The L(3,2,1)-labeling on Bipartite Graphs*

Yuan Wan-lian¹, Zhai Ming-qing^{1,2} and Lü Chang-hong² (1. Department of Mathematics, Chuzhou University, Chuzhou, Anhui, 239012) (2. Department of Mathematics, East China Normal University, Shanghai, 200241)

Communicated by Liu Jian-ya

Abstract: An L(3,2,1)-labeling of a graph G is a function from the vertex set V(G) to the set of all nonnegative integers such that $|f(u) - f(v)| \ge 3$ if $d_G(u,v) = 1$, $|f(u) - f(v)| \ge 2$ if $d_G(u,v) = 2$, and $|f(u) - f(v)| \ge 1$ if $d_G(u,v) = 3$. The L(3,2,1)-labeling problem is to find the smallest number $\lambda_3(G)$ such that there exists an L(3,2,1)-labeling function with no label greater than it. This paper studies the problem for bipartite graphs. We obtain some bounds of λ_3 for bipartite graphs and its subclasses. Moreover, we provide a best possible condition for a tree T such that $\lambda_3(T)$ attains the minimum value.

Key words: channel assignment problems, L(2,1)-labeling, L(3,2,1)-labeling, bipartite graph, tree

2000 MR subject classification: 68R10, 05C15

Document code: A

Article ID: 1674-5647(2009)01-0079-09

1 Introduction

The problem of vertex labeling with a condition at distance two arises from the channel assignment problem introduced by $\mathrm{Hale}^{[1]}$. For a given graph G, an L(2,1)-labeling is defined as a function

$$f: V(G) \to \{0, 1, 2, \cdots\}$$

such that

$$|f(u) - f(v)| \ge \begin{cases} 2, & d_G(u, v) = 1; \\ 1, & d_G(u, v) = 2, \end{cases}$$

where $d_G(u, v)$, the distance between u and v, is the minimum length of a path between u and v. A k-L(2, 1)-labeling is an L(2, 1)-labeling such that no integer is greater than k. The L(2, 1)-labeling number of G, denoted by $\lambda(G)$, is the smallest number k such that G has a

^{*}Received date: June 17, 2008.

Foundation item: The NSF (60673048) of China and the NSF (KJ2009B002, KJ2009B237Z) of Education Ministry of Anhui Province.

k-L(2,1)-labeling. The L(2,1)-labeling problem has been extensively studied in recent years (see [2]–[9]).

Shao and Liu^[10] extend L(2,1)-labeling problem to L(3,2,1)-labeling problem. For a given graph G, a k-L(3,2,1)-labeling is defined as a function

$$f: V(G) \to \{0, 1, 2, \cdots k\}$$

such that

$$|f(u) - f(v)| \ge 4 - d_G(u, v), \qquad d_G(u, v) \in \{1, 2, 3\}.$$

The L(3,2,1)-labeling number of G, denoted by $\lambda_3(G)$, is the smallest number k such that G has a k-L(3,2,1)-labeling. Clearly,

$$\lambda_3(G) \ge 2\Delta(G) + 1$$

for any non-empty graph G. It was showed that

$$\lambda_3(G) \le \Delta^3 + 2\Delta$$

for any graph G and

$$\lambda_3(T) < 2\Delta + 3$$

for any tree T (see [11]). This paper focuses on bipartite graphs. In Section 2, we obtain some bounds of λ_3 for bipartite graphs and its subclasses, where the bound for bipartite graphs is $O(\Delta^2)$. In Section 3 we provide a best possible condition for a tree T with $\Delta(T) \geq 5$ and such that $\lambda_3(T)$ attains the minimum value, that is, $\lambda_3(T) = 2\Delta + 1$ if the distance between any two vertices of maximum degree is not in $\{2, 4, 6\}$.

All graphs considered here are non-empty, undirected, finite, simple graphs. For a graph G, we denote its vertex set, edge set and maximum degree by V(G), E(G) and $\Delta(G)$, respectively. For a vertex $v \in V(G)$, let

$$N_G^k(v) = \{u | d_G(u, v) = k\}, \qquad N_G[v] = N_G(v) \cup \{v\},$$

and $d_G(v)$ be the degree of v in G. A vertex of degree k is called a k-vertex. Especially, a 1-vertex of a tree is called a leaf or a pendant vertex. Let

$$D_{\Delta}(G) = \{d_G(u, v) | u, v \text{ are two } \Delta\text{-vertices}\}.$$

If there are no confusions in the context, we use V, Δ , λ_3 , $N^k(v)$, N[v], d(v), d(u,v) and D_{Δ} to denote V(G), $\Delta(G)$, $\lambda_3(G)$, $N^k_G(v)$, $N_G[v]$, $d_G(v)$, $d_G(u,v)$ and $D_{\Delta}(G)$, respectively. And we use k-labeling to denote k-L(3,2,1)-labeling.

2 Bounds of λ_3 on Bipartite Graphs

First, we summarize some easy observations into the following lemma.

Lemma 2.1 For any graph G,

- (i) if $\lambda_3 = 2\Delta + 1$ and f is a $(2\Delta + 1)$ -labeling, then $f(u) \in \{0, 2\Delta + 1\}$ for any Δ -vertex u;
 - (ii) if f is a k-labeling of G, then k-f is a k-labeling of G;
 - (iii) if G is connected and its diameter $d \in \{1, 2, 3\}$, then $\lambda_3 \geq (|V| 1)(4 d)$.

Lemma 2.2 For the complete bipartite graph $K_{r,s}$, $\lambda_3 = 2r + 2s - 1$.

Proof. First, we show that

$$\lambda_3(K_{r,s}) \ge 2r + 2s - 1$$

by induction on r + s. The equality holds clearly if r = 1 or s = 1. Let r, s > 1. Since $K_{r,s}$ is of diameter at most 2, by Lemma 2.1(iii),

$$\lambda_3 \ge 2r + 2s - 2.$$

Assume that there is a (2r+2s-2)-labeling f of $K_{r,s}$ and

$$f(u) = 2r + 2s - 2$$
, for some $u \in V$.

Since $K_{r,s} - u$ is isomorphic to $K_{r-1,s}$ or $K_{r,s-1}$, by induction hypothesis,

$$\lambda_3(K_{r,s} - u) \ge 2r + 2s - 3.$$

Hence, there is a vertex $v \in V \setminus \{u\}$ such that $f(v) \in \{2r + 2s - 3, 2r + 2s - 2\}$. This implies that

$$|f(u) - f(v)| \le 1,$$

which contradicts

$$d(u, v) \leq 2$$
.

Thus

NO. 1

$$\lambda_3(K_{r,s}) \ge 2r + 2s - 1.$$

Now we have to give a (2r + 2s - 1)-labeling of $K_{r,s}$. Let

$$K_{r,s} = (V_1, V_2, E),$$

where $|V_1| = r$. We can label the vertices in V_1 by $\{0, 2, \dots, 2r - 2\}$ and label the vertices in V_2 by $\{2r + 1, 2r + 3, \dots, 2r + 2s - 1\}$, respectively.

Theorem 2.1 $\lambda_3 \leq 2|V|-1$ for any bipartite graph G. The equality holds if and only if G is a complete bipartite graph.

Proof. Note that $\lambda_3(H) \leq \lambda_3(G)$ for any subgraph H of G. By Lemma 2.2, we need only to prove that $\lambda_3 < 2|V| - 1$ if G is a non-complete bipartite graph. We next give a stronger result.

Claim 2.1 $\lambda_3 \leq 2|V| - 3$ if G is a non-complete bipartite graph.

Let

$$G = (V_1, V_2, E),$$

where

$$|V_1| = r, |V_2| = s.$$

Since G is non-complete, there are two vertices u and v such that $u \in V_1$, $v \in V_2$ and $uv \notin E(G)$. Thus we can label the vertices in $V_1 \setminus \{u\}$ by $\{0, 2, 4, \dots, 2r - 4\}$, u by 2r - 2, v by 2r - 1 and the vertices in $V_2 \setminus \{v\}$ by $\{2r + 1, 2r + 3, 2r + 5, \dots, 2r + 2s - 3\}$.

We now introduce a special L(3,2,1)-labeling. An L(3,2,1)-labeling f of G is said to be regular if f(x) and f(y) have different parity for any $xy \in E(G)$. Clearly, G has a regular labeling if and only if G is a bipartite graph.

Theorem 2.2 $\lambda_3 \leq 2(\Delta^2 + \Delta)$ for any bipartite graph G.

Proof. Let

$$G = (V_1, V_2, E).$$

We apply induction on $|V_2|$ to prove that G has a regular $2(\Delta^2 + \Delta)$ -labeling such that all the vertices in V_1 get odd labels. By Lemma 2.2,

$$\lambda_3(K_{\Delta,1}) = 2\Delta + 1.$$

Therefore, the conclusion holds for $|V_2|=1$. Now assume that $|V_2|>1$ and $v\in V_2$. By induction hypothesis, G-v has a regular $2(\Delta^2+\Delta)$ -labeling f such that f(x) is odd for each $x\in V_1$. We observe that each vertex in N(v) forbids two even labels for v and each vertex in $N^2(v)$ forbids one even label for v. Thus there are at most $\Delta^2+\Delta$ even labels cannot be used for v and hence v can select an even label.

A connected graph without cycle is a tree. A connected graph is said unicyclic if it contains exactly one cycle. It is known that

$$2\Delta + 1 \le \lambda_3 \le 2\Delta + 3$$

for any tree (see [11]). Next we extend this result to a more general subclass of bipartite graphs.

Lemma 2.3^[11] Let C_n be a cycle of length n. If n is even, then $\lambda_3 = 7$ and C_n has a regular 7-labeling.

Theorem 2.3 Let G be a bipartite graph with each connected component either a tree or a unicyclic graph. Then $2\Delta + 1 \le \lambda_3 \le 2\Delta + 3$.

Proof. Note that $\lambda_3(G) = \lambda_3(H)$ for some connected component H of G. It suffices to consider the case when H is unicyclic. We now use induction on |V(H)| to show that H has a regular $(2\Delta + 3)$ -labeling. If |V(H)| = 4, then $H \cong C_4$, since H contains no cycle of length odd. By Lemma 2.3, H has a regular 7-labeling. Let |V(H)| > 4. If H itself is a cycle, then by Lemma 2.3, H has a regular 7-labeling. Otherwise, let x be a 1-vertex and $N_H(y) = \{x, x_1, x_2 \cdots, x_k\}$. By induction hypothesis, H - x has a regular $(2\Delta + 3)$ -labeling f. We assume, without loss of generality, that f(y) is even. Then $f(x_i)$ is odd for each $i \in \{1, 2, \cdots, k\}$. Since $k \leq \Delta - 1$, there exists at least an odd label in $\{1, 3, \cdots, 2\Delta + 3\} \setminus \{f(y) \pm 1, f(x_i) | i = 1, 2, \cdots, k\}$ for x to use. Thus we obtain a regular $(2\Delta + 3)$ -labeling of H.

3 Minimizing λ_3 Number for Trees

A star (generalized star) is a tree containing at most one (two, respectively) vertices of degree great than 1. A major handle (weak major handle) of a tree is a Δ -vertex adjacent to exactly one (two, respectively) vertices of degree greater than 1. This section gives several conditions for a tree such that $\lambda_3 = 2\Delta + 1$. Since the values of λ_3 for paths have been given in [11], we next let $\Delta \geq 3$. The following result is clear.

Lemma 3.1 If one of the following is satisfied by a tree T, then T has a regular $(2\Delta+1)$ -labeling.

- (i) T is a generalized star;
- (ii) T contains a leaf v which is adjacent to a vertex of degree less than Δ and T-v has a regular $(2\Delta(T)+1)$ -labeling;
- (iii) T contains a major handle x_1 with non-pendant neighbor x_2 and $T (N(x_1) \setminus \{x_2\})$ has a regular $(2\Delta(T) + 1)$ -labeling f such that $f(x_1) \in \{0, 2\Delta + 1\}$.

Lemma 3.2 Let T be a tree with $\Delta \geq 4$ and $2, 4, 6 \notin D_{\Delta}$. If T is not a generalized star, then T contains one of the following configurations:

- (C1) A leaf v adjacent to a vertex u with $d(u) < \Delta$;
- (C2) A path $x_1x_2x_3x_4x_5$ such that $d(x_2) = d(x_3) = 2$, x_4 is either a major handle or a weak major handle, and x_1 is a major handle;
 - (C3) A path $x_1x_2x_3x_4x_5$ such that $d(x_2) = d(x_3) = d(x_4) = 2$, and x_1 is a major handle;
- (C4) A path $x_1x_2x_3x_4y_1y_2$ such that $d(x_2) = d(x_3) = d(y_1) = 2$, $d(x_4) = 3$ and x_1, y_2 are both major handles;
- (C5) A path $x_1x_2x_3x_4x_5$ such that $d(x_3) = d(x_4) = 2$, $d(x_5) \le \Delta 1$, x_1 is a major handle and x_2 is a weak major handle;
- (C6) A path $x_1x_2x_3x_4x_5$ such that $d(x_2) = d(x_4) = 2$, $d(x_5) \le \Delta 1$, $d(x_3) = 3$, x_1 and another neighbor y of x_3 are major handles.

Proof. Suppose that T does not contain (C1), (C3), (C4), (C5) and (C6). We have to show that T contains (C2). Let $P_1 = x_0x_1x_2\cdots x_m$ be a longest path in T. Since T contains no (C1), x_1 and x_{m-1} are both major handles. Since T is not a generalized star, $m \geq 4$. Furthermore m > 4; otherwise, $d(x_3) = \Delta$ and $d(x_1, x_3) = 2$, which contradicts $2 \notin D_{\Delta}$.

Claim 3.1 $d(x_2) = 2$.

Suppose that $d(x_2) > 2$. Since P_1 is the longest and T contains no (C1), x_2 is a weak major handle. Since $2, 4, 6 \notin D_{\Delta}$, we immediately have $d(x_3) = d(x_4) = 2$ and $d(x_5) \neq \Delta$. Thus T contains (C5), a contradiction.

Claim 3.2 $d(x_3) = 2$.

Clearly $d(x_3), d(x_5) \neq \Delta$. Suppose that $d(x_3) > 2$ and let $P_2 = x_3y_1y_2 \cdots y_k$ be a longest path starting from x_3 and not along P_1 . Since P_1 is the longest and T contains no (C1), $2 \leq k \leq 3$ and y_{k-1} is a major handle. Moreover, $k \neq 3$ since $d(y_2, x_1) = 4$. That is, k = 2 and y_1 is a major handle. And hence $d(x_4) = 2$, since $2, 4, 6 \notin D_{\Delta}$. Now T contains (C6), a contradiction.

Claim 3.3 x_4 is either a major handle or a weak major handle.

Since T contains no (C3), $d(x_4) > 2$. Let $P_3 = x_4y_1y_2\cdots y_k$ be a longest path starting from x_4 and not along P_1 . First, assume that $k \neq 1$. Since P_1 is the longest and T contains

34 COMM. MATH. RES. VOL. 25

no (C1), $2 \le k \le 4$ and y_{k-1} is a major handle. Moreover $k \notin \{2,4\}$, since $d(y_1,x_1)=4$ and $d(y_3,x_1)=6$. That is, k=3 and y_2 is a major handle. And hence $d(y_1)=2$. Now, if $d(x_4)=3$, then T contains (C4), a contradiction. If $d(x_4)>3$, we denote by $P_4=x_4z_1z_2\cdots z_t$ a longest path starting from x_4 and not going along P_1 and P_3 . Then $t\ne 1$ (Otherwise, $d(x_4)=\Delta$ and $d(x_4,y_2)=2$, which contradicts $2\notin D_{\Delta}$.). Similar to $k\ne 1$, we have t=3 and z_2 is a major handle. However, $d(y_2,z_2)=4$, which contradicts $4\notin D_{\Delta}$. So k=1. Since T contains no (C1), $d(x_4)=\Delta$. Thus x_4 is either a major handle or a weak major handle.

Let T_1 be a subtree of a tree T. T_1 is called a Δ -subtree of T if $\Delta(T_1) = \Delta(T)$. Lemma 3.2 and its proof indicate the following result. It is necessary to the induction proofs of our main theorem.

Lemma 3.3 Let T be a tree that contains no (C1).

- (i) If T contains (C2), then $T N[x_1]$ is a Δ -subtree of T.
- (ii) If T contains (C3) or (C4), then $T (N[x_1] \cup \{x_3\})$ is a Δ -subtree of T.
- (iii) If T contains (C5), then $T (N(x_1) \cup N(x_2) \cup \{x_4\})$ is a Δ -subtree of T.
- (iv) If T contains (C6), then $T (N[x_1] \cup N[y] \cup \{x_4\})$ is a Δ -subtree of T.

Lemma 3.4 Let T be a tree with $\Delta \geq 4$. If one of the following is satisfied, then T has a regular $(2\Delta + 1)$ -labeling.

- (i) T contains (C2) and $T N[x_1]$ has a regular $(2\Delta + 1)$ -labeling;
- (ii) T contains (C3) or (C4) and $T (N[x_1] \cup \{x_3\})$ has a regular $(2\Delta + 1)$ -labeling.

Proof. (i) Let f be a regular $(2\Delta + 1)$ -labeling of $T - N[x_1]$. By Lemma 2.1(ii), we may assume, without loss of generality, that $f(x_4)$ is even. That is, $f(x_4) = 0$, according to Lemma 2.1(i). This implies $\{f(x)|x \in N(x_4)\} = \{3,5,7,\cdots,2\Delta+1\}$. Let u be a leaf in $N(x_4)$. We can exchange $f(x_3)$ with f(u) (if necessary) such that

$$f(x_3) \neq 2\Delta + 1$$
.

Now we can define

$$f(x_1) = 2\Delta + 1.$$

And x_2 can select an even label in $\{2, 4, \dots, 2\Delta - 2\} \setminus \{f(x_3) \pm 1\}$.

(ii) Let f be a regular $(2\Delta+1)$ -labeling of $T-(N[x_1]\cup\{x_3\})$. Similarly, we may assume that $f(x_4)$ is even. Then $f(x_1)$ can be defined as $2\Delta+1$. Now let

$$A = \{ f(x_1), f(x_4) \pm 1, f(x) | x \in N(x_4) \setminus \{x_3\} \}.$$

Suppose that T contains (C3). Since $d(x_4) = 2$, $|A| \le 4$. It follows from $\Delta \ge 4$ that x_3 can select an odd label in $\{1, 3, \dots, 2\Delta + 1\} \setminus A$.

Suppose that T contains (C4). If $f(x_4) = 2\Delta$, $f(x_5) = 2\Delta + 1$ or $f(y_1) = 2\Delta + 1$, then $2\Delta + 1$ must occur at least twice in A. Thus $|A| \le 4$, and hence x_3 can select an odd label in $\{1, 3, \dots, 2\Delta + 1\} \setminus A$. Next, let $f(x_4) \in \{0, 2, 4 \dots, 2\Delta - 2\}$ and $f(x_5)$, $f(y_1) \ne 2\Delta + 1$. Note that y_2 is a major handle and $f(y_2)$ is even. Hence $f(y_2) = 0$ and there is a leaf $y_3 \in N(y_2)$ such that

$$f(y_3) = 2\Delta + 1.$$

NO. 1

Now we can exchange $f(y_1)$ with $f(y_3)$. Thus y_1 gets the label $2\Delta + 1$ and it becomes the case given above.

Since $f(x_1) = 2\Delta + 1$ in each case given above, the leaves in $N(x_1)$ can get even labels, by Lemma 3.1(iii).

Lemma 3.5 Let T be a tree with $\Delta \geq 5$. If one of the following is satisfied, then T has a regular $(2\Delta + 1)$ -labeling:

- (i) T contains (C5) and $T (N(x_1) \cup N(x_2) \cup \{x_4\})$ has a regular $(2\Delta + 1)$ -labeling;
- (ii) T contains (C6) and $T (N[x_1] \cup N[y] \cup \{x_4\})$ has a regular $(2\Delta + 1)$ -labeling.
- Proof. (i) Let f be a regular $(2\Delta+1)$ -labeling of $T-(N(x_1)\cup N(x_2)\cup \{x_4\})$. We assume, without loss of generality, that $f(x_5)$ is even. Then we can define $f(x_1)=0$ and $f(x_2)=2\Delta+1$. Thus x_4 can select an odd label in $\{1,3,\cdots,2\Delta+1\}\setminus \{f(x_5)\pm 1,f(x)|x\in N(x_5)\setminus \{x_4\}\}$, since $d(x_5)\leq \Delta-1$. And x_3 can select an even label in $\{2,4,\cdots,2\Delta-2\}\setminus \{f(x_4)\pm 1,f(x_5)\}$, since $\Delta\geq 5$. Note that $f(x_1),f(x_2)\in \{0,2\Delta+1\}$. It is easy to label the leaves in $N(x_1)\cup N(x_2)$ according to appropriate parity.
- (ii) Let f be a regular $(2\Delta+1)$ -labeling of $T-(N[x_1]\cup N[y]\cup \{x_4\})$. Similarly, we can assume that $f(x_5)$ is even and define $f(x_1)=0$ and $f(y)=2\Delta+1$. Thus x_4 can select an odd label in $\{1,3,\cdots,2\Delta+1\}\setminus \{f(x_5)\pm 1,f(x)|x\in N(x_5)\setminus \{x_4\}\}$ since $d(x_5)\leq \Delta-1$, x_3 can select an even label in $\{2,4,\cdots,2\Delta-2\}\setminus \{f(x_4)\pm 1,f(x_5)\}$, and x_2 can select an odd label in $\{3,5,\cdots,2\Delta-1\}\setminus \{f(x_3)\pm 1,f(x_4)\}$. Note that $f(x_1),f(y)\in \{0,2\Delta+1\}$. It is easy to label the leaves in $N(x_1)\cup N(y)$.

Theorem 3.1 Let T be a tree with $\Delta \geq 5$. If $2,4,6 \notin D_{\Delta}$, then $\lambda_3(T) = 2\Delta + 1$. Moreover, the condition is the best possible.

Proof. Let us prove that G has a regular $(2\Delta + 1)$ -labeling by induction on |V|. The case |V| = 6 is clear, since now G is isomorphic to the star $K_{1,5}$. Let |V| > 6. If T is a generalized star, then by Lemma 3.1, the conclusion holds. If T contains (C1), then T - v has a regular $(2\Delta + 1)$ -labeling, by induction hypothesis. And by Lemma 3.1, T has a regular $(2\Delta + 1)$ -labeling. Now assume that T is not a generalized star and contains no (C1). Then T contains some configuration (Ci) $(2 \le i \le 6)$, according to Lemma 3.2. It follows from Lemmas 3.4, 3.5 and induction hypothesis that T has a regular $(2\Delta + 1)$ -labeling.

To show the condition is the best possible, we have to construct a tree such that $\lambda_3 > 2\Delta + 1$ and 2 (4, 6, respectively) is in D_{Δ} . Fig. 3.1 gives two trees T_1 and T_2 . By Lemma 2.1(i), it is easy to check that

$$\lambda_3(T_i) > 2\Delta + 1$$
 $(i = 1, 2).$

We now construct a tree T_3 with $D_{\Delta} = \{4, 8\}$ as follows:

- (i) give a star $K_{1,\Delta}$ with Δ -vertex u and leaves x_i $(i = 1, 2, \dots, \Delta)$, where $\Delta \geq 5$;
- (ii) join a leaf y_i to each $x_i \in N(u)$;
- (iii) join $\Delta 2$ leaves to each $y_i \in N^2(u)$;
- (iv) join a leaf to each vertex in $N^3(u)$;

(v) join $\Delta - 1$ leaves to each vertex in $N^4(u)$.

It suffices to show that

$$\lambda_3(T_3) > 2\Delta + 1.$$

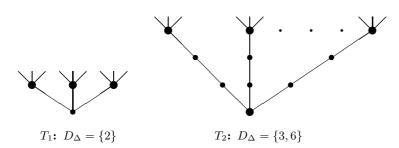


Fig. 3.1 The biggest vertices in T_1 and T_2 stand for Δ -vertices.

Suppose that T_3 has a $(2\Delta + 1)$ -labeling f. By Lemma 2.1, we may assume, without loss of generality, that

$$f(u) = 0.$$

Thus

$$\{f(x_i)|i=1,2,\cdots,\Delta\}=\{3,5,7,\cdots,2\Delta+1\}.$$

Let

$$f(x_1) = 3.$$

Then $f(y_1) \in \{6, 8, 10, \dots, 2\Delta\}$. For each vertex $z \in N(y_1) \setminus \{x_1\}$, $f(z) \neq 0$ since d(u, z) = 3; $f(z) \notin \{2, 3, 4\}$ since $d(x_1, z) = 2$; and $f(z) \notin \{f(y_1), f(y_1) \pm 1, f(y_1) \pm 2\}$ since $d(y_1, z) = 1$. Moreover,

$$|f(z) - f(z')| \ge 2$$

for any two different vertices $z, z' \in N(y_1) \setminus \{x_1\}$. These conditions imply that there are at most $\Delta - 3$ labels can be used by vertices in $N(y_1) \setminus \{x_1\}$. However,

$$|N(y_1)\backslash\{x_1\}| = \Delta - 2.$$

It is a contradiction. Thus

$$\lambda_3(T_3) > 2\Delta + 1.$$

By a discussion similar to that given for $\Delta \geq 5$, we can get the following result. The detail of its proof is omitted.

Theorem 3.2 (i) Let T be a tree with $\Delta = 3$. If $1, 2, \dots, 7 \notin D_{\Delta}$, then $\lambda_3 = 2\Delta + 1$.

(ii) Let T be a tree with $\Delta = 4$. If $1, 2, 3, 4, 6 \notin D_{\Delta}$, then $\lambda_3 = 2\Delta + 1$.

References

- Hale, W. K., Frequency assignment: theory and applications, Proc. IEEE, 68(1980), 1497– 1514.
- [2] Griggs, J. R. and Yeh, R. K., Labeling graphs with a condition at distance two, SIAM J. Discrete Math., 5(1992), 586–595.

- [3] Chang, G. J. and Kuo, D., The L(2,1)-labeling problem on graphs, SIAM J. Discrete Math., 9(1996), 309-316.
- [4] Wang, W. F., The L(2,1)-labeling of trees, Discrete Appl. Math., 154(2006), 598–603.
- [5] Lu, C. H., Chen, L. and Zhai, M. Q., Extremal problems on consecutive L(2,1)-labeling, Discrete Appl. Math., 155(2007), 1302–1313.
- [6] Lu, C. H. and Zhai, M. Q., An extremal problem on non-full colorable graphs, *Discrete Appl. Math.*, 155(2007), 2165–2173.
- [7] Fishburn, P. C. and Roberts, F. S., No-hole L(2, 1)-colorings, Discrete Appl. Math., 130(2003), 513-519.
- [8] Georges, J. P., Mauro, D. W. and Whittlesey, M., Relating path covering to vertex labeling with a condition at distance two, *Discrete Math.*, **135**(1994), 103–111.
- [9] Král, D. and Škrekovski, R., A theorem about the channel assignment problem, SIAM J. Discrete Math., 16(2003), 426–437.
- [10] Shao, Z. D. and Liu, J. Z., The L(3, 2, 1)-labeling problem on graphs, *Math. Appl.*, **17**(2004), 596–602.
- [11] Zhai, M. Q., Dong, L. and Lu, C. H., The L(3,2,1)-labeling of graphs (in Chinese), Appl. Math. J. Chinese Univ., $\mathbf{A22}(2007)$, 240–246.