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Abstract: In this paper, we investigate the eigenvalue problem of forward-backward
doubly stochastic differential equations with boundary value conditions. We show
that this problem can be represented as an eigenvalue problem of a bounded continu-
ous compact operator. Hence using the famous Hilbert-Schmidt spectrum theory, we
can characterize the eigenvalues exactly.
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1 Introduction

Stochastic Hamiltonian systems were introduced in the theory of stochastic optimal con-
trol as a necessary condition of an optimal control, known as the stochastic version of the
maximum principle of Pontryagin’s type (see [1]-[6]). In fact, those stochastic Hamiltonian
systems with boundary conditions are forward-backward stochastic differential equations
(FBSDE for short). These have been extensively investigated by Antonellil”, Ma et al.l®,
Hu and Peng!®!, Peng and Wul'!, Yong['!l. Recently, combining the FBSDE and the back-
ward doubly stochastic differential equations introduced by Pardoux and Peng'?, Peng and
Shil'3] have investigated a type of time-symmetric FBSDE. They showed the uniqueness and
existence of solutions for these equations under certain monotonicity conditions.

In this paper, we study a special type of time-symmetric FBSDE, namely doubly stochas-
tic Hamiltonian systems (DSHS for short). We discuss the eigenvalue problem of this type
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of stochastic Hamiltonian system in a standard functional analysis way.

The rest of this paper is organized as follows. The next section begins with a general
formulation of time-symmetric FBSDE, then a special case, DSHS with boundary conditions.
In Section 3, we give the proof of the main results.

2 Preliminaries

Let (2, F, P) be a probability space and T > 0 be fixed throughout this paper. Let {W}; :
0<t<T}and {B;:0<t<T} be two mutually independent standard Brownian motions
which are R?-valued processes defined on (£2,F, P). Without loss of generality, we assume
that d = 1. Let A/ denote the class of P-null sets of F. For each t € [0,T], we define

ftéftw\/ffT,
where
F=NVo{W,—Wy:0<r <t}
Flr=NVo{B.— B :t<r<T}

Note that the collection {F; : ¢t € [0,T]} is neither increasing nor decreasing. Thus it
does not constitute a filtration.

Let M?2(0,T;R") denote the set of all classes (dt x dP is equal a.e.) Fi-measurable
stochastic processes {¢; : t € [0, T]} which satisfy

T
E/ ¢ 2dt < +oo.
0
For a given ¢y, 1 € M?(0,T; R™), one can define the forward Ito integration / s dWy
0

T
and the backward It6 integration / 1sdBs. They are both in M?(0,T; R™).

Let H(y,Y,2,7Z) : R" x R™ x R" x R" — R and ®(y) : R* — R be C* functions. Find
a triple
(y,Y,2,2) € M*(0,T; R")

such that a boundary problem for a doubly stochastic Hamiltonian system satisfies the

following form
dys = Hy (t,y:, Yy, 2, Ze)dt + Hz (L, ye, Yy, 26, Zi)dAWy — 2d By,

y(0) = yo, @)
—dY; = Hy(t,ys, Yy, 2, Zg)dt + H (t,ys, Yy, 2, Z¢)dBy — ZpdWy, .
YT = gpy(yT)a

where Hy, Hy, H,, Hyz are gradients of the function H with respect to y, Y, z, Z respectively.
This is a sort of time-symmetric FBSDE introduced by Peng and Shil'3]. Let
£=(y,Y.22)",
At,€) = (—Hy, Hy,—H., Hz) " (t,€).

We assume the following:
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(H1) For each £ € R*", A( - ,€) is an Fy-measurable vector process defined on [0, 7] with
A( - ,0) € M?(0,T;R*), and for each y € R", &(y) is an Fpr-measurable random vector
with @(0) € L*(2, Fr, P;R").

We also assume that A and @ satisfy Lipschitz condition respectively as follows:

(112) At §) — A, E) < cg =€), V€L eRM™Y
|9(y) — ()] < cly — '], Vy,y' € R™
The main assumptions are the following monotonicity conditions
(H3) <A(ta€) - A(t7gl)a € - §I> < —Oé|§ - €l|27
where « is a constant and a > 0, and
(H4) () —2(y), y—y') 20,  Vyy eR"

The Theorem 2.2 in [13] is given as follows.

Proposition 2.1  Under the assumptions (H1)—(H4), there exists a unique solution
(y,Y,2,2)(-) € M?(0, T; R*")
of equation (2.1).

3 Eigenvalue Problem of Linear DSHS

We consider the FBDSHS as follows:
dyt = [HY(tv Yt, }/t; Zt, Zt) + )\thT(ytv }/;57 Zt, Zt)]dt

+Hz (t,ye, Ve, 2, Ze) + Mhah T (ye, Ye, 2, Z2)|dWy — 20d By,
—dY; = [Hy(t,ye, Yi, 2t, Ze) + Ahah " (ye, Y, 2, Zi)]dt (3.1)
+[H . (t, ys, Ye, 2, Zt) + Ahah T (ye, Yy, 20, Z4)|dBy — ZydWy,
y(0) =0, Yr =0.
We assume that
He(-,0)=0, h(-,0)=0, for & = (yi, Vi, 20, Z0) "

Obviously, the system has an only trivial solution as A = 0. The eigenvalue problem of

DSHS is to find some A # 0, such that this system has a nontrivial solution. The corre-
sponding nontrivial solution is called eigenvalue function (the reader can see [14] for details
of eigenvalue problem of stochastic differential equations).
Assume that
(H5) h(&) is bounded and satisfies Lipschitz condition:
(&) —h(€)? < ple — €17, VEE € R™.

We have the following main results.

Theorem 3.1  Assume that (H1)—(H5) hold. Then the DSHS (3.1) has at most numerable

eigenvalues. These eigenvalues are discrete, positive real numbers. Moreover, " > 0 and

has a limit 0.



NO. 1 HAN Y. C. et al. EIGENVALUE PROBLEM OF DSHS 33

Let
n = (u,v,r,8) € M?(0,T; R*™).

For the sake of proving Theorem 3.1, we investigate the forward backward doubly stochastic
differential equations (FBDSDE for short) as follows:

dy, = [Hy (t, &) + ha(n)ldt + [Hz (t,€) 4 ha(n)]dW: — 2¢d By,

—dYy = [Hy(t, &) + ha(n)]dt + [H-(t, §) + ha(n)]dB; — ZdWr, (3-2)

y(0) =0, Yr =0.
We assume that (H1)—(H4) hold. By Proposition 2.1, for any n € M?(0, T; R*"), we obtain
that the FBDSDE (3.2) has a unique solution &, € M?(0,T; R*"). So we introduce the
following map:

A: () € M*(0,T; R*™) — &,(-) € M*(0,T; R*™),
AmO))(E) = k' ()&, ().

Firstly, for the map A we have as follows.

Lemma 3.1  For any n,n' € M?(0,T; R*"),
T

T
B[ 16 =6 Al6) = AN =B [ (6 =6y b =t (33)
0
where &,, &y are the solutions of FBDSHS (3.2) with respect to n, 1/ respectively.

Proof.  Applying the generalized It6 formula (see the Lemma 1.3 of [12] for details) to
(Yn(t) =y (t), Yy(t) — Yoy (t)), we have
d{yn (t) =y (1), Yy(t) — Yy (1))
= (yn(t) =y (), d(Yy(t) = Yoy (1)) + (d(yn(t) =y (1)), Yy(t) = Yoy (1))
+ {dyn (t) =y (1)), d(Yy(t) — Yo (1))

Yn — Yy’ —[Hy(t,&n) = Hy(t,&p)] = [ha(n) — ha(n')]

_ < Yy =Yy ’ [Hy (t,69) — Hy (t,&y)] + [h2(n) — ha(n')] >dt
Zy = Zy —[H:(t,89) = Hz(t,&y)) = [ha(n) — ha(n')]
Zn = Zy [Hz(t, &) — Hz(t,&y)] + [ha(n) — ha(n')]

<< Yn — Yo/ ) < _[Hz(tvgn) - Hz(tafn’)] - [h3(77) - hB(n/)] >>
- , dB
Yy =Yy 2y (t) = 2n(t)

<< Yn — Y’ ) ( Zy (t) — Zn(2) >>
+ , dW;.
Y, =Yy [Hz(t,&y) — Hz(t, &y )] + [ha(n) — ha(n')]

Noting that
Yn(0) =y (0) =Y, (T) = Yy (T') = 0,

we integrate it from 0 to 1" and take expectation on both sides. Then we have that
T

0=F / (& — &, A€y) — A€y))dt +E / (& — & h() — B,
0 0
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This completes the proof of Lemma 3.1.
Noting the assumption (H3) and (3.3), we have that

B /0 (6 — &, h(n) — h(y))dt = —E /O (6 — s Aly) — A6yt

T
>k [ 6 - &yl (3.4)

0
Thus by assumption (H5) and Hélder inequality, we have

T 1 T ,
B[ 16— 6oPdt < 2B [ (6~ &, o) —nG)a

1 T 1/2 T 1/2
< —(E —&2dt) - (E h(n) — h(n))|?dt
<& t—gla) " (B [ o) —no)Pat)

T 1/2 T 1/2

1Y 2 72
< — & . - )
<EE [ te—eokar) (B [ ln—Par)

Thus
E 4 2 <'U2E T 72
|€77_€77’|dt_§ |77—77|dt-
0 0
So

IAm() = Al ())* = E/O BT ()& — hT (n)&y *dt

IN

T
IAT () 2E / & — &Pt

2017 %(12 T
wa|h
LE/@ |77*7]/|2dt. (3.5)

IN

o2
This shows that A(n(+)) is a bounded continuous map.

Now we assume that the original DSHS is linear, i.e.,
dys = (Ho1ye + Ho2Ys + Hozz + Hou Zy)dt

+(Hayrye + HaoYy + Hazzy + Hya Z4)dWy — 24d By,
—dYy = (Huye + Hi2Yy + Hizze + Hia Zy)dt (3.6)
+(Hz1yt + H32Y: + Hazze + H34Z1)dBy — ZydWy,

=0, Yr=0.

The monotonicity condition (H3) is equivalent to which there exists § > 0 such that
—Hyy —Hip —Hiz —Hu
Hs1 Hze  Haz  Hx
—Hs1 —Hsp —Hsz —Hsz
Hy  Hyp  Hiz Hu

Suppose (3.7) holds. Considering the preceding map A, we obtain as follows.

Lemma 3.2  The map A is a linear, bounded, self-adjoint, positive operator.

Proof. Tt is easy to see that A is a linear operator. Noticing that A(0) = 0 and (3.4), we
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have that

EA<A@@anMr:EA<&@,Mth

T
ok [ gt
0

> 0.

Y

So A is positive.
We then prove A is self-adjoint. Applying the generalized It6 formula to (y,, Yi/),
(Yn, Yy), we have that

Alyy, Yir) = (yy, (=Hy&y — han')dt — (H.&y + han')dBy + Zy dWy)
+ Yy, (Hy&, — han)dt + (Hz&,; + han)dW; — z,dBy)
+(Zy, Hz& + han)dt — (2, H.&y + han')dt,

Ay Yo) = (yys (—Hy&y — han)dt — (H=&, + han)dBy + Z,dW)
+ <Yna (Han’ - h277/)dt + (Hzfn’ + h477/)th - Zn’dBt>
+{Zy, Hz&y + han')dt — (2, H.&§, + han)dt.

Noting that
Yn(0) =y (0) = Yy (T) = Yy (T) = 0,

we integrate it from 0 to T and take expectation on both sides. Then we have that
T
E/ {{ym, —Hy&y — han') + (Yo, Hy & — han)
0

+ <Zn7 Hzgn’ + h377/> + <ZTI’7 HZ&W + h477>}dt

T
= E/ {<yn/a *Hygn - h177> + <Yna Han/ - h277/>
0

- <Zn’7 Hzg'r] + h377> + (Z'm HZ&?]’ + h477/>}dt'

Noting that H is symmetric and the definition of A(7(-)), we have that
T

T
B [ (Am®), o (0)dt=E [ (Au(©). )
This completes the prooof of Lemma 3.2. ’
Now considering the eigenvalue problem of operator A, we find some A # 0 such that

A(n) =n
has nontrivial solutions. By the definition of A, we have that

n=Ah"¢,.
Substituting it into (3.2), we obtain (3.1). Hence the eigenvalue problem of DSHS (3.1) is
equivalent to the eigenvalue problem of operator A. By Lemmas 3.1, 3.2 and Hilbert-Schmidt
spectrum theory, we get Theorem 3.1.
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