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Abstract. This article deals with an averaging principle for Caputo fractional stochas-
tic differential equations with compensated Poisson random measure. The main con-
tribution of this article is impose some new averaging conditions to deal with the av-
eraging principle for Caputo fractional stochastic differential equations. Under these
conditions, the solution to a Caputo fractional stochastic differential system can be ap-
proximated by that of a corresponding averaging equation in the sense of mean square.
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1 Introduction

Most systems in science and industry are perturbed by some random environmental ef-

fects, described by stochastic differential equations with (fractional) Brownian motion,

Lévy process, Poisson process and etc. A series of useful theories and methods have

been proposed to explore stochastic differential equations, such as invariant manifolds ,

averaging principle , homogenization principle. All of these theories and methods de-

velop to extract an effective dynamics from these stochastic differential equations, which
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is more effective for analysis and simulation. For averaging principle, its often used to

approximate dynamical systems with random fluctuations, and provides a powerful tool

for simplifying nonlinear dynamical systems. The essence of averaging principle is to

establish an approximation theorem that a simplified stochastic differential equation is

presented to replace the original one in some senses.

The averaging principle for stochastic differential equations was first introduced by

Khasminskii in paper [1], which extending the deterministic result of [2]. Since then,

the theory of averaging principle for stochastic differential equations driven by different

noise are considered by many authors, see [3–7] .

Because the non-local property of time derivatives, the model of Caputo fraction-

al stochastic differential equations applied in many areas, such as biology, physics and

chemistry and etc.. Existence and uniqueness of solution for Caputo fractional stochastic

differential have been discussed by many papers. Quite recently, some types of Caputo

fractional stochastic (partial) differential equations problem are considered from the dy-

namic viewpoint. For example, in paper [8], existence of stable manifolds is established.

In [9], the existence of global forward attracting set for stochastic lattice systems with a

Caputo fractional time derivative in the weak mean-square topology is considered. The

asymptotic distance between two distinct solutions under a temporally weighted norm

is discussed by [10]. To the best of our knowledge, averaging principle for Captuo frac-

tional differential equations only considered by two articles in present, see [11] and [12],

it is worth noting that the average conditions given in these two papers are different, un-

der this conditions, the corresponding averaging conclusions are drawn respectively. In

this paper, we also impose a new averaging condition for our framework, which let us to

derive the averaging principle for our consider problem from the theoretical derivation.

Let (Ω,F ,Ft,P) be a complete stochastic base. Let (Z,B(Z)) be a measurable space

and ν(dz) a σ−finite measure on it. Let p = (p(t)),t ∈ Dp, be a stationary Ft−Poisson

point process on Z with characteristic measure ν. The counting measure associated with

p(t) is given by, for A ∈B(Z), N((0,t],A) := ♯{t ∈ Dp : 0< s ≤ t,p(s) ∈ A}. Assume that

b :R+×R
d→R

d,σ :R+×R
d→R

d×R
m and F :R+×R

d×Z→R
d are measurable functions.

For α∈ ( 1
2 ,1), we consider a stochastic fractional differential equation with compensated

Poisson random measure of the form:

Dα
t Xǫ(t)=ǫb(t,Xǫ(t−))dt+

√
ǫσ(t,Xǫ(t−))dBs+

√
ǫ

∫

Z
F(t,Xǫ(t−),z)Ñ(dt,dz), (1.1)

where ǫ is a small positive parameter, Ñ(dt,dz) :=N(dt,dz)−dtv(dz) is the compensated

Poisson martingale measures corresponding to N(dt,dz) and {Bt}t≥0 is an m-dimensional

standard Ft-adapted Brownian motion. We note that the above equation is a classical e-

quation if α=1, which has been studied by many authors. Under some conditions, which

can be compared with the classic case as in [12], we derive an averaging principle for the

stochastic fractional differential system (1.1).

This article is organized as follows. In Section 2 we will give some assumptions and

basic results for our theory. The solution of convergence in mean square between the



An Averaging Principle for Caputo Fractional Stochastic Differential Equations 3

stochastic fractional differential equations with Poisson random measure and the corre-

sponding averaged equation are considered in Section 3.

Throughout this paper, the letter C below will denote positive constants whose value

may change in different occasions. We will write the dependence of constant on parame-

ters explicitly if it is essential.

2 Stochastic differential equations with Poisson random mea-

sure

2.1 Basic Hypothesis and some useful results

We impose the following assumptions to guarantee the existence of the solution.

H1 (Lipschitz condition). There exists a bounded function K1(t)> 0 such that for all

x,y∈Rd,

|b(t,x)−b(t,y)|2+|σ(t,x)−σ(t,y)|2+
∫

Z
|F(s,x,z)−F(s,y,z)|2ν(dz)

≤ K1(t)(|x−y|2).

H2 (Growth condition). There exists a bounded function K2(t)> 0 such that for all

x∈Rd,

|b(t,x)|2+|σ(t,x)|2+
∫

Z
|F(t,x,z)|2ν(dz)≤K2(t)(1+|x|2).

We also assume that the Ki(t) have the same upper bound K, for i=1,2.

To deal with fractional differential equation, we need the following generalization of

Gronwall’s lemma for singular kernels [13, 14].

Lemma 2.1. Suppose that b≥0 and β>0. Assume that a(t) and u(t) are nonnegative and locally

integrable functions on 0≤ t<T, satisfying

u(t)≤ a(t)+b
∫ t

0
(t−s)β−1u(s)ds.

Then

u(t)≤ a(t)+
∫ t

0

[

∞

∑
n=1

(bΓ(β))n

Γ(nβ)
(t−s)nβ−1a(s)

]

ds, 0≤ t<T.

2.2 Existence and Uniqueness

In this part, we consider the existence and uniquness for the following equation under

conditions H1 and H2:

Dα
t X(t)=b(t,X(t−))dt+σ(t,X(t−))dBt+

∫

Z
F(t,X(t−),z)Ñ(dt,dz). (2.1)
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Definition 2.1. A map X(t) : [0,T]→ L2(Ω,Rd) is called a solution of the initial value problem

(2.1) if X(0)= x0 and X(t) is càdlàg and satisfies for t∈ [0,T],

X(t)=x0+
1

Γ(α)

∫ t

0
(t−s)α−1b(s,X(s−))ds+

1

Γ(α)

∫ t

0
(t−s)α−1σ(s,X(s−))dBs

+
1

Γ(α)

∫ t

0

∫

Z
(t−s)α−1F(s,X(s−),z)Ñ(ds,dz). (2.2)

Using similarly methods as [15], we can derive the global existence and uniqueness of

solutions for Eq.2.1. Similar problem also considered by [13] under different framework.

In the following, we just given a priori estimate for the solution X(t), which assure the

existence of workspace for our problem.

Theorem 2.1. Under conditions of H1 and H2, for every x0 ∈ L2(Ω,Rd) there exists a unique

solution to Eq. (2.2), such that

sup
0≤t≤T

E|X(t)|2 <∞.

Proof. The existence and uniqueness can be easily proved by the contraction mapping

argument and hence omitted here. Next, we estimate the solution X(t) in L∞([0,T],L2(Ω;

R
d)). By employing the simple arithmetic inequality

|a+b+c+d|2 ≤4(|a|2+|b|2+|c|2+|d|2),

we have

E|X(t)|2 ≤4E|x0|2+4E

∣

∣

∣

∣

1

Γ(α)

∫ t

0
(t−s)α−1b(s,X(s−))ds

∣

∣

∣

∣

2

+4E

∣

∣

∣

∣

1

Γ(α)

∫ t

0
(t−s)α−1σ(t,X(s−))dBs

∣

∣

∣

∣

2

+4E

∣

∣

∣

∣

1

Γ(α)

∫ t

0

∫

Z
(t−s)α−1F(s,X(s−),x)Ñ(ds,dz)

∣

∣

∣

∣

2

=:4I1+4I2+4I3+4I4.

For I2, by Cauchy-Schwarz inequality and the condition H2, we have

I2≤
TK

Γ(α)2

∫ t

0
(t−s)2(α−1)(1+E|X(s)|2)ds

≤ TK

Γ(α)2

[

t2α−1

2α−1
+
∫ t

0
(t−s)2(α−1)E|X(s)|2ds

]

≤ K

Γ(α)2

T2α

2α−1
+

TK

Γ(α)2

∫ t

0
(t−s)2(α−1)E|X(s)|2ds,

where we have used the fact that {s : X(s) 6=X(s−)} is countable.
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For I3, by Itô isometry and the condition H2, we have

I3≤
K

Γ(α)2

∫ t

0
(t−s)2(α−1)(1+E|X(s)|2)ds

≤ K

Γ(α)2

T2α−1

2α−1
+

K

Γ(α)2

∫ t

0
(t−s)2(α−1)E|X(s)|2ds.

In a similar way, for I4 we have

I4=
1

Γ(α)2

∫ t

0

∫

|x|<c
(t−s)2(α−1)E|F(t,X(s−),z)|2ν(dx)ds

≤ K

Γ(α)2

T2α−1

2α−1
+

K

Γ(α)2

∫ t

0
(t−s)2(α−1)E|X(s)|2ds.

Therefore, we get

E|X(t)|2 ≤
(

4E|x0|2+
4K

Γ(α)2

T2α−1

2α−1
(2+T)

)

+
4TK+8K

Γ(α)2

∫ t

0
(t−s)(2α−1)−1E|X(s)|2ds.

By setting r=4E|x0|2+ 4K
Γ(α)2

T2α−1

2α−1 (2+T) and applying Lemma 2.1, we have

E|X(t)|2 ≤r2

(

1+
∫ t

0

∞

∑
n=1

( 4TK+8K
Γ(α)2 Γ(2α−1))n

Γ(2nα−n)
(t−s)n(2α−1)−1ds

)

≤r2

(

1+
∞

∑
n=1

( 4TK+8K
Γ(α)2 Γ(2α−1)T2α−1)n

Γ(2nα−n+1)

)

=r2
(

1+E2α−1,1

(4TK+8K

Γ(α)2
Γ(2α−1)T2α−1

))

<∞

for all t ∈ [0,T], where E2α−1,1(·) is a two-parameter function of the Mittag-Leffler type

[13]. Then we have

sup
0≤t≤T

E|X(t)|2 <∞.

This completes the proof of the theorem.

3 An averaging principle

We now study an averaging principle for a standard stochastic integral equation in Rd:

Xǫ(t)=x0+
ǫ

Γ(α)

∫ t

0
(t−s)α−1b(s,Xǫ(s−))ds+

√
ǫ

Γ(α)

∫ t

0
(t−s)α−1σ(s,Xǫ(s−))dBs

+

√
ǫ

Γ(α)

∫ t

0

∫

Z
(t−s)α−1F(t,Xǫ(s−),z)Ñ(ds,dz), (3.1)
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where x0 is a random vector satisfy E|x0|2<∞, and ǫ∈(0,ǫ0] is a positive small parameter

with ǫ0 a fixed number.

To ensures an averaging principle, we need to assume the following condition.

H3: There exist measurable functions b̄ :Rd→R
d,σ̄ :Rd→R

d×R
m and F̄ :Rd×Z→R

d

such that for all t>0,

1

t2α−1

∫ t

0
(t−s)2(α−1)|b(s,x)− b̄(x)|2ds≤ ϕ1(t)(1+|x|2), (3.2)

1

t2α−1

∫ t

0
(t−s)2(α−1)|σ(s,x)−σ̄(x)|2ds≤ ϕ2(t)(1+|x|2), (3.3)

1

t2α−1

∫ t

0
(t−s)2(α−1)

∫

Z
|F(s,x,z)− F̄(x,z)|2ν(dz)ds≤ ϕ3(t)(1+|x|2), (3.4)

where ϕi(t) are positive bounded function with limt→∞ ϕi(t)=0 for i=1,2,3.

Remark 3.1. Note that, when we take α = 1, the above conditions are consistent with

classic case.

Our main result, Theorem 3.1, states that the solution of original equation (3.1) is well

approximated, in the sense of mean square, by that of following equation

Zǫ(t)=x0+
ǫ

Γ(α)

∫ t

0
(t−s)α−1b̄(Zǫ(s−))ds+

√
ǫ

Γ(α)

∫ t

0
(t−s)α−1σ̄(Zǫ(s−))dBs

+

√
ǫ

Γ(α)

∫ t

0

∫

Z
(t−s)α−1 F̄(Zǫ(s−),z)Ñ(ds,dz). (3.5)

Theorem 3.1. Assume Hypotheses H1−H3. Then, for arbitrary α ∈ ( 1
2 ,1), L > 0 and β ∈

(0,2α−1), there exists a constant CL,α independent of ǫ, such that that

sup

0≤t≤Lǫ
−β

2α−1

E|Xǫ(t)−Zǫ(t)|2≤CL,αǫ1−β. (3.6)

Proof. Let [0,T] be a fixed time interval. For any t∈ [0,T] we have

Xǫ(t)−Zǫ(t)=
ǫ

Γ(α)

∫ t

0
(t−s)α−1[b(s,Xǫ(s−))− b̄(Zǫ(s−)]ds

+

√
ǫ

Γ(α)

∫ t

0
(t−s)α−1[σ(s,Xǫ(s−))−σ̄(Zǫ(s−)]dBs

+

√
ǫ

Γ(α)

∫ t

0

∫

Z
(t−s)α−1[F(s,Xǫ(s−),z)− F̄(Zǫ(s−),z)]Ñ(ds,dz).
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Directly, we get

E|Xǫ(t)−Zǫ(t)|2

≤3
{

E
∣

∣

∣

ǫ

Γ(α)

∫ t

0
(t−s)α−1[b(s,Xǫ(s−))− b̄(Zǫ(s−))]ds

∣

∣

∣

2

+E
∣

∣

∣

√
ǫ

Γ(α)

∫ t

0
(t−s)α−1[σ(s,Xǫ(s−))−σ̄(Zǫ(s−))]dBs

∣

∣

∣

2

+E
∣

∣

∣

√
ǫ

Γ(α)

∫ t

0

∫

Z
(t−s)α−1[F(s,Xǫ(s−),z)− F̄(Zǫ(s−),z)]Ñ(ds,dz)

∣

∣

∣

2}

=:3(J1+ J2+ J3).

For J1, we have

J1=E
∣

∣

∣

ǫ

Γ(α)

∫ t

0
(t−s)α−1[b(s,Xǫ(s−))− b̄(Zǫ(s−))]ds

∣

∣

∣

2

≤ 2ǫ2

Γ(α)2

{

E
∣

∣

∣

∫ t

0
(t−s)α−1[b(s,Xǫ(s−))−b(s,Zǫ(s−))]ds

∣

∣

∣

2

+E
∣

∣

∣

∫ t

0
(t−s)α−1[b(s,Zǫ(s−))− b̄(Zǫ(s−))]ds

∣

∣

∣

2}

.

Due to the Cauchy-Schwarz inequality, conditions H1 and (3.2) in H3, we get

J1≤
2tKǫ2

Γ(α)2

∫ t

0
(t−s)2(α−1)E|Xǫ(s−)−Zǫ(s−)|2ds (3.7)

+
2Kǫ2

Γ(α)2
t2α

{

1

t2α−1
E
∫ t

0
(t−s)2α−2|b(s,Z(s−))− b̄(Zǫ(s−))|2ds

}

≤2tKǫ2

Γ(α)2

∫ t

0
(t−s)2(α−1)E|Xǫ(s−)−Zǫ(s−)|2ds+

2Kǫ2

Γ(α)2
t2α ϕ1(t)

(

1+E|Zǫ(s−)|2
)

.

For J2, using the Itô isometry, we have

J2=
ǫ

Γ(α)2

∫ t

0
(t−s)2(α−1)E|σ(s,Xǫ(s−))−σ̄(Zǫ(s−))|2ds

≤ 2ǫ

Γ(α)2

{

∫ t

0
(t−s)2(α−1)E|σ(s,Xǫ(s−))−σ(s,Zǫ(s−))|2ds

+
∫ t

0
(t−s)2(α−1)E|σ(s,Zǫ(s−))−σ̄(Zǫ(s−))|2ds

}

.
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By conditions H1 and (3.3) in H3 , we obtain

J2≤
2ǫ

Γ(α)2

{

∫ t

0
(t−s)2(α−1)E|σ(s,Xǫ(s−))−σ(s,Zǫ(s−))|2ds

+
∫ t

0
(t−s)2(α−1)E|σ(s,Zǫ(s−))−σ̄(Zǫ(s−))|2ds

}

≤ 2Kǫ

Γ(α)2

∫ t

0
(t−s)2(α−1)E|Xǫ(s−)−Zǫ(s−)|2ds

+
2Kǫ

Γ(α)2
t2α−1ϕ2(t)

(

1+E|Zǫ(s−)|2
)

. (3.8)

Finally, we take estimate on J3. Using the Itô isometry yields

J3=E
∣

∣

∣

√
ǫ

Γ(α)

∫ t

0

∫

|x|<c
(t−s)α−1[F(t,Xǫ(s−),z)− F̄(Zǫ(s−),z)]Ñ(ds,dz)

∣

∣

∣

2

≤ 2ǫ

Γ(α)2

{

∫ t

0

∫

Z
(t−s)2(α−1)E|F(s,Xǫ(s−),z))−F(s,Zǫ(s−),z))|2ν(dz)ds

+
∫ t

0

∫

Z
(t−s)2(α−1)E|F(s,Zǫ(s−),z)− F̄(Zǫ(s−),z)|2ν(dz)ds

}

,

and so, by H1 and (3.4) in H3, we have

J3≤
2Kǫ

Γ(α)2

∫ t

0
(t−s)2(α−1)E|Xǫ(s−)−Zǫ(s−)|2ds

+
2ǫ

Γ(α)2
E
∫ t

0

∫

Z
(t−s)2(α−1)|F(s,Z(s−),z)− F̄(Zǫ(s−),z)|2ν(dz)ds

≤ 2Kǫ

Γ(α)2

∫ t

0
(t−s)2(α−1)E|Xǫ(s−)−Zǫ(s−)|2ds

+
2Kǫ

Γ(α)2
t2α−1 ϕ3(t)

(

1+E|Zǫ(s−)|2
)

. (3.9)

Therefore, from (3.7)–(3.9), Theorem 2.1, one can get

E|Xǫ(t)−Z(t)|2

≤6tKǫ2

Γ(α)2

∫ t

0
(t−s)2(α−1)E|Xǫ(s−)−Zǫ(s−)|2ds+

6Kǫ2

Γ(α)2
t2α ϕ1(t)

(

1+E|Zǫ(s−)|2
)

+
6Kǫ

Γ(α)2

∫ t

0
(t−s)2(α−1)E|Xǫ(s−)−Zǫ(s−)|2ds+

6Kǫ

Γ(α)2
t2α−1ϕ2(t)

(

1+E|Zǫ(s−)|2
)

+
6Kǫ

Γ(α)2

∫ t

0
(t−s)2(α−1)E|Xǫ(s−)−Zǫ(s−)|2ds+

6Kǫ

Γ(α)2
t2α−1ϕ3(t)

(

1+E|Zǫ(s−)|2
)

≤6ǫT2α−1
(C1Kǫ

Γ(α)2
T+

C2K

Γ(α)2

)
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+6ǫ
( Kǫ

Γ(α)2
T+

2K

Γ(α)2

)

∫ t

0
(t−s)(2α−1)−1E|Xǫ(s)−Zǫ(s)|2ds,

where we have used the fact that {s : Xǫ(s) 6=Xǫ(s−) or Zǫ(s−) 6=Zǫ(s)} is countable. By

setting r1=6( C1Kǫ
Γ(α)2 T+ C2K

Γ(α)2 ) and r2=6( Kǫ
Γ(α)2 T+ 2K

Γ(α)2 ), from Lemma 2.1, we have

E|Xǫ(t)−Zǫ(t)|2 ≤ǫT2α−1r1

(

1+
∫ t

0

∞

∑
n=1

(r2ǫΓ(2α−1))n

Γ(2nα−n)
(t−s)n(2α−1)−1ds

)

≤ǫT2α−1r1

(

1+
∞

∑
n=1

(r2ǫΓ(2α−1)T2α−1)n

Γ(2nα−n+1)

)

≤ǫT2α−1r1

(

1+E2α−1,1(r2ǫΓ(2α−1)T2α−1)
)

.

By selecting β∈ (0,2α−1) and L> 0, such that for every t∈ (0,Lǫ
−β

2α−1 )⊆ [0,T], we obtain

(3.6). This completes the proof.
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