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Abstract. Focusing-defocusing mixed coupled nonlinear Schrödinger equation of lo-

calised waves in a two-mode nonlinear fiber is investigated. Novel localised wave so-

lutions are constructed by employing the Darboux-dressing transformation. The set of

such solutions includes rogue waves on the soliton background. In addition, for the

main characteristics of these solutions, we give the graphs to make readers more aware

of the characteristics of these solutions. Hopefully our results can be used to help enrich

rogue waves phenomena in nonlinear wave field.
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1. Introduction

Rogue waves are used to describe huge catastrophic waves unexpectedly arising on

relatively calm ocean surface [12] and to characterise extreme wave events in optics [20],

plasma [16], Bose-Einstein condensate [5], finance [29, 30], and so on. It is the common

belief that rogue waves have three main characteristics:

1) The amplitude of the wave is more than twice (or larger) than the average amplitude

of the significant wave height [1].

2) They appear from nowhere and disappear without trace [2].

3) The probability distribution function of the amplitude obeys the unusual L-shaped

statistics, which means that the frequency of the wave is higher than predicted by the

classical Gaussian distribution [1,20].
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Recently, rogue waves have been encountered in optical fibers, deep water waves and other

fields where nonlinear Schrödinger (NLS) equations are employed. In particular, Pere-

grine [19] constructed a first-order rational solution of the NLS equation by mathematical

method, which is a formal description of a single rogue wave. This solution, the peak am-

plitude of which is three times of the average height, was later named after him. The rogue

waves attracted a great attention in recent years — cf. [6,7,10,31,34,35], and it is worth

noting their close connection to NLS and coupled nonlinear Schrödinger equation(CNLS),

Li et al. [13] determined reduced and non-reduced vector rogue wave solutions of CNLS

using the generalised Darboux transformation (DT), Feng et al. [8] employed DT in order

to construct multi-breather solutions of NLS on the background of elliptic functions and ex-

pressed them via theta functions, Zhang et al. [33] used DT in new localised wave solutions;

and so on.

On the other hand, the Darboux-dressing transformation has been used in the study of

the classical Schrödinger equation [17], integrable vector nonlinear Schrödinger equations

[18], the Manakov system [23], the Kundu-nonlinear Schrödinger equation [25], the cou-

pled cubic-quintic nonlinear Schrödinger equations [28] and in other fields [24,26,27,32].

Numerous works are devoted the two-component case (as so called the Manakov sys-

tem)

iut +
1

2
ux x +σ
�

|u|2 + |v|2
�

u= 0, (1.1)

ivt +
1

2
vx x +σ
�

|u|2 + |v|2
�

v = 0,

where u(x , t) and v(x , t) are wave envelopes, and x and t are, respectively, transverse and

longitudinal coordinates [3, 9]. Every subscripted variable in the Eqs. (1.1) refers to the

partial differentiation. If σ = 1, the equations represent the defocusing case, and if σ 6= 1

the focusing case.

In this work, we consider breather and rogue waves of the focusing-defocusing mixed

coupled nonlinear Schrödinger equation (mCNLSEs)
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�
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u = 0, (1.2)
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�
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�
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where u and v are respectively related to the focusing and defocusing type nonlineari-

ties [21]. The terms |u|2u, |v|2v and |v|2u, |u|2v are self-phase and cross-phase modulations.

The Eqs. (1.2) can be regarded as a mixture of the defocusing and focusing conditions of

the Manakov system (1.1) and are vigorously studied. For example, Tian et al. [21] consid-

ered initial-boundary value problems related to the Fokas method, Vijayajayanthi et al. [22]

studied bright-dark solitons and their collisions in mixed N -coupled nonlinear Schrödinger

equations, Kanna et al. [11] investigated the soliton collisions with a shape change by in-

tensity redistribution, Ling et al. [14] constructed vector rogue wave and bright-dark rogue

wave solutions by using the Darboux transformation. However, to the best of the our knowl-



24 M.-J. Dong, L.-X. Tian and J.-D. Wei

edge, rogue wave and breather wave solutions are still not connected to the Darboux dress-

ing transformation [17].

This article is organised as follows. In Section 2, we follows the considerations [14,21]

and determine the Lax pair for the Eqs. (1.2). This Lax pair in used in the construction

of the corresponding Darboux transformation and an asymptotic expansion. In Section 3,

we construct exact breather wave solutions. In Section 4, we give the higher order rogue

wave solutions related to the Darboux-dressing transformation and Taylor series expansion.

We visualise certain solutions to discuss interesting nonlinear phenomena. Finally, our

conclusions are given in Section 5.

2. Darboux-Dressing Transformation

Because of complete integrability [14,21], the Lax pair of the Eqs. (1.2) appears as the

compatibility condition Φt x = Φx t for the following pair of linear equations:

Φx = UΦ, Φt = VΦ, (2.1)

where Φ = (φ1,φ2,φ3)
T is a vector eigenfunction in C2, φ1, φ2 and φ3 are the complex

functions of variables x and t, T is the operation of matrix transposition. Besides, U , V are

the 3× 3 square matrices,

U =





iλ −iu∗ iv∗

iu −iλ 0

iv 0 −iλ



 , V =





iλ2 + 1
2 i(u∗u− v∗v) −iλu∗ − 1

2u∗x iλv∗ + 1
2 v∗x

iλu− 1
2 ux −iλ2 − 1

2 iu∗u 1
2 iuv∗

iλv − 1
2 vx −1

2 ivu∗ −iλ2 + 1
2 iv∗v



 ,

where λ ∈ C is the spectral parameter and u∗ and v∗ are the complex conjugate of u and

v, respectively.

Based on the study of [14,21], an appropriate Darboux transformation for the Eqs. (1.2)

can be constructed as follows.

Theorem 2.1. The N-folds Darboux transformation has the form

Φ[N] =▽Φ, ▽ = I3 −
(λ1 −λ

∗
1
)

(λ−λ∗
1
)

Λ[N−1]Λ
∗
[N−1]

Λ
∗
[N−1]

Λ[N−1]

,

where

�

u[N]
v[N]

�

=

�

u[N−1]

v[N−1]

�

+
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∗
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|φ1[N−1]|2 + |φ2[N−1]|2 + |φ3[N−1]|2
×

�

φ2[N−1]

φ3[N−1]

�

,

and

I3 = diag(1,1,1), Λ[N−1] = Φ(x , t,λ1)Z[N−1] =
�

φ1[N−1],φ2[N−1],φ3[N−1]

�T

with

Z[N−1] =
�

z1[N−1], z[2N−1], z3[N−1]

�T
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being column vector contained free real parameters, Φ is the fundamental solution of the Lax

equation (2.1) with λ= λ1 depending on the variables x and t, ∗ denotes the conjugate, Φ is

a column vector function of λ.

Proof. The proof is similar to the proofs in [14,17,27] and is omitted here.

We discover that Ref. [14] mainly uses matrix analysis method to solve mCNLS equa-

tions and to obtain complete classification of non-singular solutions. In this paper, the

breather solution is obtained based on the DT equation and the seed solution, and the

rogue wave is obtained by using Taylor expansion. The main differences are:

1. Kuznetsov-Ma soliton and Akhmediev breather are verified.

2. By changing the parameters, the Peregrine structure and the boomeron type bright

soliton are obtained.

3. The second-order rogue wave are constructed in this paper.

3. Breather Wave Solutions

To derive the exact breather wave solutions of the Eqs. (1.2), we start with seed solu-

tions of the form

u= a1 exp(ikx + iwt), v = a2 exp(ikx + iwt)

with the dispersion relations

w = −a2
1
+ a2

2
−

1

2
k2,

where a1 and a2 are real parameters and k is the wave number. According to [17,18,27],

the corresponding solutions of the Lax system (2.1) have the form

Φ =





φ1(x , t)

φ2(x , t)

φ3(x , t)



 = AFGZ , (3.1)

F = eiΘx , G = eiΛt , (3.2)

where

A=





1 0 0

0 exp(ikx + iwt) 0

0 0 exp(ikx + iwt)



 , (3.3)

and Z = (z1, z2, z3)
⊺ is a free complex vector.

Substituting Φ (3.2) into the Lax pairs (2.1), leads to the following representations of

Θ and Λ:

Θ =





λ −a1 a2

a1 −k−λ 0

a2 0 −k−λ



 , (3.4)
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Λ=





λ2 + 1
2 a2

1 −
1
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2
1
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−1
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1
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−w



 .

It is easily seen that (3.4) satisfies

[Θ,Λ] = ΘΛ−ΛΘ = 0,

Ax + iAΘ − UA= 0,

At + iAΛ− VA= 0.

According to the Eq. (3.2), the matrix F can be written as

F = exp

�

−
ikx

2

�
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where
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Similar calculations yield

G = exp

�

−
iwt

2

�
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 , (3.6)

where
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a) b) c)

d) e) f)

Figure 1: Akhmediev breathers, a1 = i/4, a2 = 1/4, k = 0,λ= i, z1 = 1, z2 = 1. (a, d) z3 = 1, (b, e) z3 = 10,
(c, f ) z3 = 10000.
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a) b)

Figure 2: Kuznetsov-Ma solutions, a1 = i/4, a2 = 0, k = 0,λ= 1/5i, z1 = 1, z2 = 1, z3 = 1.

Substituting (3.5) and (3.6) into (3.1), and according to Theorem 2.1, the correspond-

ing novel breathers are displayed in Figs. 1 and 2.

Solutions in Fig. 1 demonstrate time locality and space periodicity, which is called

Akhmediev breathers [4]. Fig. 2 has opposite characteristics, which is called Kuznetsov-

Ma soliton [15].

4. Novel Rogue Waves

To construct novel rogue wave solutions of the Eqs. (1.2) of exponential and polynomial

functions via Taylor expansions formulas, we choose λ = ±iθ(1 + ǫ), 0 < ǫ < 1,θ =
q

−a2
1
+ a2

2
. The corresponding breather wave solutions (3.2),(3.3) have the form

F(λ)|λ=±iθ (1+ǫ) = Σ
∞
N=0

FNǫ
N ,

G(λ)|λ=±iθ (1+ǫ) = exp

�

θ2i t

2

�

Σ
∞
N=0GNǫ

N ,

where FN , GN are the N -th coefficient matrices of ǫ. Analogously,

Zς = Σ
N
ς=0(z1ς, z2ς, z3ς)ǫ

ς

and

Φ(λ) = |λ=±iθ (1+ǫ) = Σ
∞
N=0ΦNǫ

N ,

ΦN = ℧0 = exp

�

θ2i t

2

�

AΣN
ς=0Σ

N
ι FςGι(z1,N−ς−ι, z2ς,N−ς−ι , z3ς,N−ς−ι).

Moreover, novel rogue waves Σ∞ς=0(z1ς, z2ς, z3ς)ǫ
ς can be written as

Σ
∞
ς=0(z1ς, z2ς, z3ς)ǫ

ς = exp(iΘX + iΛT )L|λ=±iθ (1+ǫ),

where

X = ΣN
ς=0

RNǫ
N , T = ΣN

ς=0
SNǫ

N , L = (L1, L2, L3)
′

.
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We can use Theorem 2.1 to obtain new higher order rogue waves. For N = 1, the first-order

rogue waves have the form

�

u[r1]

v[r1]

�

=

�

u[0]
v[0]

�

+
2(λ∗1 −λ1)φ

∗
1[0]
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×

�

φ2[0]

φ3[0]

�

, (4.1)

where
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2
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 ,
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�
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�
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2 i t
2 )
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 ,
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1 + a2
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�
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2

�

, χ2 = ia4
2 t − ia2
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2 − a2
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�
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2

�

.

Fig. 3 shows three different types of first-order rogue waves to illustrate rogue waves (4.1).

a) b) c)

d) e) f)

Figure 3: First-order rogue waves from Eqs. (4.1), a1 = i/4, a2 = 0, k = 0,λ = 1/5i, z1 = 1, z2 = 1. (a, d)
z3 = 1, (b, e) z3 = 10, (c, f ) z3 = 10000.
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Figs. 3(a,b,d,e) show that the Peregrine structure and boomeron type bright solitons

appear with the increase of z3. According to Figs. 3(b,e), the first-order rogue waves interact

with an amplitude-varying soliton in u and one bright soliton and the first-order rogue

waves in v. The Peregrine bump coexists and interacts with breather-like solitons, and the

breather bends towards to the first-order rogue waves of Eqs. (1.2), cf. Figs. 3(c,f).

Analogously, the second-order rogue waves — i.e. if N = 2, have the form

�

u[r2]

v[r2]

�

=

�

u[r1]

v[r1]

�
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2(λ∗1 −λ1)φ
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.
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a) b) c)

d) e) f)

Figure 4: Second-order rogue waves from Eqs. (4.2), a1 = 0, a2 = 1/2, k = 0, r0 = r1 = 0, l1 = l2 = l3 = 1.
(a, d) s0 = s1 = 0, (b, e) s0 = 0, s1 = 10, (c, f ) s0 = 10, s1 = 0.

a) b) c)

d) e) f)

Figure 5: Second-order rogue waves obtained from Eqs. (4.2), a1 = 0, a2 = 1/2, k = 0, r0 = r1 = s0 = s1 =
0, l1 = l2 = 1. (a, d) l3 = 5, (b, e) l3 = 50, (c, f ) l3 = 1000.
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Fig. 4 shows that the shape of the second-order rogue wave of ur2 changes when s1

grows. The solution contains a single peak and splits into a wave with three peaks. The

solution is called the three sisters or the rogue wave triplet. It can be noted that the change

of s2 has no effect on ur2 but only on vr2. The top line in Fig. 5 representing ur2, displays

the interaction between second-order rogue waves and bright-soliton waves, whereas the

next line demonstrates the interaction between second-order rogue waves and dark-soliton

waves of vr2.

The N -order rogue waves can be constructed by the same method, However, the corre-

sponding calculations are tedious, the expressions cumbersome, and are omitted here.

5. Conclusions and Discussions

We study the breather and rogue waves related to the Eqs. (1.2) via the Darboux-

dressing transformation. Based on the Lax pair, suitable periodic seed solution and the Tay-

lor series expansion, the novel solutions (novel breather solution and novel rogue waves)

are constructed. a1, a2, k,λ, li , ri , si , i = 1,2,3 are all free parameters, which play an im-

portant role in controlling the dynamic properties. Visualisation of these solutions can help

to further understand the characteristics of the Eqs. (1.2). We also hope that in the future,

such solutions can be observed in experiments.
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