — Pyu/. Then

~ Uy =1 +¢.
If no confusion occurs, we denote the average of the two instant errors e/ and e/*! by
. , el ettt . .
éﬁ%, and etz = — Firstly we prove the following error estimates for the full-

discretization scheme.

Lemma 3.1

. . Uittt _pd ]
e L2 < Jle?||2 + 2At(ut(tj+%) - u7éj+%>

At
4 f 2 ji+12
tj
Proof.  Applying Taylor expansion about ¢; 41, we have
; : At At? 1 [+
uw = ’lj,j+2 5 ]+2 + — 3 i:’_2 — 5/ ? (t — tj)Qutttdt, (32)
tj
; At At? L[l
U]+1 = ’u,]+2 + — 5 ]+2 + — 3 ]+2 + 2/ (tj+1 — t)2utttdt. (33)
tit+s

Then

, i1 g, tit1 vl
jt+3 u’ u 1 ( 2 +32 )
- = tiy1 —t dt t—t dt).
U N, 28\ S, (tjy1 — ) upgedt + t (t = t5)usn

J

From Hélder inequality it follows that
gt wItt —
H“t |

t1+1 ) 2 tird ) 2
< 2At2 (tjy1 — 1) UtttdtH + H/tj (t—t5) UtttdtH )
A3 [l
S —_— HutttHth.
320 Jy,
Noticing that for any v € Sy, we have

1 Ui 1 gty 1 .
(“i A N’”):@i T A ﬂ”)*E(ej“fe%v). (3.4)
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Taking v = 267*2 in (3.4), we obtain

, , PETE JF h N R 1 Gl i
e 2 = el |12 4+ 208 (w2 = = @) —aat(u] T - T @)
. J+1 J
< [le)? + 2 (uf - Y —Un 7 UN,E”%)
- t

320

Taking v = &2 in (2.2) and vy = &ts in (2.6), respectively, and comparing these two

1 b o
+ —At4/ llwgse || 2t 4+ At]je =2
tj

equations at time ¢t = tj+%, we have

L - ,

(u?% UL —U}V’éﬁ%) _ (Dguﬁ% DU+ DU
At 2

+ (A(uj+%) — PyAULT, UL, D(mj+%Déj+%)).

Now we investigate the error estimates of the two items in the right-hand side of previous

,D(mI 3 Delt )

equation.

Lemma 3.2  Assume that u € L*(0,T; H*(0,1)) is a solution of the equations (1.1)—(1.3),
then there exists a constant Cy = Cy(m,ug) > 0 such that

2r7J+1 2777
~ (prwtt - PPN bt perth))
Mo no_jtd 2 —4 in2 G112 s [T e o
S = S IDTETET A CLNT Al 7+ ([T + At D uyldt),  (3.5)
tj

Proof. By Taylor expansion and Holder inequality, we obtain

L1 . 2
HDQ(U”E - 5 +uﬂ+1))H

1 9 tivd it 2
= ZHD (/ (t — tj)uttdt + / (tj+1 — t)uttdt> H
t; t

it3

A [
96

IN

| D || dt. (3.6)
Therefore,
Uj+1 + Uj
N N
2
2
- (DQ(ﬁ”% + éj+%),D(mJ’+%Déj+%))

~ (Dt - ), D(m?*3 Deith))

< ot - o ipe

IN

A3 [l 3 i1l oo i1 iyl
o A e T S (s e RY AL S
tj
_ (D2ﬁj+%’mj+%D2éj+%> _ (D2ﬁj+%’mé(tj+%)Déj+%>

Gl 1o i1 i1 iyl
- <D2€J+2,m3+2D263+2) - (D263+2,m;(t4 ;)DejJr?)
J+3

lI>

H+B+1.
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Directly computation gives

. tj+1 ) .

P < At301€/ D2 |2dt + || D27+ |2 + <[+ 3|12,
tj

I < Coo | DY 3|2 + 2¢|| D269 5 |12 + ef|edt 2| 2,

B < —mo|| D273 |2 + ¢ D2+ 5|2 + Cacl|ei 5 |2,

IN

m
Choosing € = —9 and in terms of the properties of the projection operator Py, we complete
the proof of the estimate (3.5).

Lemma 3.3  Assume thatu € L>(0,T; W*°(0,1)) is a solution of equations (1.1)~(1.3),
then for any € > 0, there is a positive constant Co = Ca(m, ug) such that

(A@W™*¥) - PyAUE, U3), D+ 1D )

< TP |2 + Ca{Jles 2 + |lef |2 + N

ol ([ a1 e [ plar) ) @)
Proof. Firstly we consider
AW 3) = A/, ud) = (it E) — 12 [(u”l) F (W2 T ()2 ¢ (uj)ﬂ
+71(uj+%) ’él |:(u]+1) 4+t lyd 4 (uj)Q}
_ (uj+% _ %(uﬁl +uf))
£ 0] + 0% — P}

By directly computation we obtain

tit+1 A3 [ti+a ) L
||p3|| = 2H/ t—t uttdt +/ (tj+1 - t)uttdtH S (%/ Hutt” dt) s
tj+% ty

gl = | 5[5 = @t w2 4 ¢ 222 - @) - Y] |

< éH |:2uj+% ~ (W +uj)} [QujJr% ¥ (wi _,_uj)} H
EH(UH% _ Y (W ) 4 (i — ) (it +UJ)H
< %HQUH% — (W )| H2uj+% ¥ (it Jruj)H
—At tita T
GH u® 7/ (tj+1 — updt) (w2 + 0/ )
tj+3
At 1 tird . .
+ (7ui+2 - / e (t —tj)uttdt)(u]+% +u3> ’
tj
tj 1 tj+1 1
3 it
<onit ([ tualiar) s B - ([ liar)
t tj

J
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Al

Then

IN

7l

((2uit2)3 — (ut! 4+ ud)?) + %{2(“j+%)3 — (W) - (“jﬂ H

EH Puﬂ% — @ “j)} ' [4(@6”%)2 + 2l 4wyl TE 4 (W uj)Q} H
N %‘ (ujJr% N ujJrl)((UjJr%)Q + ot ydtE 4 (uT1)?)

F (Wt — ) ()l (uj)2)H

S CAtg{(/ttj+l Hutt||2dt) n ||Ut+2 oo - (/ttj+1 Hm|‘2dt>%}.
4 3

(A4 = Py AL, U3), Dt Dt )

< ZJA@I*E) ~ PyA@ITD? + S DmI DI

3 L1 ~ . £ ! s 1
+ AW = AW )P + S| D(m? T D)2

3 ~ . . ~ . . IS L1 S 1
DA ) - AU UL + S| DmEDer ) 2

5 1 : 1 3 : 1 . 1 3 . 1 ~ . .
< e DmT2DeT ) + S A@WTE) = P AW TE)|P + AW ) — AT )|

3~ . ~ . .
+ AW W) - AU U, (3.8)

Directly computation yields

where

Gl = %((uﬁrl +UL+ (U + UL+ (7T +U%)?) + %(U}V“ +ut +UR) 5

Gf = (W + UR 4+ (4 ) @+ U3 + S (! o +03) = 5

||D(m]+2DeJ+% ||2 (MO +M2)||D2€J+2H2+C||63+2||2

|A(u/T2) — Py AW/ 2)|? < ON73,

)
)
| A@*2) = A o)
1AW ) — AURT, U

I < CUall* + lleall* + llpall®),
2 < (IG5 + G212 e 1 + le?]|* + CN %),

Y

1
5"

Applying Theorem 2.1 and Lemma 2.1, we obtain that

and

Taking € =

||G1||00 < C(m7u0a71772)

||G2||00 < C(ma an’yla’YQ)'

o n (3.8), we have

A(MZ+ M2
(At h) — Py AW, U), D D))
< TP+ Co{ P + )P + N

A tit1 Lo tjt+1 )
+ At [ S U A (Juel["dt ) ¢
t; t

3J 3J
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where Cy = Ca(ug, m,v1,72) > 0 is a constant.
Thus, we obtain the following theorem.

Theorem 3.1  Assume that u(x,t) is the solution of the C-H equations (1.1)—(1.3) satis-
fying

u € L=(0,T; W), ug € L*(0,T5L%(0,1)) N L>(0,T; L*(0,1)),

uy € L2(0,T; H(0,1)), upe € L?(0,T; L2(0,1)).
Also U]{, €Sy (j=1,2,--- k) is a solution of the full-discretization equations (2.6), (2.7).
If At is sufficiently small, then there exists a positive constant C = C(m,ug,y1,72) > 0
such that, for j =0,1,2,--- |k,

el = | Pyultjra) = URFL < C(NT2 4+ [|€%]] + At2). (3.9)

Proof. By (3.1), (3.5) and (3.7), we obtain
e < fle?|I” + AtCL (N + [l + [le?|1?)

tit+1 i+1

+7

+GAL / (D% usel? + eteel” + eseee|* + flsy ™2 112 e ),
tj

where C; = C1(m,ug,¥1,72) > 0 and Cy = Ca(m,ug,y1,72) > 0 are constants. For At

1
being sufficiently small such that C; At < 2 denoted by C' = 2(Cy 4+ Cs), we have
e H? < (L + Cat)e’|? + C(ANT! + At BY),
where
j f 2 2 2 2 i+32 2
B = / D717 + luwee [ + Nwerel|” 4+l ™2 {50 e [[7)de.
tj
By the Gronwall’s inequality of the discrete form, we obtain
J
€712 < exp {é(j + 1)At}{||60|\2 + CUAINT + A0y Bl)}.
1=0
Directly computation gives

J tit1 1

I+3
S8 < [ (1Pl ol ol + g ey 13 ).
=0 -

Then we get the conclusion (3.9).
Furthermore, we get the following theorem.

Theorem 3.2  Assume that At is sufficiently small. The solution u(z,t) of the C-H
equations (1.1)~(1.3) satisfies

u € L0, T; W), uy € L*(0, 75 L%(0,1)) N L>(0,T; L*(0,1)),

uge € L2(0,T; H*(0,1)), uge € L2(0,T; L2(0,1)),
U]{, € Sy (j = 1,2,--- k) is the solution of the full-discretization equations (2.6), (2.7),
and the initial value U° satisfies

)] = [|[Pvu® = U°|| < CNT
Then there exists a constant C' = C(m,ug,v1,72), independent of N and At, such that,
|u(z,t;) —UL| SC(N"2+ A2,  j=1,2,--- k. (3.10)
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4 Numerical Experiments

In this section, using the spectral method described in (2.6), (2.7), we carry out some
numerical computations to illustrate out results in previous section. Take

m(z,t) =1+ xsint, A(s) = s* — 5.
Then the full-discretization spectral method is read as: find

N
U]];,zz:aﬂcoslmc, i=12,--k
1=0
such that (2.6), (2.7) hold. As an example we choose ug = z*(1 — z)*, At =5 x 1076,

N = 32, and get the solution which evolves from t = 0 to t = 5 x 10~ (cf. Fig 4.1).

x1073
4=
uw

4 A

2,

l‘

0-
1 1
1 T 0.5 0.5 t

0 0 x1073

Fig. 4.1 The expanded property of the solution when N = 32
Since no exact solution to (1.1)—(1.3) is known, we make a comparison between the
solution of (2.6), (2.7) on a coarse mesh and on a fine mesh.

We choose At = 0.01,0.005,0.001, 0.0001 respectively to solve (2.6), (2.7). Denote by
1

err(t, At) = ( / (UL, (2,5 x 1075) — U (x, At))de)
0
Then the error is showed in the following table at 7" = 0.1.

1
2

At err(0.1, At)
0.01 4.5635 x 1074
0.002 2.6309 x 10~°
0.001 4.6806 x 107
0.0002 6.3412 x 1078
0.0001 9.1733 x 107°

We see that the order of error estimates is O(At?) proved in Theorem 3.2.
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