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Abstract. In this paper, several new energy identities of metamaterial Maxwell’s
equations with the perfectly electric conducting (PEC) boundary condition are pro-
posed and proved. These new energy identities are different from the Poynting the-
orem. By using these new energy identities, it is proved that the Yee scheme on
non-uniform rectangular meshes is stable in the discrete L?> and H! norms when the
Courant-Friedrichs-Lewy (CFL) condition is satisfied. Numerical experiments in two-
dimension (2D) and 3D are carried out and confirm our analysis, and the superconver-
gence in the discrete H! norm is found.
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1 Introduction

Metamaterials are artificial composite materials designed to exhibit exotic electromag-
netic properties. The metamaterial with negative refraction index was first proposed by
Veselago in 1968 [26] and constructed by Smith in 2000 [23,24], which has brought a new
revolution in electromagnetic and material science. Since 2000, there are numerous ref-
erence sources on the study of metamaterials and their potential applications, such as,
design of invisiblity cloak [8,22], sub-wavelength imaging [1,28], construction of perfect
lens [25]. Matical side there has recently been increased interest in the understanding of
the mathematical properties of metamaterial Maxwell’s equations relevant to numerical
analysis. For example, finite-difference time-domain (FDTD) methods [10, 15-17], finite
element methods [11,13,29,30], and the monograph [12].
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Due to its efficiency and robustness, FDTD or Yee scheme, firstly introduced by
Yee [31] in 1966, is still one of the most popular numerical methods in computational
electromagnetics. The FDTD scheme uses central-difference approximations to the space
and time partial derivatives at a fully staggered grid, and is second-order accurate in both
time and space and easy to implement. For this aspect of theoretical study on the finite
difference method for solving time-dependent Maxwell’s equations, there are already
excellent work in mathematical literature including FDTD scheme and related numeri-
cal methods, such as, the alternating direction implicit FDTD (ADI-FDTD) [20, 32], the
energy conserved splitting FDTD (EC-S-FDTD) [5, 20], the splitting FDTD (S-FDTD) [2],
the splitting multi-symplectic method [7] etc. Among the above-mentioned methods, the
stability and error estimates in the L? norm have been studied by the energy method.
In 2011, Gao and Zhang [4] were firstly studied the important stability and convergence
analysis in the H! norm of the FDTD scheme with PEC boundary condition on uniform
meshes, and extended the similar results to other relevant numerical methods [3,18].

Recently, the theoretical analysis of the Yee scheme on non-uniform meshes have at-
tracted much attention. The rigorous error analysis of the Yee scheme on non-uniform
rectangular meshes can be traced back 1994 by Monk and Siili [19]. They used the spe-
cial structure of local errors to prove that the Yee scheme still has second-order conver-
gent on a non-uniform mesh although the local truncation error is only of the first order.
Remis [21] studied the stability condition of the Yee scheme for solving the Maxwell’s
equations in lossless medium on non-uniform meshes, by the eigenvalues of the FDTD
iteration matrix. In 2016, Li and Shields [14] extended Monk and Siili’s technique to give
the superconvergence analysis of Yee scheme for solving Maxwell’s equations in meta-
materials on non-uniform meshes, and extended to an implicit scheme [27]. In these
work, the energy method was used to study the stability and error estimates in the L2
norm. However, no results is available for the import stability and convergence analy-
sis in H! norm of the Yee scheme for metamaterial Maxwell’s equations on non-uniform
rectangular meshes.

Encouraged by the nice properties of the Yee scheme for Maxwell’s equations in sim-
ple media on uniform meshes [4], in this paper, we study the stability and convergence
of the Yee scheme for metamaterial Maxwell’s equations on non-uniform rectangular
meshes by a new energy method. This new method is motivated by the new energy
identities of metamaterial Maxwell’s equations established in this paper and is different
from the usual one in L? norm (cf. [14,27]). By making use of this new energy method, we
prove that the Yee scheme with the PEC boundary condition on non-uniform rectangular
meshes is stable in the discrete H! norm when the CFL condition is satisfied. Numerical
results are also presented to confirm the theoretical analysis. Moreover, the superconver-
gence phenomena are proved for solving metamaterial Maxwell’s equations by the Yee
scheme on non-uniform rectangular and cubic meshes. To our best knowledge, this is the
first result for the important stability analysis in the discrete H! norm of the Yee scheme
for solving metamaterial Maxwell’s equations on non-uniform rectangular meshes.

The rest of the paper is organized as follows. In Section 2, the new energy identities
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of metamaterial Maxwell’s equations in H! norm are proposed and the fully discrete Yee
scheme on non-uniform rectangular meshes with some notations are given. We present
detail analysis of the discrete stability in L? and H! norms of Yee scheme on non-uniform
rectangular meshes in Section 3. In Section 4, numerical simulations results are demon-
strated, and the superconvergence in the discrete H! norm is found. Besides, the classical
example of backward wave propagation in metamaterials was shown. We conclude the
paper in Section 5.

2 Energy identities and the Yee scheme of metamaterial
Maxwell’s equations

In this section, we first describe the problem of two-dimensional metamaterial Maxwell’s
equations with the PEC boundary condition in this paper. Then, we derive several new
energy identities of metamaterial Maxwell’s equations, which will be found helpful in
study the Yee scheme in H! norm on non-uniform rectangular meshes.

2.1 The metamaterial model

Consider the following 2D Maxwell’s equations in metamaterials [9]

( JEy OH
€0 atx :T;_]x/ (2'1)
oE oH
6087: = axz _]y/ (22)
0H, OE, OE,
yo?_W_W_KZI (2.3)
1 9y, Te .
60(‘];293 ﬁ + 60(‘);273 ]x - Ex: (24)
1 9Jy I, B
egw%e ot + eoa)%e Jy=Ey, 2.5)
1 0K r
2 - mz K,=H,. (2.6)
\ HoWpm ot HoWhm
The PEC boundary condition is given by
nxE=0 on 0Q), (2.7)

and the initial conditions

E(X,O) = EO(X)/ HZ(X/O) = HS(X), ](X,O) :Jo(x)/ KZ<XIO) :K,(z)(x>l (2.8)
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where E= (Ey,E,)T, Hz, J=(Jx,Jy)" and K; denote the electric field, magnetic field, in-
duced electric currents and induced magnetic currents vector, respectively. €y is the vac-
uum permittivity, o is the vacuum permeability, wpe, wpm, I'e and Ty, respectively, are
electric plasma frequency, magnetic plasma frequency, electric damping frequency and
magnetic damping frequency. n represents the unit exterior normal vector to the bound-
ary of the spatial domains Q) = [a,b] x [c,d]. The initial conditions E°, H?, J°, K0 denote
some given functions.

2.2 Energy identities of Maxwell’s equations in metamaterial

The following Lemma 2.1 which is the well-known Poynting theorem, its proof can be
seen in [14].

Lemma 2.1. Let E(t) = (Ex(t,x,y),Ey(t,x,y)), H:(t) =H:(t,x,y), J(t) = (Jx(t,x,y), ], (t,x,y)),
K. (t) =K, (t,x,y) be the solution to the problem (2.1)-(2.8). Then for any t € (0,T],

T
JECE) 2+ 1= ()P IO+ K1) 42 | TllJ(0) P+ Ton [ K (1) Pt
= [E(0) [P+ [1H= (0) -+ ) (0) |2+ |K=(0) %, 29
where || -|| denotes the L? norm with the weight. For example, in (2.9),
b rd
[E® 2= IEOIP+ 1B E®]= / eousx (xy,1) Pdydx,

IO =112+ 1y (D11, 1T (£) 11 = / (x,y,) [*dydx.

Using similar techniques as in [4], we can obtain the following new energy identities.

Theorem 2.1. Let the E(t), H,(t), J(t), K;(t) be the solution to the problem (2.1)-(2.8), and
possesses the following reqularity property:

E,E,,H,€C([0,T],C*(Y)),
J ]y K= €CH([0,T],C' ().

Then for u=x,y,

|55+ H +% H 75

IHa’Sﬁ,)HZ 2 T T 5 @10

||E(t)||%+HHZ(t)H1+||](t)H1+||Kz(t)||1+2/0 Lel[J(T)IIf + | K=(7) 7T
=[EO)[IF+ [[H=(0)[IF+ T (0) [+ K=(0) 13, (2.10b)

2 JK
o 5
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where || -||1 is the H'(Q) norm, defined by

8= e+ 52+ 55

Proof. We only prove (2.10a) with u = x. The other cases with u =y can be obtained
similarly.
Differentiating each of Egs. (2.1)-(2.6) with respect to x, we have

2 2
€0 gxgt gxli;ly 88]9: (2.11)
2 2
33 jazH : 2)];? (2.12)
Ho 32!1 aaziy - gjcgy e (2.13)
2
eoclu%e gxéxt € 1552 ?9]9: - aaix ’ (2.14)
§ 3], OE,
eoclu%e gxgyt €0£UZ ajx]f/ ax (2.15)
2
Ho:)Zm gxlgi VOFCZ%M aaiz - aasz- (2.16)

Multiplying (2.11) by %, (2.12) by %2, (2.13) by 22, (2.14) by 2=, (2.15) by 2, (2.16) by

dx ’/

aalff , then summing the six product equations up over (), we obtain
) d
Tl GH| H el S g+ 1515
(PO o,
where

bopd o2 2H. 9E, O°E 2
t:// 0°H, 0E, 0°H,JdE, y 0H; aExaHZ) (2.18)

oxdy ox  02x 0x = 9%x O0x 0xdy X
From the PEC boundary conditions (2.7) and the domain Q= [a,b] X [¢,d], it follows that

]
Ey(x,c) =E(x,d)=0, Ey(a,y)=E,(b,y)=0, (2.19)

thus
0Ex(x,c) OEy(x,d)
o) _9Elnd) _, (2.20a)
9Ey(ay) _9Ey(by) —0. (2.20b)

Iy Iy
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Using integration by parts and Eq. (2.20a), we have

N 0
s (G 520+ 1% Ha] gl 150
L I =
where 13E oH oF oH
r(0)= [ SEOuD GO~ @) S @y
Let £ =a or b, from (2.2) and the PEC boundary condition (2.7), we have
(aah;c aaHx J(Et >_l5r}c(aai aei )Gt
_—chlir}{aai(x Y, )( a€y+]y>(x,y,t):0. (2.22)
Thus, r(t) =0.
Then, by integrating (2.21) with respect to time over [0,t], (0<t<T), we get
% 2+H8HZ(” HZ+HMHZ+ w\\2+2/(ffe e
SR RS e 223)

We complete the proof of (2.10a), with u = x. Combining (2.9) and (2.10a), Eq. (2.10b)
holds. O

2.3 The fully discrete Yee scheme on non-uniform rectangular meshes

The rectangular domain [a,b] X [c,d] is partitioned by a non-uniform rectangular grid as
follows:

a=x9<x1<---<x7=b, C:y0<yl<"'<y]:d'

Denote
O Xit+Xipr L _ Yty
Yy == i=0,---,I-1, Vi =" j=0,---,J—1.
For convenience, denote the following mesh step sizes h;, k;, h; L1k
hi=x 1 —X_1, hiy 1 =%Xip1—xi,
Ki=Yjrs Y-y K+ =Vir1 =Yy

hmin :min{hi,hi+% }, kmin :mm{k],kﬁ%}
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Denote At as the time step size, N;At=T. For a =i,i+ %, ,B:j,j—i—% and n=m,m+ %, where
i=0,1,--,1-1,j=0,1,---,] -1, m=0,1,---,N; with positive integers I, ] and N;, then for a
grid function f,' s = f(xa,yp,1"), define

n By n _fn
oo =t Sevs o Jup Japy
XSw,B hzx s Yo, kﬁ .

With the above preparation, we can have the following fully-discrete Yee scheme:

. C s . . 0 5 1
Given initial approximations Ex Eyz,]+]’ H,? l+2]+;, ]x iy ]yz’,j+l’ K, Ziel il for

Nt+2 Nt+2 Nt+2 Nt-‘rl
any 0<n <N;—1, solve Ex il Ey FTR LNy ]’Cz+2] ]yl]+] Ken i from:
En+1 _En nil +l
GOXT 5 H 2 _ 2 ’H‘%,f’ (224)
En+1 En 1
Y n+3 n+z
GOT——5 «H, 2 — 2|i/].+%, (2.25)
3
HZ+7—HH+2 +1 +1 +1
yoT—é ElT—6, E” —K? |Z+2]Jr (2.26)
+3 +3 n+ +1
L g R VI e B, (2.27)
€W, At €ow?, 2 2’ '
n+3  on+i n+3 | o+l
1 2 2 I“ 2_|_ 2
Jy “ =y Jy "+ =EMY, 1, (2.28)
GOng At eowpe 2 T3
+2 +1
L L KpP4Ket —HE (2.29)
How?,, At How?,, 2 Z lidg gty '
The PEC boundary condition
p— n f— ..
E’fz+2, Ex1+2,] Eyo,j+2 Eyl,]+2 0, n=01,---,N;. (2.30)

The initial conditions which are obtained by imposing the initial conditions (2.8) at t =0,

1 1
Ex}y) cIxh s Tl Kl (2.31)

7 ij+3

Remark 2.1. From Egs. (2.4), (2.5) and the PEC boundary condition (2.30), we can easily

get

+1 + + +
]xn z - 21+12 _]yg]jl_]y[/]jl_o nzolll"'/Nt- (232)
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3 Stability of the Yee scheme on non-uniform rectangular
meshes

In this section, we investigate the stability of the Yee scheme on non-uniform rectangular
meshes in the discrete L> and H' norms, by the similar techniques as in the last section.

3.1 Discrete mesh-dependent energy norms

We define the following discrete mesh-dependent energy norms. For a grid function V; g,
where a=iori+1, f=jorj+3,

-1j-1 1-1]-1
HVXHEA ZZGO Vler ] 1k HVyHEj ZZeo Vy1]+ ) hk]+1,
i=0j=1 i=1j=0
V, oyl (V, 2h. ki V. S W ok
H xH]x ;)]Z:eow%e Xit+l ]) i+1%5 H ZHKZ ZZ(:)]Z(:).” w’%m zl+2]+l) i+1%4 10
I-1]-1 1-1J-1
‘V HHZ Z ZVO ZH— ]+ h 1k +1/ HéxVxH(zsxgx = Z Z€0(5xvx,‘,j)2hikj/
i=0j=0 i=1j=1
1-2]-1 -1]-1
||5xvyy|§xEy:Z;Eeo A ]+1)2h1+1k+1, 162 V2|3 1, = Elzyo (s Vzwl) hik,, 1,
1=1] i=1j
I-1 . ) J—1 ) )
’V‘?CZZ(:)Go((Vzl)Z:i+(Vi,]—1)2k]hll), ’V@:-Z(;]e()((‘/l’j)z;z+(V1_1’j)2hf]1>'
1= 2 -2 = 2 -2

The norms |- {|1,, | locrer - Nowr,s I-Woeker 1= lloy s 1+ sy, 1 1oyt 11+ ayrer 11+ Mlay g0 1+ llo,x.
can be similarly defined by changing the indices i,;. In these norms, the subscripts mean
that the sum is taken over the sets of the spatial indices.

3.2 Stability of the Yee scheme in the discrete H! semi-norm

The following lemma will be used in the following analysis. It can be easily proved by
using summation by parts and the PEC boundary condition (2.30).

Lemma 3.1. Let E,” ; , E,. 1, H," | . 1 be the solution to the fully discrete Yee scheme with
+ J’ i ]+ 1+2 Jt3
the PEC boundary condztzon (2.30), then for m = n+1 F0rn—s L with n>1, we have

I-1]-1 I-1]-1

i=1j=0 i=1j=1
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-1]-1
ZZ& OxEy 0xHY'|, iy 1hiky, 1
i=1j=0 :
[-2]-1
:_225xE§'§x5xH;n Z+ ]+;hl+]k
i=1j=0
]71 n m k 1 n m k]+%
— Y Ej-5.H! yml o 215 O H g
j=0 b I=3
-1]-1
ZE@%EZ'@H;” i+l z+1k
i:Oj:l
-1]-2
— L LA H b1
i= O]
_ng.ayHZ L+11 kl ZE Oy HE iy g
i=0 i=0 J-3
—1j-1 ~1J-1
ZZ(S OxEy -0y HI'|;y 1 iy 1kj= ZZ& E;-6:6,HY'[; jhik;.
i=0j=1 i=1j=1
n+3

n+ n+ 1
Theorem 3.1. For n >0, let EX?+%,j' EyZH%, Hzi% Y ]"i+ 2] ]y1]+z] . n:% i be the solu-

tion to the fully discrete Yee scheme (2.24)-(2.29) with the PEC boundary condition (2.30), and
possesses the following regularity property:

E,E,,H.€C'(0,T],C*(Q))),
IXI]yIKZ Gcl([O/T]/Cl( ))
If the CFL condition

at<min] VIO [ Mook V2 1
2 K2 . w
m1n+ min \/>wpe pm

is satisfied, then the following estimate holds
n+i o+t +
(ELEDR+10E DR+ H T R+ KR
<CLIELE)R+1( 1) B+ H2 [+ KL (3.1)

for n>1 where C is a constant independent of n and for n >0, the discrete H' semi-norm is
defined as

+ ||y Ex

" 2
~|—H(5yEy

2
(ELE) R =16:EX |56, + 5,E
Y=y

+EZ+IEYLS,

I
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2 2
n+3 nti n+3 n+3 n+3 n+3
(Je 20y DIi=|0x]x 2 +|[0x)y Oyl ? oy 2 ,
OxJx 5:{]1/ 5y]x ‘5ny
2
n+g 2 n+3 n+y ? n+1 K1 2
|H, 2|2 =||6,H. +1|6,H; , |KI 0, K7 + oyK .
(SXHZ 8, H, OyKs

Proof. Applying the difference operator 6, to the equations in the fully discrete Yee
scheme(2.24)-(2.29) gives the 6,-Yee scheme:

5xEn+1 -5 En n+2

+
GOXA—tx—(S 5 H, x]x 2|1]/ (3.2a)
5xE}7+l_5xEn n+ +
eoT —06x0xH, "2 — x]y 2]1+%’j+%, (3.2b)
5 Hn+2 5 Hn+2
A =68y BN = 6,0, Byt — 6, KU ey (3.2¢)
1
N L N LS VPN LRV N LR (3.24)
eow?, At eow?, 2 R '
L ]Hz ‘n+2+ Lo 9 ]yﬂ%‘ ! =5, Emt1| (3.2¢)
€03, At €03, 2 Oy iyt =€
1 k) K”+2—(5 Kn+1 T 5 Kn+2 5 Kn+1
. XAtz X Y + mz XNy + xINy _5 HVl+2|Z + ) (32f)
ﬂprm At ;Mowpm 2 JJ

Note that the subscript 7,j in each equation and its range are changed after the application
by dy.
Multiplying both sides of Egs. (3.2a)-(3.2f) by At(5,E! 1 +6; E”)\”h ki, At(SxEyT +

5ng)|1+1] i 1kis DG HIYE 45, H”+2)]i,j+%hikj+%, (G2 2 02 ik, ( x]y+2+
+
‘5x; 2)|i+%,jhi+%k]" (5XKZ+2+575K§+1)|i,j+%hikj+%’

over i, j in their valid ranges. By adding the six equations together, we obtain the sum of
the left hand side (LHS) as

respectively, and summing them up

—1J-1

LHS= ZZGO( SEFT)? - (6:E?) | ik
i=1j=1 L]
=2 +1 2
n
+121]260( By (6:E))?) PR
=2l n+3 n+At\2
+ZZ€0< (6 HITE - (8 HIO?) | ik

i=1j=0 Z]‘*‘2
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1365
== Atr

+ 5 n+2 5 ]n+2 2 e ]+2+5 n+2 2 ’ Wik
lljl{eow%f(( oY= ) ) (0 ) } i
1-2]-1 4 , . AT . N

+ AR DN A L) RE=LTE N (he NN G ik
Ejzg{eowge(( = (6l )+ S5 ST RO
2 1 AIT

+ 5 Kn+2 2 5 Kﬂ+1 2 m 5 Kn+2+5 Kn+1 2 hk.
;]Z(:){yowf,m«x 2 ) ok )) 7 Ok e )}i,j+%11+%

n+3 n+1
=[10xEXHIG £, — 10X ERIG £, + 10xEyHI3 £, — 10xEYIIG, £, +10xHz " 15, b1, — 10 Hz " 15 .

n+3 n+l n+3 netl

+[0x 2||5x]x 10+ ] 2H5A]Y+H5x]y ZH(sx]y [6x Ty ZH(SXJy"’"H‘S KnJrzH(s\KZ [[6x KHHH(SXKZ
At
2

U N R LN AR Al | WA o 13 Caea N ol ]

The second equal term sign comes from the definite of mesh-dependent energy norms.
The corresponding right hand side (RHS)

I-1]-1

RHS = Atzz (5 Sy HI (S BT 4 6,ET) — 6, RS B 8,0 0, E““) ik
i=1j=1 y
[-2]-1 ] "
n n
+AtZ%Z( 5x0xHY 2 (6,El T 4 6,E])
1= ]_
s "t pn n+3 ¢ pntl
Oy OE+ou]y O PR
I-1]-1 il il
+AEY Y (80, B 0By ) (6 HE P 0 HL )
i=1j=0
KIS HY T KIS, H””) hik,
ij+3 it
1-1]-1 nal 1-1]-1 » i
n
_At2125 Oy Hz " 26xER|; ihik; +At):125 Oy ErT6, H; Z\Zﬁmkj+l
=1y i=1j
[-2]-1 il ;
+At-z;-2(_5x5"HZ P05y )iy jralir gk
1= ]_
I-1]-1 ) o
ALY Y (—OOEy IO )y bk
i=1j=0
J-1 1 - ki 1
_ n, n+§ 1”Z+2 ]+§
j;OEy 6+H; |1,]' % % ; Oy H 7, 1+ %hl :
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+Atii< S S N o, 0 s, EX)| ik,
—1j= i,j

[-2]-1

n+1 n+3 +1
+Atlzl;]z< NARIN:ERN RN ALY UL
ot Yl n+ n+
At Y (K HE K )| ik .
i=1j=0 bty

By make use of the Lemma 3.1, the second equal term sign holds.
Summing up LHS and RHS from n=0 to N—1, and using Lemma 3.1, we have

N+3 3
I16:EX 113, £, — 116+ E25. £, + 116 ENH(sty 16 EOH(SXE HlloxHz 213 1, — 10 H2 |3 1,

N+1 N+1
Hox)x 2115, — 6.J2 15,7+ l10xTy 2 ||(5x]y—||5x]y2 13,7, + 18 KEFHIZ k. —16:K2 113 .
AtN_l

+5 2 |T

n=0

+
(I8 R B ey R o TR )

+Fm!|5x1<2“+5x1<§“||§sz]

=T+ T+ T3+ Ty, (3.3)
where
I-1]-1 1-2]-1
Ti=At) Y (6:EY-6:6 HZ)]l]hk —AtY Y (6:E)-6:0 HZ)yl+ Lithiiiki
i=1j=1 i=1j=1
-1]-1
Tz—AtZZ (0.0 EN —0,0:EN) -6 HY 2Ly i b oK,
i=1j=0

J-1 1 k. 1
To=AtY " (EN.o,HY 2 & 4 (H' 2 pH 2 ‘ I*a
’ ];]( e Z )) Lty h

1
2

J-1 N n i’l+ k]+
At <E S HN El- P4l 2)’
+AEY (Ey -0x +Z + ) .

Nl—=

j=0 -1 %hlf%,
I-1]-1 Nil N . .
Ty=AtY Y (Ocfy *0xEy —0x]2 - 6x )i jhiks
i=1j=1
[-2]-1 1 X
N+> N = 0
i=1j=

I-1]-1

1
+At22 (0, KNH G HY YR — 6 K0, HE ), ik
i=1j=0
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To estimate Tj, by the Cauchy-Schwartz inequality and the definition of norms ||-||s,.£,
and |- ||5,g,, we have

At
2 [ 15ES I £, + 16ESIR, e, + (2 )OM5Hﬂba+W5H”bEﬂ (3.4)

Eq. (3.2c) can be rewritten as

At N-p Bt en)

SHN T2 - y(é&EN 0x0xE)) =6, H. 7—?;@KZ

ij+31

Squaring both sides of the above equation, multiplying both sides of the above equation
by ‘Mohlk] + % .

1 N+1 At\2 N—1 At 2
T2:2|:H‘5tz ZH(ZSXHZ‘f’(V) H‘SxéyEylc\]_(sx(sté\]ngHz_ z Z—Z(SXK;\] éxHj' (3'5)

Then, we have the following estimate
N+
1< (10 R+ () 100 EY 00 EN . @6)

To estimate T3, take i =i’, from (2.25) we can easily have

At At _p41
En——(S Hn+2 Eg-‘rl ob ;+2 o (3.7a)
€ ,j+5
A _1 At -1
%+7&£2:%1 g o (3.7b)
ij+3
At 1 At _1
Ey+— Mq2 W*—ffzwﬂ (3.7¢)
60 1,]“!‘7

where i’=1,]—1. From these three equations and by a similar argument to that in deriving
(3.6), we have

+1 -11 1 At p-1\2 At pil
i) = (57 2 (57 2
At)?
+(€0) ((6xHE" )2 (8! 2)2)], (3.82)
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Substituting these two equations into the expression of Tz and noting the definition of
||y, it is found that

|EO‘2+|E1

N2 (Bt)
|y 2|E) ]y~ &2

1 (At)? | 1
[0 HE [+ T [y
0
= n—1 n ”_%kj"‘% = n—1 n ”_%kj'*‘
—2AtY Y (Ej T +Ey)-Jy - —20t) ) (By +E)) Ty P
]*On—l > j=0n=1 I
]+ = 1k]+
+2AtZE1 ]y2 Z—I—ZAtZEl Ji 2.

1
2 I=3

Nl—=

NI

=

(3.9)

From Eq. (2.28), we have

(1+ Atre)b*w( 14 800 1 = el By

) ij+y

Multiplying each side of the above equation by E;‘“, choose a constant

AT, AT,

—1+

C:max{1+ 5 5 }, (C>0).

Then, we can obtain that

Ategw?

n+ +3
2y ) > = (B (3.10)

Summing up Eq. (3.10) from 7 =0 to N—1 and noting the definition of |-|,, we obtain

i n—1 N k+l
Z(:)(Z;(E;_1+E;)']y 2+EN Jy + EO ]y) 2 : (3.11)
j=0 ‘n=

1 —
2

Combining Eq. (3.11) and (3.9), by the Cauchy-Schwartz inequality, it follows that

T3 < 2|E°]2+2|E1]2 2|EN|2+3< )y]y|y

ok,  k
+2AtZEN N2 “2 +2At2EN Nte “2].

1
2 I—z
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1369
By Remark (2.32), we known that
-1 kv Apl=t ! k. 1
20y EN )T “2 <Zeo B ) BIUAMEE UL
=0 hy @S :
J-1 k. 1 Atl= 1
_ 2]tz | Bt N+342
_§€0<Ey) hl + €0 Z((Sx]y ) k]-i—%h%/
J= 2 j=0
—1 ki, J-1 k 1
N N+3 Yt g Ny2 ity At N+3\2
2AtY E)J, Zh Zlgz;e (E,") > 21+—02(5x vy C)kahy s
j=0 I—5 j=0 I j=0
From above equation, we obtain that
N+3
Ts< 2]E0|y+2]E1|y |EN|y+3< ) 3 12+ (At 2[18:, di (3.12)
To estimate Ty, using the Cauchy-Schwartz inequality, it follows that
Ty < 16BN g, + (St 28 I8 B g, 6EDI , + (BP0 2
4—4 X=x 5xEx C(]pg x]x 5x]x+4 X=x 5xEx wpe x]x 5x]x
1 N+1 1 1
g IBEN B g, + (Ao 28Ty 1, + IO EDIR g, + (At 2 8.5 1,
N+1
g I8 1, (Bt K2 F
1 1
+1||5xH22 |](25XHZ+(Atwpm)2H(5xK%||(2;sz. (3.13)
Combining (3.4), (3.6), (3.12), (3.13) with (3.3) gives
3 1 N+l
2 (ISENIZ e + 10 EY I, ) + 5 10:H2 2 3,
N+1 N+1
(1= (8tw0p)?) (11622 13+ 180y 213, ) + (1= (Atewpn)?) 6KE 1
7 5 1
<7 (1<ERN3 e+ N0 3., ) + 10 HZ 1,
1 1
(1 (Btwpe)?) (1822 13,1, 165 13, ) + (14 (Btwpn)?) KL .
+G1+Gy, (3.14)

where

_ (A2 32 b2 At 2 N N
6= () (I I, 100 g () 1B 6 1, 315)

N+1
Go= [2|E0]y+2|E1]y yEN\y+3( )|]yyy (Atwpe)szSx]y+2]|(25X]y]. (3.15b)
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Similarly, we obtain, by replacing J, with ¢,, that
3 1 N+l
(1S ENIZ e+ 16y EY 3, ) + 1oy HE 21 s
N+12 N+
(1= (bt ) (18 H 1R+ 10002, ) + (1= (Bteopm)?) 16,KE 2

7 0112 0112 2112
< T (1R 5, +18,ED1% 5, ) + 2 16,12 2 .

1 1
+ 1+(Atwpe)2 H5y]§ H(zs 5t H‘Sy]yz H% 5 )t 1+(Atwpm>2 H‘SyK;H(zlez
Y yly Y

+G1+Gy, (3.16)
where
A At 2 1 1 At
Gi= (\ﬁeo> [H@(Sszz”gyEx‘f‘H%(stzzHgygy] (\f ) H(5 Sy EN 5,0 ENH(S v (3.17a)
~ 1 Nt
G2:2[2|Eg|32c+2|E31c’2 IEN|2+3< ) |]x|2 (Atwpe)?||6, ] z”ény] (3.17b)

For the first term of G; and Gy, by the definition of norms ||-||s,r, and ||- |5, ., using the
Cauchy-Schwartz inequality, it can be shown that

1
2
% 2 = 5yH % (5 H 2/]
[6x0yHZ [|5,p, = 2260 hikf
xLEx hi

i=1j=1
~1]-1 ) ’ .
2 2 .
<1Z;]Z€O hhz+1 (0 HZ 11) hl+1k +hh 1 (5yHZz‘—%J) hi*%k]
4
<05 HE 2 (3.18a)
1'1’111’1
1 4e
166 HE2 |2, < —2— |62 |3 1., (3.18b)
mm
1
16,0:HZ2 13, ¢, < k2 16<HE |2 11, (3.18¢)
‘u min
1 4e
18,8y H2 12,5, < 6,2 1, .- (3.18d)
mm

For the second term of G; and G;.

1828y Ex’ —0xEy’) 1, 1.
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—-1J-1 —-1]-1

—lzljzyo (8:6,EY) 2hk+1+;]zyo (6:0xEy )hik;. 1

1-1]-1
—2) ) podxdyEy-8x0xEg hiky, 1
i=17=0

=:A1+Ar+As;.

By the Cauchy-Schwartz inequality and the definition of the norms ||-{[s,£,, ||-[ls,E,, |*]x
and |-[,, we have

Ar=)_) 1o

i=1;j=0

I-1]-1 [(SyEJIC\] 1 —(SyEJIX L 2
2

1/-1
_ZZyo[hh (6,EN %)Zhi%kﬁ%-l—hih

i=1=0 1+ J+

4110
< (10 EY I g, +EXD), (3.19)
min
4110
Ao < B (I6EY 3., +1E ). (3.190)

min
To estimate A3, we have

I-1]-1
A3=2Y"Y uob:EY -6,:6,:8,E) hik;
i=1j=1
I-1]-1
=2 2 E}lo(sti\l'(sxéx(syE;]hikj
i:lj:()
[-2]-1
:_zzzyoa OxEy [ 0:0 E;il/hHlk
i=1j=1
J—1

ki k.
+2p0) [&Ef}{j-éxéyE;’ SL6EN, ed,EY | .
]:1 i 3 77] I— 1

The first and third equal sign come from Lemma 3.1, the second equal sign comes from
the PEC boundary condition (2.30).

Using the similar technique as in (3.19a), and the PEC boundary condition (2.30), we
have

4po
A< L (1B IR g, + 10, EY B, )- (3.20)

min
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Combining the (3.19a), (3.19b) and (3.20) give

18 (84 Ex' = E)) 13,1,

4
< i (I8N B+ EY I8 I,

min

+ Y BN 16, + 110y E I3, )- (3.21)
Similarly, we have

16,0, EN =8N 211

4p
< i (1B g, + B B 9B 1

+IEY B+ I8EY I3, + 10, EN 3, )- (3.22)

Combining (3.18a)-(3.18d), (3.21), (3.22) with (3.15a) and (3.17a), we have

Lo2AP2, 1 1 12 "
Gi1+Gi < orH? oy H?
G < Gz i) (IOHE s 19 s

18 EN 2 6, +IEN 2+ 16EN I3,
+ Y B+ IEN 136, + 1, EN 1., )- (3.23)

The key of estimate G, and G; is to eliminate E} and E;. Take j=j"in (2.24), i=1i"in (2.25)
and let m =0 in both equations to get

At At 1
EL=E+ 20, Hi - *L%.l.,
+2.]
At LAt
E;:E(y’ (5H2 ; :
€ 7 1ij+1

where i’=1,I-1and j'=1,]—1. Thus, together with the definitions of |-|, and |-|, implies
that

|E1\2<2]E0]2+4<A> 16, H2!2+4( ) 21,

|E1]y<2|E0]y+4(A) Ex Hz\y+4( ) I 2
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Then, we have

s 1 02, |70[2 Ni2_|pNp2 AfN27 Lo o
G2+G2§§ 6(|Ex|x+|Ey‘y>_’Ex ‘x_|Ey |y+11(g> (Uy2|y+|]§|x)

41 N+1
+(Atwpe>2<”5y]x ZH(Syh—’—H(SXIy zugxfy)
At 1 i
+8(2 )(réxH,%!f;HéyHé\i)]- (8.24)

Denote

(At)? /1 1
o (i, V12, )
combining (3.14), (3.16), (3.23) and (3.24) gives

(Z—2Ccfl) (o], .+
+<%_2ccﬂ)(|ﬁy|§+w§|> £ (o
+ (1 (o) (o™
03w
+ (1 - (Atwpm)z) <

<3 (e

+3(

Cepi=

+H5 EN

+H5 EN

)
(5sz>

5:Ey oEx

N+2 N+2

+ o

6y H:
)
./].1/
o)
oyx
2

51<Z>
)

1
5,H?

N+%

ot

Ox]x
2

Oy }j

2
xKé\H-l
0xK;

N+3

N+3

OyJx

+H5 gKN+1

+H(5 g0

‘5 ES

(SEX Yok, SyEx

y\;) + (3420 (
+<1+(Atwpe)2>< 1l 5l

+ (14 (Atwpn)?) (|2

11(A)2 /1 1o
= (Ilf!x+liy2!y)+

+ (14 (Atewope)?) (18:K2B k. + 10y KE I . ) (3.25)

2
i)

y]y

OxH;

(sx]y+H5y]x

)

(\5 HE 2|6, HE 2 )

)

(M\ Oy Jx

+H5 K!

0K,
4(At)

which implies the required estimate (3.1) if

At<min{ VHoco mm mm V2 1 }

2 h%mn +k%n1n \@wpe ' Wpm
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We can conclude the proof of the Theorem 3.1. ]

3.3 Stability of the Yee scheme in the discrete L> and H! norm

Replacing 6, by the identity operator I and arguing similarly to that in the proof of The-
orem 3.2. We can prove the following result.

+3 n+i o ontj 1
2. > noESM nr 2 2, K -
Theorem 3.2. For n >0, let E"z+%,;’ Eyz,]+%' HZZ‘+%J’+%' ]xl-_‘_%,]/ ]y1]+1, 2114 be the solu

tion to the fully discrete Yee scheme (2.24)-(2.29) with the PEC boundary condition (2.30), and
possesses the following regularity property:

E,E,,H,€C([0,T],C*(2)),
Jo Jy. Kz € C([0,T],CH(QD)).

If the time step size constraint

At < m1n{ ‘uoe mln mm ﬁ 1 }

2 h%nm +k12mn \@wpe ' Wpm

is satisfied, then the following estimate holds:

n+3 n+i n+
VERI, -+ IEIZ, 2 1 A+ U2 13+ I E 2 [+ K,
sc{uEﬁanﬁHEguEﬁwzuhﬂu;|\,y+|\H;||HZ+HI<iHKZ}. (3.26)

Combining Theorems 3.1 and Theorems 3.2, we can obtain the stability result in the
discrete H! norm.

+3 n+i ontl 1
3. > "o EM i 2 2, K -
Theorem 3.3. For n>0, let Exw%,], Eylﬁ%, Hzi+%,j+%’ ]xi+%,], ]y1]+1, 214 , be the solu

tion to the fully discrete Yee scheme (2.24)-(2.29) with the PEC boundary condztzon (2.30), and
possesses the following reqularity property:

E.,Ey,H, €C'([0,T],C3(Q0)),
Jx Jy K= €CH([0,T],C1(Q)).

If the time step size constraint

At<min{ v Ho€o mm mm \ﬁ 1 }

2 hrzmn +k%n1n \@wpe ’ Wpm

is satisfied, then the following estimate holds:

1 +1 1 1
[E 7+ 17 2117+ 1 HE 2 1+ (KR SC{ IECIS+I1T2 13+ [ HZ (17 + IIK%II%}, (3.27)



X. X. Bai and H. X. Rui / Adv. Appl. Math. Mech., 13 (2021), pp. 1355-1383 1375

where, forn > 0
1 n+i2 n+3 n+ n+
IIE"II%ZHE”H%ﬁrIIE”H%ﬁI(E” EDIL W23 =10 207+ 10y 21, + 10 20y )R,
n+i n+1 n+1
1Hz 2| = [1Hz 2|12, + [ Hz 2], KT = [1KE 13, + (KR

This indicates that the fully discrete Yee scheme is conditionally stable in the discrete H' norm
when the time step size constraint

/ 2
At < min { VOGO hmlnkmm \/E 1 }

2
2 m1n+km1n \/>wp€ Wpm
is satisfied.

4 Numerical results and discussion

In this section, some numerical experiments using the Yee scheme on non-uniform
meshes have been carried out. We use Examples 4.1 and 4.2 to demonstrate the new
energy stability, and investigate the convergence rates in discrete L?> and H'! norms on
non-uniform rectangular and cubic meshes, respectively. In Example 4.3, we will numer-
ically simulate the electromagnetic wave propagation in the metamaterial to show the
backward wave propagation phenomenon. All our tests were carried out using MAT-
LAB 2017b running on Dell Inspiron 7420 laptop with 12GB of RAM and 2.60GHz CPU.

In 2D case, denote the values of the exact solution of metamaterial Maxwell’s

: : 1
equations (2.1)-(2.8) at the staggered points by Ey (t”)H_ 7 Ey(t”)ij+1, Hz(tn+2)i+ Iy
Jx (2" +2)Z+1 o Jy (" +2) j+1 and K; ("), 4 i+1,+1 define the error of Yee scheme as follows
n n _ n n
Exioy = Bx(t)iyy = Bxity Eyijny =Ev() 1 =By
n+2 1o+l n+2 n+y oot n+3
T =g =R
n+§ _ n+i _ n+3 n+1 _ n+1 _ pontl
My oy = HelE 2>i+%,]-+; HZZ’+%J+%’ Kty =R iy 1y

Denote EY;.,pp and E},,, as the energy in the H! semi-norm and in the L? norm, respec-
tively.

2
n _ ni2 n n
Efnsop = [10xEX I3, , 5.E +H‘5 Ex H(SE +H(SyEy 5,E,
2 2 2
n+2 n+§ n+1i n+3
+[o,)" +{[8.]7 5,1 +|[8, 77
OxJx 5x]y Oy Jx Oyly
2 2
+3 +3
’5H" : H5 H +H5y ot
5)(Hz 5sz 6XKZ (5sz
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n+1 n+i ntl
Efoop = ExlE, +IEGIIE, + 11T 2 17,4 1y 2 1, + I H=2 1 + 1K ..

Let ErrH1s2D and ErrL.22D be the absolute errors in the H! semi-norm and in the 1.2
norm, respectively.

2
ErrH1s2D = <||5x5;1||(25xEx+ 5

n 2 n
£t 18y&3 (5, + H‘Sygy

5.E]

2
dyEy

n+i 2
2

Oy Ty

dyly

1
2\ 2
4
oyKz

1

nti nti nti :
EHL22D=<||5§H%x+||5ﬂ7éy+|\~7x ATy G, 2\!%4#”’@“!’%@) -

ntl 2
5, T2+

yJx

ntl 2
oy
xJy

n+1 2
ox Ty *
(SI]X

+ + +

2
n+%

1|2 2
oM 4|8, He + |6 A 5XKZ+H5y/cg“

5:H: 8,H-

Example 4.1. We choose a rectangular physical domain Q= (0,1) x (0,1) and eg=po=1,
I'n=Te=wpm = wpe = 1. The spatial partition is [0:4:0.5—54,0.5:h/2:1] x [0:k:0.5—k,0.5:
k/2:1], which is the same as in [14]. The exact solution of this 2D problem is given by:

E=We ™, H,=cos(mx)cos(mty)e ™,
J=We ™n?t, K,=cos(mx)cos(rty)e ™ m?t,
g=We "t
f=cos(rtx)cos(rty)e ™ (=37 +7t),

(4.1)

where g=(gx,8y)7, f are the right-hand side source term of Egs. (2.1)-(2.3), respectively,
W = (cos(mrx)sin(7y),—sin(7tx)cos(rty)) .

In order to verify the Theorems 3.1 and 3.2, we consider (4.1) without source term.
We take the mesh size h=k=1/64, then hmin =kmin =1/128, the time step size constraint
as following

1 [ K2 K2 2 1
At < ming 4 /=0 len’\/»,i
2 hmin+kmin \@T[ T

} =2.8x107°3. (4.2)

Thus, we can choose At =103, C =3 in Theorems 3.1 and 3.2, then run total 10000 time
steps. The energy stability results are presented in Fig. 1. From Fig. 1, we can clearly the
energy in H! sei-norm and L? norm at any time are bounded by three times the initial
energy.

Inspired by the result of [14], the covergence result in the L?> norm of Yee scheme
is superconvergence on non-uniform rectangular meshes. Here, we make a thorough
inquiry about he convergence result in the H! semi-norm of Yee sheme. We take the
mesh step sizes h=k varying from 1/4 to 1/256, then, choose the fixed time step size At=
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Figure 1: Time evolution of energy in H! semi-norm and L? norm in Example 4.1.

Table 1: Errors and convergence rates of the Yee scheme on non-uniform rectangular grids.

h ErrH1s2D  Rate ErrL.22D Rate
1/4  4.1889E-02 - 7.8334E-03 -
1/8  1.1201E-02 1.9030 1.9518E-03 2.0048

1/16 2.8803E-03 1.9593 4.8781E-04 2.0004
1/32 7.2943E-04 1.9814 1.2195E-04 2.0001
1/64 1.8348E-04 1.9911 3.0485E-05 2.0001
1/128 4.6006E-05 1.9958 7.6204E-06 2.0002
1/256 1.1515E-05 1.9983 1.9042E-06 2.0007

104, run total 10000 time steps to calculate the absolute errors, ErrH1s2D and Err.22D,
respectively. The numerical results are presented in Table 1. From Table 1, we can clearly
see the Yee scheme on non-uniform rectangular grids is stable and the convergence rate
in space is approximate second order. This shows that the Yee scheme on non-uniform
rectangular grids is superconvergence in the discrete H! norm.

Similar to the definition of the energy and the absolute errors in 2D case, we can easily
define EY};.sp, Efy3p, ErrH1s3D and ErrL23D, in the 3D case

2
Efnsap = ||‘5En||¢2515+ H‘SHH% 5H+ HMH%

e
5] 5K’

n+i n+1i n+i
Efpsp =IEXIE, +IIEJIE, ++FIELNE + 1T 2115, + 11y 27, ++10= 2115,

n+3 n+i n+3
{2 [+ 1 Hy 2 1+ 2 [+ KR, + K IR, + KR

2
i
0H

1
2 2 \?2
ErrH1s3D = <H55nH§E+H(SHMé 5]+H(51C"+1H(5K> ’
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41 41 1
ErrL.23D= <H5§H%X+ IEM IR, ++HIE IR + 1T 23+ 1Ty 205 ++ 172213,
1

41 41 41 2
2R, 1y I, + e 2H%ﬁH’Q’Z“HiﬁH’%“Hiﬁ\\’@“\!ﬁJ ,

where
2
2 2 2 2
16V 15 =112V ll5,v, + 5.7, &V 5,0, + |0y VR H(syvx

5V

2 2 2 2 2
i I8V + N0V 65| 82 R,
¥y zvy

521);

Example 4.2. In this example, we choose the physical domain is the unit cube Q=1[0,1]3
and all physical parameters being one (i.e., o = po =1y =I'e = wpm = wpe =1). The spatial
partitionis [0:/7:0.5—h,0.5:h/2:1] x [0:k:0.5—k,0.5:k/2:1] x [0:1:0.5—1,0.5:1/2:1], which
is the similar with Example 4.1. The initial condition and the right side of the equation
are computed according to the analytic solution [6] given as below.

E=Ue ‘cost, J=Ue 'sint, (4.3a)
H=Ve ‘cost, K=Ve 'sint, (4.3b)
where
Acosrtxsinmysinrz 71(C— B)sin7rxcos mycosmz
U= | Bsinmxcosmysinnz |, V=| m(A—C)cosmxsinmycosmnz
Csinmxsinmtycosmz 71(B—A)cosmxcosmysinmz

The source term at the right hand side of the equation can be derived as follow

5 (—A—3An?)cosmxsintysinzz
f=€y— —VxH+J=| (—B-3Bn?)sintxcosmysinniz |e ‘cost,
o ) S
(—C—3Cn*)sinmxsinmycosmz

where the constants A=1,B=1/3 and C=—-4/3.

In this example, we explore the energy stability and convergence results of Yee
scheme on nonuniform rectangular meshes in three dimensional. For the energy sta-
bility test, we consider (4.3) without source term. We take the mesh size h=k=1=1/32,
then, we can choose proper parameters At=10"3, C=1, then run total 10000 time steps.
The energy stability results are presented in Fig. 2. In Fig. 2, the energy curves show that
energy in H! sei-norm and L? norm for all time steps are bounded by the initial energy.

In this example, we take a fixed time step size At=10"*, the mesh step sizes h=k=1
varying from 1/4 to 1/64 and then runs total 10000 time steps to calculate the absolute
errors, ErrH1s3D and ErrL23D, in the H! semi-norm and L? norm, respectively. The
numerical results are presented in Table 2. From Table 2, we can clearly see the Yee
scheme on non-uniform cubic grids is superconvergence in the discrete H! norm.



X. X. Bai and H. X. Rui / Adv. Appl. Math. Mech., 13 (2021), pp. 1355-1383 1379

300 AN ~. HIs3D
- n
S~a Efigp
-~
250 ~~o E’
~ca 123D
e E"
200 -~ L23D

Energy

0 PR |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1000011000
Time step n

Figure 2: Time evolution of energy in H! semi-norm and L? norm in Example 4.2.

Table 2: Errors and convergence rates of the Yee scheme on non-uniform cubic grids.

h ErrH1s3D Rate ErrL23D Rate
1/4  2.2247E-01 - 3.9970E-02 -
1/8 5.7572E-02 1.9502 1.0052E-02 1.9914

1/16 1.4616E-02 1.9778 2.5170E-03 1.9978
1/32 3.6810E-03 1.9894 6.2948E-04 1.9995
1/64 9.2385E-04 1.9944 1.5738E-04 1.9999
1/128 2.3135E-04 1.9976 3.9343E-05 2.0001

Example 4.3. In this example, we use the Yee scheme to simulate the classic example of
electromagnetic wave propagations on a non-uniform rectangular grids in metamaterials
originally introduced by Ziolkowski [33]. The metamaterial slab of size [0.024,0.054]m x
[0.002,0.062]m occupies in subdomain [0,0.07]m x [0,0.064]m and the other domain is
filled with vacuum with €y and yo. In addition, the perfectly matched layers (PML)
around the physical domain. The velocity in vacuum is ¢ =1//€ofip = 3.0 x 10°m/s,
and the frequency is chosen as fo=23x 10'°Hz. The H. filed are excited with a line source
located at x=0.004m and y € [0.025,0.035|m. The input signal in space as e~ (x=0.03)/(0.01)*
and in time:

Qonsin(wot) for 0<t<mT,,

()= sin(wot) for mT,<t<(m+n)Ty,
) gomsin(wot) for (m+n)T,<t<(2m-+n)Tp,
0 for (2m-+n)<t,

where T, =1/ fo, and gon (f) =10x3, —15x8, +6x3,, osr(t) =1—[10x2; —15x2 4612 ] with
Xon=t/mT, and Xof = (t— (m+n)T,)/mT,.
In this simulation, we take m =2, n =12, wy =27fy, h = 10~*m, the metamaterial
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Figure 3: The non-uniform mesh sketch.

parameters as following:

FE:szloss’l, wpezwpmzznx/ﬁﬁxlogs*l,
€0=8.85x10"2C>°N"!m2, no=4mrx10""H,

the time step size At=10"1%s=0.1ps (picosecond), run 5000 time steps.

The initial spatial partition in Fig. 3, then the non-uniform mesh uniformly refined by
dividing each edge into two equal parts. The calculated |H,| fields and E fields at vari-
ous times are presented in Fig. 4. The simulation clearly shows the special phenomena
(backward wave propagation) in metamaterials.

5 Conclusions

In this paper, several new energy identities of Maxwell’s equations in metamaterials with
the PEC boundary condition have been derived. These identities give us new energy
methods in studying Yee scheme on non-uniform meshes. It was proved that the Yee
scheme of metamaterial Maxwell’s equations with the PEC boundary condition on non-
uniform meshes is conditionally stable in the discrete L? and H'! norms. Numerical ex-
periments confirm the analysis on stability of Yee scheme. Moreover, we find that the Yee
scheme has superconvergence in discrete H! and L? norms on non-uniform rectangular
and cubic meshes. In the future, we will give the convergence analysis of the supercon-
vergence in discrete H! norm.
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Figure 4: |H;| fields (left) and E fields (right) at various time steps.
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