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Abstract. A mathematical model in the form of a nonconvex constrained minimisation

problem, aimed to determine the 3D position of LV contours using 2D echocardiography

data for the entire cardiac cycle is proposed. It can be considered as a quadratically

constrained quadratic program in terms of one of four variables with the others fixed.

The model is solved by a proximal block coordinate descent method with cyclic order

and the convergence of the algorithm is proved by using the Kurdyka-Lojasiewicz pro-

perty. The model does not require unsuitable assumptions in practical environments and

numerical experiments show its suitability in working with real echocardiography data.
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1. Introduction

Despite the usefulness of real-time 3D echocardiography (RT3DE) [16,17], it has its lim-

itations such as relatively high cost and poor temporal/spatial resolutions compared to 2D

echocardiography. Because of that, the 2D echocardiography is more preferable in clinical

practice. Thus most of analysis and diagnostic tools are still performed with measurements

in 2D slices. However, it is noteworthy that recent studies on ultrafast ultrasound imaging

are expected to improve the poor resolution performance of RT3DE and to provide robust

analysis of the LV behavior [3,6].

This work is the continuation of our studies [1,2] on the 3D left ventricle (LV) border re-

covery from 2D echocardiography data. This topic attracts substantial interest because the

dynamic 3D motion of the heart is observed without using 3D imaging scanners. The main
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problem consists in obtaining image data of multiple images and making an interpolation

of the cardiac chambers in 3D. Thus the 3D representation of the LV shape requires the 3D

position information of multiple 2D imaging planes. There are various studies on recov-

ering 3D LV shape from 2D echocardiography — cf. [9, 11, 19], where additional devices,

such as motor or position sensors are used for rotating 2D imaging probe mechanically or

by sensing the probe positions. The 3D position and orientation of 2D image planes are

spatially pre-determined or tracked using a sensor attached to a probe [15].

Similar to [1, 2], this paper focuses on the problem of establishing the 3D position of

imaging planes associated with multiple 2D apical echocardiograms, which are obtained

with involvement of any additional device. In particular, previously we considered math-

ematical models based on the fact that the angles between apical long-axis 4, 2 and 3-

chamber views are approximately 60◦ toward the each other [14], cf. Fig. 1. It was also

assumed that the imaging planes corresponding to the three views intersect at the same

axis and the circumferential length of mitral annulus with small variation throughout the

whole cardiac cycle is in the fixed range. Under such assumptions, the models were applied

to still image data.

The aim of this work is to build a new 3D recovery model without the assumptions

used in the previous models. Those assumptions are removed by using moving image data

acquired during the whole cardiac cycle. The only assumption is that an imaging probe is

fixed without any movement for any heartbeat period smaller than 1 second. This means

that throughout the entire cardiac cycle, the apical long-axis 2-, 3- and 4-chamber views

are fixed and the motion of LV borders is observed only on fixed planes. It uses 2D echocar-

diography data obtained during the entire cardiac cycle. As shown in Fig. 3, it is expected

that the distance between the LV control points moving in every fixed plane holds a proper

distance in space. Wrong positions of the planes may lead to a very irregular and large

distance in space between the control points. Hence, we propose a model maintaining

A3CH 

A4CH 

A2CH 

Mitral Annulus

Figure 1: Apical 4-, 2- and 3-chamber views of cardiac images. The images are obtained by clockwise
and counterclockwise rotating of the scanning probe by 60◦.
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Figure 2: Transformation of 2D LV contours into 3D ones by translation and rotation angles θ and ϕ.

a proper distance between the control points in space. The proposed model is a nonconvex

constrained minimisation problem challenging to solve. However, it is a quadratically con-

strained quadratic program (QCQP) [10] in terms of one of four variables with the others

fixed. We exploit this structure to introduce a proximal block coordinate descent method

with cyclic order (PBCDC) using OPTI solver [12] for QCQP — i.e. we cyclically minimise

the proximal form [18] of the model with respect to one of the variables with the others

fixed by using the QCQP solver. The objective function of the proposed model is a semi-

algebraic function and, hence, is a Kurdyka-Lojasiewicz function [5]. Taking into account

the Kurdyka-Lojasiewicz property, we show that the whole sequence of the algorithm con-

verges to a stationary point. We carry out numerical experiments to show that the model

can efficiently work with real echocardiography data.

Figure 3: Contraction and dilation of LV during heartbeat. Three fixed imaging planes viewed from apex
(RGB lines), circumference along LV boundary (dashed line) and LV control points (RGB dots) moving
on the planes during heartbeat.



114 C.Y. Ahn and S. Yun

2. Mathematical Model for Computing 3D Positions

Here we formulate the mathematical model for finding the 3D position of the image

planes in the form of a nonconvex constrained minimisation problem. The apical long-axis

2, 3 and 4-chamber views are abbreviated as A2CH, A3CH and A4CH, respectively. The

solution of the model is obtained by the proximal block coordinate descent method with

cyclic order, the convergence of which is proved.

2.1. A model formulation

We start with the estimate of the 3D positions corresponding to the 2D LV contours. Let

Ω ⊆ R2×{0} be an imaging domain — i.e. Ω := [0,255]×[0,255]×{0}. The LV contour in

an ultrasound image is denoted by a parametric contour C = {p(s) = (x(s), y(s), 0) | 0 ≤

s ≤ 1}, which can be identified as its n contour points p1 = p(s1), . . . ,pn = p(sn), where

0 = s1 < s2 < · · · < sn = 1. The sets of LV contour points for the A4CH, A3CH and A2Ch

views are defined by Cp = {pi ∈ Ω : i = 1, . . . , n}, Cq = {qi ∈ Ω : i = 1, . . . , n} and

Cr = {ri ∈ Ω : i = 1, . . . , n}, respectively. We also denote the unknown spatial translation

variables for Cp and Cq by α and β ∈ [−255,255]3 ⊆ R3, respectively. In addition, θ is the

angle to rotate counterclockwise around the translated origin and ϕ is the angle to rotate

around y-axis in a 2D ultrasound image to represent the LV contour in a 3D spatial domain

— cf. Fig. 2.

Let si and ti be the geometrically transformed 3D positions corresponding to the i-th

points pi and qi , respectively. As is shown in Fig. 3, we next consider circumferential lengths

between two adjacent points defined by

δ1 = ‖r1 − s1‖2, δ2 = ‖s1 − t1‖2, δ3 = ‖t1 − rn‖2,

δ4 = ‖rn − sn‖2, δ5 = ‖sn − tn‖2, δ6 = ‖tn − r1‖2,

δ7 = ‖r2 − s2‖2, δ8 = ‖s2 − t2‖2, δ9 = ‖t2 − rn−1‖2,

δ10 = ‖rn−1 − sn−1‖2, δ11 = ‖sn−1 − tn−1‖2, δ12 = ‖tn−1 − r2‖2, (2.1)

δ13 = ‖r3 − s3‖2, δ14 = ‖s3 − t3‖2, δ15 = ‖t3 − rn−2‖2,

δ16 = ‖rn−2 − sn−2‖2, δ17 = ‖sn−2 − tn−2‖2, δ18 = ‖tn−2 − r3‖2,

δ19 = ‖rm− sm‖2, δ20 = ‖sm − tm‖2, δ21 = ‖tm − rm‖2,

where m= round ((n+ 1)/2),

si = Ψpi +α, i = 1, . . . , n,

ti = Φqi +β , i = 1, . . . , n,
(2.2)

and the unknown matrices Ψ and Φ transform 3D positions into contour points on their

related apical view. The matrix Ψ can be represented in the form

Ψ =





cosϕ cosθ − cosϕ sinθ sinϕ

sinθ cosθ 0

− sinϕ cosθ sinϕ sinθ cosϕ




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=





cosϕ 0 sinϕ

0 1 0

− sinϕ 0 cosϕ









cosθ − sinθ 0

sinθ cosθ 0

0 0 1



 ,

and Φ has a similar representation. Hence, Ψ and Φ satisfy the orthogonality conditions

Ψ
T
Ψ = ΨΨT = I, Φ

T
Φ = ΦΦT = I, (2.3)

where I is the 3× 3 identity matrix and T is the operation of transposition.

We assume that the planes corresponding to the A4CH, A3CH and A2CH views are fixed

throughout the entire cardiac cycle and consider the following model.

For given pi, qi, ri ∈ Ω ⊆ R
2 × {0}, i = 1, . . . , n, determine unknowns α, β ∈ [0,255]3

and Ψ, Φ ∈ R3×3 by minimising the function

F(α,β ,Ψ,Φ) :=
1

7κ

τκ
∑

τ=τ1

21
∑

j=1

�

δτ
j

�2
, (2.4)

where κ is the number of 2D echocardiography images acquired during the entire cardiac

cycle and δτ
j

the value of δ j , j = 1, . . . , 21 at time τ.

2.2. Numerical scheme for finding α, β , Ψ and Φ

For a given initial guess α(0), β (0), Ψ(0) and Φ(0), we update α(k+1), β (k+1), Ψ(k+1) and

Φ
(k+1) sequentially k = 0,1, . . . as follows:

α(k+1) := argmin
α∈[−255,255]3

F
�

α,β (k),Ψ(k),Φ(k)
�

+ λα‖α−α
(k)‖22, (2.5)

β (k+1) := argmin
β∈[−255,255]3

F
�

α(k+1),β ,Ψ(k),Φ(k)
�

+λβ‖β −β
(k)‖22, (2.6)

Ψ
(k+1) := argmin

Ψ: ΨT
Ψ=ΨΨT=I

F
�

α(k+1),β (k+1),Ψ,Φ(k)
�

+λψ‖Ψ −Ψ
(k)‖2F , (2.7)

Φ
(k+1) := argmin

Φ: ΦT
Φ=ΦΦT=I

F
�

α(k+1),β (k+1),Ψ(k+1),Φ
�

+λφ‖Φ−Φ
(k)‖2F . (2.8)

It follows from (2.5)-(2.6) that

α
(k+1)

( j)
=median
¦

−255, α̃
(k)

( j)
, 255
©

, j = 1,2,3, (2.9)

β
(k+1)

( j)
=median
¦

−255, β̃
(k)

( j)
, 255
©

, j = 1,2,3, (2.10)

where α( j) denotes the j-th component of α and

α̃(k) =
1

λα + 2

�

λαα
(k) +β (k) +

1

7κ

τκ
∑

τ=τ1

∑

i = 1, 2, 3, m,

n− 2, n− 1, n

�

rτi − 2Ψ(k)pτi +Φ
(k)qτi

�

�

,

β̃
(k)
=

1

λβ + 2

�

λββ
(k)+α(k+1) +

1

7κ

τκ
∑

τ=τ1

∑

i = 1, 2, 3, m,

n− 2, n− 1, n

�

rτ
i
− 2Φ(k)qτ

i
+Ψ(k)pτ

i

�

�

.
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Writing the matrix

Ψ =





ψ11 ψ12 ψ13

ψ21 ψ22 ψ23

ψ31 ψ32 ψ33





as
�

ψ11 ψ12 ψ13 ψ21 ψ22 ψ23 ψ31 ψ32 ψ33

�T

=
�

y1 y2 y3 y4 y5 y6 y7 y8 y9

�T

=: y

and using the orthogonality conditions (2.3) yields

yT Nky= 1, k = 1, . . . , 6,

yT Nky= 0, k = 7, . . . , 12,

y =
�

y1 · · · y9

�⊺
∈ R9,

(2.11)

where N1, . . . ,N12 are the following 9× 9 matrices

N1 =





I O O

O O O

O O O



 , N2 =





O O O

O I O

O O O



 , N3 =





O O O

O O O

O O I



 ,

N7 =





O I O

I O O

O O O



 , N8 =





O O I

O O O

I O O



 , N9 =





O O O

O O I

O I O



 ,

N4 =





J11 O O

O J11 O

O O J11



 , N5 =





J22 O O

O J22 O

O O J22



 , N6 =





J33 O O

O J33 O

O O J33



 ,

N10 =





J12 O O

O J12 O

O O J12



 , N11 =





J13 O O

O J13 O

O O J13



 , N12 =





J23 O O

O J23 O

O O J23



 .

Here, Ji j are the 3× 3 symmetric matrices with 1 as (i, j) and ( j, i)-component and 0 oth-

erwise. The problem (2.7) can be formulated as the following QCQP problem:

min
y∈R9

yT
�

H1 +λψI
�

y−
�

fT +λψ
�

y(k−1)
�T
�

y

subject to Eqs. (2.11),

(2.12)

where H1 is the 9× 9 matrix

H1 =
1

7κ

τκ
∑

τ=τ1

∑

i = 1, 2, 3, m,

n− 2, n− 1, n





pτ
i

pτ
i

pτ
i









pτ
i

pτ
i

pτ
i





T

,
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and f the 9× 1 matrix

f=
1

7κ

τκ
∑

τ=τ1

∑

i = 1, 2, 3, m,

n− 2, n− 1, n





pτ
i

pτ
i

pτ
i





�

rτi − 2α(k+1) +Φ(k)qτi +β
(k+1)
�

.

Analogously, in order to update the matrix

Φ =





φ11 φ12 φ13

φ21 φ22 φ23

φ31 φ32 φ33



 ,

we can reformulate the problem (2.8) as

min
y∈R9

yT
�

H2 +λφI
�

y−
�

gT +λφ
�

y(k−1)
�T
�

y

subject to Eqs. (2.11),

(2.13)

where H2 is the 9× 9 matrix

H2 =
1

7κ

τκ
∑

τ=τ1

∑

i = 1, 2, 3, m,

n− 2, n− 1, n





qτ
i

qτi
qτ

i









qτ
i

qτi
qτ

i





T

,

and g is the 9× 1 matrix

g=
1

7κ

τκ
∑

τ=τ1

∑

i = 1, 2, 3, m,

n− 2, n− 1, n





qτ
i

qτ
i

qτ
i





�

rτn−i+1 − 2β (k+1) +Ψ(k+1)pτi +α
(k+1)
�

.

Since (2.12) and (2.13) are quadratically constrained quadratic programs, we can update

Ψ and Φ by using a QCQP solver.

At each iteration, we update one of the variables α,β ,Ψ,Φ with all others fixed. This

numerical scheme is a proximal block coordinate descent method with cyclic order. The

following theorem establishes the convergence of the proposed numerical scheme called

PBCDC and applies to the following unconstrained optimisation reformulation of (2.4):

min
α,β ,Ψ,Φ

F̂(α,β ,Ψ,Φ) :=
1

7κ

τκ
∑

τ=τ1

21
∑

j=1

�

δt
j

�2
+ ιU1

(Ψ) + ιU2
(Φ), (2.14)

where ιU1
(Ψ) is an indicator function of U1 = {Ψ : ΨT

Ψ = ΨΨT = I}, i.e.

ιU1
(Ψ) =

¨

0, if Ψ ∈ U1,

∞, otherwise,

and ιU2
(Φ) is an indicator function of U2 = {Φ : ΦT

Φ = ΦΦT = I}.
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Theorem 2.1. Let {α(k),β (k),Ψ(k),Φ(k)} be a sequence generated by PBCDC. Then it converges

to a critical point of (2.14).

The proof of this result is given in Appendix.

3. Experimental Results

We perform numerical experiments to evaluate the proposed model. Fig. 4 shows the

process of experiments. First, synthetic data of varying LV is generated from real 3D LV

volume data acquired by a SIEMENS ACUSON SC2000 imaging system with a 4Z1c probe —

cf. Fig. 4(a). The cardiac cycle is divided into six time steps τ = τ0,τ1, . . . ,τ6 of contraction

and expansion. The LV boundary data extracted from the original 3D LV volume data are

considered to be measured at τ = τ0 and variable LV borders are generated to correspond

to the time τ = τ1, . . . ,τ6. It is assumed that the LV volume is contracted and expanded by

applying myocardial strain of 25%, three fixed planes are placed inside the LV and the LV

borders are projected on the planes as shown in Fig. 4(b). After that, the projected 2D LV

borders are used as an input to the proposed model — cf. Fig. 4(c).

In the model implementation, the parameters of λα = 0.1, λβ = 0.1, λψ = 100 and

λφ = 100 are used. We set the maximum number of iterations as 100 since it is observed

that the relative errors of the estimated variables α̂, β̂ , Ψ̂ and Φ̂ are rapidly reduced until

around 100 iterations as shown in Fig. 5. The execution time of PBCDC in each iteration is

about 11.12 sec. Note that the running time for QCQP takes up the most of the execution

time. For k ≥ 100, each relative error is less than a certain value as below

‖α(k+1) −α(k)‖

‖α(k)‖
< 0.0012,

‖β (k+1)−β (k)‖

‖β (k)‖
< 0.0009,

Figure 4: Experiment on synthetic data generated from real 3D LV volume data. (a) 3D volume data,
(b) generated varying LV borders on A4CH, A2CH and A3CH views, (c) 2D LV borders as an input to
the proposed model.
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Figure 5: Relative errors of α̂, β̂ , Ψ̂ and Φ̂ updated by the proposed algorithm depending on iterations.

‖Ψ(k+1)−Ψ(k)‖

‖Ψ(k)‖
< 0.0034,

‖Φ(k+1) −Φ(k)‖

‖Φ(k)‖
< 0.0047.

The values for variables α, β , Ψ and Φ are estimated as

α̂=





25.48

2.45

54.83



 , Ψ̂ =





0.5129 0.0723 −0.8554

−0.0350 0.9974 0.0634

−0.8578 0.0026 −0.5140



 ,

β̂ =





40.35

−4.66

−54.93



 , Φ̂ =





0.3096 0.0431 0.9499

0.0759 0.9947 −0.0699

0.9478 −0.0937 −0.3046



 .

By applying these values to (2.2), we obtain the spatial location of 2D LV borders used

as an input to the model. Fig. 6(a) demonstrates estimating 3D position of 2D borders by

using PBCDC. We observe how accurately the spatial locations of A4CH and A3CH views

are restored for the A2CH view. The difference between original and estimated LV control

points LV on the A4CH and A3CH is computed by l2-norm. The LV points on the A4CH

are restored with a relative error of about 10%, while the A3CH LV points show the higher

relative error of about 15%. The errors of the restored LV control points at each step are

listed in Table 1.

This paper focuses on the computation of 3D positions of the border points and does

not consider the representation of 3D LV surfaces. Therefore, we use a free and open-

source parametric 3D CAD modeler FreeCAD to represent the reconstructed 3D surface —

cf. Fig. 6(b).
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Figure 6: Experimental results. (a) Reconstructed 3D LV borders on A4CH, A2CH and A3CH views,
(b) Corresponding 3D LV surfaces.

All numerical tests are implemented on a 3.3 GHz Core i9-7900X CPU with 128GB RAM,

running on Windows 10 and MATLAB (Version 9.6).

Table 1: The errors of restored LV control points at contraction and expansion steps.

τ τ1 τ2 τ3 τ4 τ5 τ6 mean

A4CH ‖x− x̂‖2 (pixels) 27.65 24.21 25.30 26.45 28.89 30.17 27.11
‖x−x̂‖2
‖x‖2

(%) 9.89 10.39 10.18 10.01 9.79 9.71 10.00

A3CH ‖x− x̂‖2 (pixels) 41.26 34.61 36.82 39.04 43.48 45.70 40.15
‖x−x̂‖2
‖x‖2

(%) 15.12 15.22 15.18 15.15 15.10 15.07 15.14

4. Conclusion

We consider the recovery of 3D LV by using only 2D echocardiography data acquired

in multiple views. The previously used models are formulated as non-convex constrained

minimisation problems, which determine the 3D positions corresponding to 2D measured

border points. It is assumed that the imaging planes corresponding to 3D view intersect at

the same axis and the circumferential length of mitral annulus with small variation through-

out the whole cardiac cycle is in the fixed range. However, the latter condition can be not

verified by 2D imaging systems. Therefore, we propose a new model, which does not re-

quire the assumptions of [1, 2] but uses 2D echocardiography data acquired during the

entire cardiac cycle. Assuming that the spatial shape of LV is not distorted in the process

of contraction and expansion, we employ a nonconvex constrained minimisation problem.

This model is a QCQP with respect to one of four variables with the others fixed. Therefore,

we consider PBCDC using a QCQP solver [12] to exploit this structure. In unconstrained

formulations of the model, the objective is a Kurdyka-Lojasiewicz function. This property

allows to prove that the whole sequence generated by PBCDC applied to the model con-

verges to a stationary point.

The model performs well in numerical experiments, which show that the model is

mostly suitable. It can be of interest because there is no reliance on unpractical assump-

tions of other models. Nevertheless, the method requires further improvements, especially
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in terms of its accuracy. Thus the deviation higher than 10% between restored and orig-

inal spatial positions are observed for the LV borders. This happens because the rotation

of the LV border measured in each imaging plane is not considered. At the present, 3D

echocardiography images have unsatisfactory spatial resolution. It needs further techno-

logical developments up to the level of 2D echocardiography imaging in terms of spatial

and temporal resolution. To the best of our knowledge, the approach proposed is the first

attempt to do it. Hence, there is no conventional model directly comparable to the model

considered here. On the other hand, a recently developed automated 3D echocardiogra-

phy chamber quantification technique measures LV volumes within 10% intermeasurement

variability and this is considered as a performance closer to the real situation [13]. There-

fore, although the reconstruction error in our model is not satisfactory, it is comparable to

other results.

It should be also noted that the execution speed of the numerical algorithm should

be improved. The total running time for calculation of the spatial position of LV borders

moving in 6 steps is about 18.5 minutes, or about 3 minutes per step. In order to be

practically valuable, the running time should be improved to a few seconds per step.

Appendix A

A.1 Proof of Theorem 2.1

First of all, we define semi-algebraic functions and the Kurdyka-Lojasiewicz property

[5].

Definition A.1. A subset S of Rn is a real semi-algebraic set if there exists a finite number

of real polynomial functions Pi j , Q i j : Rn→ R such that

S =

p
⋃

j=1

q
⋂

i=1

�

x ∈ Rn : Pi j(x) = 0, Q i j(x)< 0
	

.

Furthermore, a function F̂ : Rn→ R∪ {+∞} is called semi-algebraic if its graph

G( f ) :=
�

(x ,ν) ∈ Rn+1 : F̂(x) = ν
	

is a semi-algebraic subset of Rn+1.

Definition A.2. The function F̂ : Rn→ R∪ {+∞} is said to have the Kurdyka-Lojasiewicz

property at x∗ ∈ dom∂ F̂ if there exist µ ∈ (0,+∞], a neighborhood V of x∗ and a contin-

uous concave function γ : [0,µ)→ R+ such that,

1. γ(0) = 0,

2. γ is C1 on (0,µ),

3. for all ξ ∈ (0,µ), γ′(ξ) > 0,
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4. for all x in V ∩ [F̂ (x∗)< F̂(x) < F̂(x∗)+µ], the Kurdyka-Lojasiewicz inequality holds

γ′
�

F̂(x)− F̂(x∗)
�

dist
�

0,∂ F̂(x)
�

≥ 1.

Proper lower semicontinuous functions which satisfy the Kurdyka-Lojasiewicz inequal-

ity at each point of ∂ F̂ are called KL functions.

The proof of Theorem 2.1 can be obtained by applying the following result.

Theorem A.1 (cf. Attouch et al. [5, Theorem 6.2]). Let

F̂(x) : Rn1 × · · · ×Rnp → R∪ {+∞}= Q(x1, . . . ,xp) +

p
∑

i=1

fi(xi),

where Q is a C1 function with locally Lipschitz continuous gradient, and fi : Rni → R∪{+∞},

i = 1, . . . , p are proper lower semicontinuous KL functions bounded from below. If the sequence

{xk}k∈N is bounded and satisfies the conditions:

(C1) (Sufficient decrease condition) For each k ≥ 0, there exists a positive constant λ such

that

F̂(xk+1) +λ‖xk+1− xk‖2 ≤ F̂(xk).

(C2) (Relative error condition) For each k ≥ 0, there exists a positive constant M and a wk+1 ∈

∂ F̂(xk+1) such that, for all k,

‖wk+1‖ ≤ M‖xk+1 − xk‖.

(C3) (Continuity condition) There exists a subsequence {xk j} j∈N and x̃ such that

xk j → x̃ and F̂ (xk j)→ F̂(x̃), j→∞,

then it converges to a critical point x̄ of F̂ . Moreover the sequence {xk}k∈N has a finite length

— i.e.
∞
∑

k=0

‖xk+1 − xk‖ < +∞.

The sequences {α(k),β (k),Ψ(k),Φ(k)} are bounded because of the boundedness of the

variables α,β and the constraints (2.11) for Ψ and Φ. The objective function F̂ of (2.14)

is continuous on its domain. Therefore, in order to prove Theorem 2.1 it suffices to show

that the sequence generated by PBCDC satisfies conditions (C1), (C2) and F̂ satisfies the

KL property.

Assume that conditions (C1) and (C2) are satisfied, and define the subdifferential ∂ F̂(x)

of F̂ at x ∈ domF̂ by

∂ F̂(x) :=
�

x∗Rn : ∃xn→ x , F̂(xn)→ F̂(x), x∗
n
∈ ∂̂ F̂(xn)→ x∗

	

,
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where ∂̂ F̂(x) is the Fréchet subdifferential of F̂ at x and

lim inf
y 6=x , y→x

1

‖x − y‖

�

F̂(y)− F̂ (x)− 〈x∗, y − x〉
�

≥ 0.

Let x = (x1,x2,x3,x4) with x1 = α, x2 = β , x3 = Ψ, x4 = Φ. By the numerical scheme

PBCDC — i.e. by iterations (2.5)-(2.8), for all k ≥ 0 we have

F̂(xk+1) +λ‖xk+1 − xk‖2 ≤ F̂(xk),

where

‖xk+1 − xk‖=

√

√

√

√

2
∑

i=1





xk+1
i
− xk

i





+

4
∑

i=3





xk+1
i
− xk

i







2

F

and λ =min{λα,λβ ,λψ,λΦ}. Thus, condition (C1) is satisfied.

The optimality condition for each of the problems in (2.5)-(2.8) gives

∇x1
F
�

xk+1
1 ,xk

2,xk
3,xk

4

�

+λα
�

xk+1
1 − xk

1

�

= 0,

∇x2
F
�

xk+1
1

,xk+1
2

,xk
3
,xk

4

�

+λβ
�

xk+1
2
− xk

2

�

= 0,

∇x3
F
�

xk+1
1

,xk+1
2

,xk+1
3

,xk
4

�

+λψ
�

xk+1
3
− xk

3

�

+ vψ = 0,

∇x4
F
�

xk+1
1 ,xk+1

2 ,xk+1
3 ,xk+1

4

�

+λΦ
�

xk+1
4 − xk

4

�

+ vΦ = 0

(A.1)

for some vψ ∈ ∂ ιU1
(xk+1

3
) and vΦ ∈ ∂ ιU2

(xk+1
4 ). Since the objective functions in (2.5)-(2.8)

are quadratic, the equations in (A.1) yield the existence of a wk+1 ∈ ∂ F̂(xk+1) such that,

for all k,

‖wk+1‖ ≤ M‖xk+1 − xk‖ for some M > 0.

Thus the condition (C2) is also satisfied.

Next, we show that the function F̂ has the Kurdyka-Lojasiewicz property. The ortho-

gonality condition (2.3) of Ψ is expressed as the Eqs. (2.11). So is that of Φ. The equations

in (2.11) are polynomial equations. Hence the constraint set for the orthogonality condition

is a semi-algebraic set [7]. Indicator functions of semi-algebraic sets are semi-algebraic

functions [4]. By the definition of δi, i = 1, . . . , 21 in (2.1), the objective function of (2.4)

is polynomial and hence is a semi-algebraic function. Finally, the objective function F̂ is

a sum of semi-algebraic functions and hence it is a semi-algebraic function [7]. Then F̂

satisfies the Kurdyka-Lojasiewicz property [8].
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