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Abstract. This paper concerns the inviscid, heat-conductive and resistive com-
pressible MHD system in a horizontally periodic flat strip domain. The global
well-posedness of the problem around an equilibrium with the positive con-
stant density and temperature and a uniform non-horizontal magnetic field
is established, and the solution decays to the equilibrium almost exponen-
tially. Our result reveals the strong stabilizing effect of the transversal mag-
netic field and resistivity as the global well-posedness of compressible inviscid
heat-conductive flows in multi-D is unknown.
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1 Introduction

When the viscosity is neglected whereas the heat conduction and magnetic diffu-
sion are taken into account, the dynamics of compressible electrically conducting
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fluids interacting with magnetic fields can be described by the following magne-
tohydrodynamic system (MHD) [7, 11]:






∂tρ+div(ρu)=0,

∂t(ρu)+div(ρu⊗u)+∇p=curlB×B,

∂t(ρe)+div(ρue)+pdivu−µ∆θ=κ |curlB|2 ,

∂tB=curlE, E=u×B−κcurlB,

divB=0,

(1.1)

where ρ, u, θ and B denote the density, velocity, temperature and magnetic field,
respectively, and E is the electric field. The fluid is assumed to obey the ideal
polytropic law, so the pressure p=Rρθ and the internal energy e= cvθ with con-
stants R,cv >0. µ>0 is the heat conduction coefficient and κ>0 is the magnetic
diffusion coefficient.

The main difficulty of studying the global well-posedness of (1.1) lies in the
absence of the viscosity. Similar to the Navier-Stokes equations, the viscous and
resistive (incompressible and compressible) MHD system has a unique global
classical solution, at least for the small initial data, see [5, 9, 18] for instance. On
the other hand, it is remarkable that the ideal incompressible homogeneous MHD
system in the whole space also admits a unique global classical solution around
a nonzero uniform magnetic field [2, 3, 8, 22]. It is then natural to ask whether
the MHD systems with only the viscosity or resistivity admit global classical so-
lutions or develop singularities in finite time. The global existence of classical
solutions to the viscous and non-resistive MHD systems has been established
around a nonzero uniform magnetic field. For the Cauchy problem, we refer
to [1, 13, 15, 25, 27] for the incompressible homogeneous case and [24] for the 2D
compressible isentropic case. For the initial boundary value problem, the global
well-posedness has been proved only for the case of a horizontally flat strip do-
main, see [16] for the 2D incompressible homogeneous system around a uniform
horizontal magnetic field and [20] for the 3D (incompressible and compressible)
systems around a uniform non-horizontal magnetic field. The inviscid and resis-
tive incompressible homogeneous 2D MHD system has a global weak solution
in H1, but the question whether such weak solutions are unique or can be im-
proved to be global classical solutions remains open [4, 10, 12]. For a 2D periodic
domain, [28] showed the global existence of classical solutions around a nonzero
uniform magnetic field when the initial data has certain symmetries, and [23]
proved a global well-posedness around the zero magnetic field.

In this paper, we consider the compressible MHD system (1.1) in the strip
domain Ω=T

2×(0,1) for T=R/Z, with the following boundary conditions:
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u·e3=0, ∇θ ·e3=0, B·e3= B̄ ·e3, E×e3=0 on ∂Ω, (1.2)

where B̄ is the uniform magnetic field of the background. We will prove the
global existence of classical solutions to (1.1)-(1.2) around the steady state (ρ̄,0, θ̄,B̄)
with the constant density ρ̄>0 and temperature θ̄>0 and B̄3 6=0.

Set
̺=ρ− ρ̄, u=u, ϑ= θ− θ̄, b=B− B̄. (1.3)

Then the problem under consideration can be reformulated as




(∂t+u·∇)̺+ρdivu=0 in Ω,

ρ(∂t+u·∇)u+∇p=curlb×(B̄+b) in Ω,

cvρ(∂t+u·∇)ϑ+pdivu−µ∆ϑ=κ |curlb|2 in Ω,

∂tb=curlE, E=u×(B̄+b)−κcurlb in Ω,

divb=0 in Ω,

u3=0, ∂3ϑ=0, b3=0, E×e3=0 on ∂Ω,

(̺,u,ϑ,b) |t=0=(̺0,u0,ϑ0,b0).

(1.4)

Recall that the conditions divb= 0 in Ω and b3 = 0 on ∂Ω in (1.4) should be re-
garded as the constraints on the initial data

divb0=0 in Ω and b0,3=0 on ∂Ω. (1.5)

Indeed, it follows from ∂tb=curlE in Ω and E×e3=0 on ∂Ω in (1.4) that ∂tdivb=0
in Ω and ∂tb3=0 on ∂Ω.

Note the entropy-dissipation structure of (1.4): for a smooth solution, it holds
that

d

dt

∫

Ω

(
1

2
ρ|u|2+ρcv

(
θ− θ̄ ln

θ

θ̄
− θ̄

)
+Rθ̄

(
ρln

ρ

ρ̄
−ρ+ ρ̄

)
+

1

2
|b|2
)

+
∫

Ω

(
µθ̄

θ2
|∇ϑ|2+ κθ̄

θ
|curlb|2

)
=0. (1.6)

Hereafter the differential elements dx of the integrals over Ω are omitted. Fur-
thermore, the following conservation laws hold:

d

dt

∫

Ω
̺=0,

d

dt

∫

Ω

(
1

2
ρ|u|2+cvρϑ+

1

2
|b|2
)
=0,

d

dt

∫

Ω
bh=0, (1.7)

where bh=(b1,b2), etc. It follows that if initially
∫

Ω
̺0=0,

∫

Ω

(
1

2
ρ0|u0|2+cvρ0ϑ0+

1

2
|b0|2

)
=0,

∫

Ω
b0,h=0, (1.8)
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then for any time t>0,

∫

Ω
̺=0,

∫

Ω

(
1

2
ρ|u|2+cvρϑ+

1

2
|b|2
)
=0,

∫

Ω
bh=0. (1.9)

(1.9) allows the use of the Poincaré inequality for ̺,ϑ,bh in our analysis of the
global well-posedness.

Let Hk(Ω), k≥ 0 and Hs(T2), s∈R be the usual Sobolev spaces with norms
denoted by ‖·‖m and |·|s, respectively. For an integer N≥8, define the high-order
energy as

E2N :=
2N

∑
j=0

∥∥∂
j
t(̺,u)

∥∥2

2N−j
+

2N−1

∑
j=0

∥∥∂
j
t(ϑ,b)

∥∥2

2N−j+1
+
∥∥∂2N

t (ϑ,b)
∥∥2

0
. (1.10)

The key part in proving the global well-posedness of (1.4) is to show that E2N(t) is
bounded for all t≥0. To this end, we need to derive a sufficiently fast time-decay
rate of certain lower-order Sobolev norms of the solution, which will follow from
a set of energy-dissipation estimates. For n=N+4,.. .,2N, define the dissipations
as

Dn :=
n−1

∑
j=0

∥∥∂
j
t(̺,u)

∥∥2

n−j−1
+

n−2

∑
j=0

∥∥∂
j
t(ϑ,b)

∥∥2

n−j
+

n

∑
j=0

∥∥∂
j
t(ϑ,b)

∥∥2

1,n−j
(1.11)

and the corresponding energies as

En :=
n

∑
j=0

∥∥∂
j
t̺
∥∥2

n−j
+‖u‖2

0,n+‖u‖2
n−1+

n

∑
j=1

∥∥∂
j
tu
∥∥2

n−j

+‖(ϑ,b)‖2
n+

n−1

∑
j=1

∥∥∂
j
t(ϑ,b)

∥∥2

n−j+1
+
∥∥∂n

t (ϑ,b)
∥∥2

0
. (1.12)

Here the anisotropic Sobolev norm ‖·‖m,ℓ is defined as

‖ f‖m,ℓ := ∑
α∈N2,|α|≤ℓ

‖∂α f‖m. (1.13)

Now the main result of this paper is stated as follows.

Theorem 1.1. Assume that µ>0, κ>0 and ρ̄>0, θ̄>0, B̄3 6=0. Let N≥8 be an integer.

Assume that ̺0,u0∈H2N(Ω) and ϑ0,b0∈H2N+1(Ω) are given such that E2N(0)<+∞

and that the 2N-th order compatibility conditions required for the local well-posedness of

(1.4)

∂
j
tu3(0)=0, ∂3∂

j
tϑ(0)=0, ∂

j
tE(0)×e3=0 on ∂Ω for j=0,.. .,2N−1, (1.14)
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(1.5) and (1.8) are satisfied. There exists a universal constant ε0>0 such that if E2N(0)≤
ε0, then there exists a unique global solution (̺,u,ϑ,b) to (1.4) satisfying that for all t≥0,

E2N(t).E2N(0) (1.15)

and

N−6

∑
j=0

(1+t)N−5−j
EN+4+j(t)+

N−6

∑
j=0

∫ t

0
(1+s)N−5−j

DN+4+j(s)ds.E2N(0). (1.16)

Remark 1.1. Note that the global well-posedness of compressible inviscid heat-

conductive flows for the small initial data has been established only in 1D (see

e.g., [9, 14, 19, 26]), but the one in multi-D is unknown. So our result reveals

the strong stabilizing effect of the transversal magnetic field and resistivity. In

a forthcoming paper, we will use some ideas developed here to prove the global

well-posedness of free interface problems for the compressible MHD system (1.1),

which generalizes our previous work [21] of the inviscid and resistive incom-

pressible homogeneous MHD system.

Remark 1.2. Our result here relies crucially on the consideration of the heat-

conductive flows, and it does not hold for isentropic flows or the case without

heat conduction; for example, taking B = B̄= e3, these flows are reduced to the

1D compressible Euler flows for which in general one may expect the formation

of shock in finite time. One of the key points here is that the heat conduction

produces the dissipation control of the divergence of the velocity, as explained

below.

Note that the local well-posedness of (1.4) (for ρ,θ>0) for E2N <∞ with N≥8
is classical, which can be proved by using an iteration argument based on the
solvability of the compressible Euler equations [17] and the parabolic problems
for the temperature and magnetic field [6]. Hence, by a standard continuity ar-
gument, to prove the global well-posedness in Theorem 1.1 it suffices to derive
a priori the estimate (1.15).

The basic strategy in our analysis is to use first the entropy-dissipation struc-
ture (1.6) to get the tangential energy evolution estimates of the solution to (1.4) as
well as its temporal and horizontal spatial derivatives that preserve the boundary
conditions, which will be carried out in Section 2. The next step is to derive the
estimates involving normal derivatives by exploiting further the structures of the
equations and boundary conditions, and the key here is to observe the following
equations for the fluid vorticity curlu: applying curl to the second equation in
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(1.4), and then using the horizontal components of the fourth equation to replace
∂2

3bh and the first equation to replace divu, one finds

ρ(∂t+u·∇)(curlu)i+
B̄2

3

κ
(curlu)i

= B̄h ·∇h(curlb)i+(−1)i+1B̄3∂3∂3−ib3+(−1)i+1 B̄3

κ
(κ∆hb3−i−∂tb3−i)

+(−1)i+1 B̄3

κ

(
B̄h ·∇hu3−i+ B̄3∂3−iu3+

B̄3−i

ρ̄
∂t̺

)
+··· , i=1,2, (1.17)

where ∇h=(∂1,∂2), ∆h=∂2
1+∂2

2 and “+···” means plus some nonlinear terms. As
κ>0 and B̄3 6=0, one thus sees that there is an induced damping effect for (curlu)h

in (1.17). By controlling the linear terms in the last line of (1.17) in terms of the
tangential energy at the beginning, in a recursive way in terms of the number of
normal derivatives one derives the following full energy estimates:

E2N(t).E2N(0)+
∫ t

0

√
EN+4E2N. (1.18)

Various elliptic estimates are involved in the derivation of (1.18), see Section 3 for
the details.

Note that if
√
EN+4 is integrable in time, then (1.18) can be closed to be (1.15).

This will be achieved by using

d

dt
En+Dn≤0, n=N+4,.. .,2N−2. (1.19)

(1.19) is derived in an elaborate way by controlling instead the linear terms in the
last line of (1.17) in terms of the tangential dissipation. To achieve this, one notes
first from the fourth equation in (1.4) that

∂tb−κ∆b= B̄ ·∇u− B̄divu+··· . (1.20)

It is then crucial here to use the third equation in (1.4) to replace divu in (1.20) to
find

∂tb−κ∆b= B̄ ·∇u+
B̄

p̄
(cvρ̄∂tϑ−µ∆ϑ)+··· . (1.21)

As mentioned in Remark 1.2, it should be pointed out here that such replacement
is effective only for µ> 0 since there is no priori tangential dissipation estimates
of ∂tϑ if µ = 0, and the same reason holds also for that one could not use the
first equation in (1.4) to replace divu by ∂t̺/ρ̄ in (1.20). Now using the vertical
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and horizontal components of (1.21), respectively, one then gets the tangential
dissipation estimates of the following two quantities:

B̄·∇
(

u3−
µ

p̄
∂3ϑ

)
, B̄·∇

(
κ∂3bh+ B̄3uh−

µB̄h

p̄
∂3ϑ

)
. (1.22)

Thus one can use the Poincaré-type inequalities related to B̄·∇ for B̄3 6=0 together
with the boundary conditions on ∂Ω to derive the tangential dissipation estimates
of u. The tangential dissipation estimates of ∂t̺ then follow from the interaction
between the first and second equations in (1.4).

Now observe that Eℓ ≤Dℓ+1. Then by employing a time weighted induc-
tive argument based on (1.19), one concludes (1.16), which implies in particular

a decay of
√
EN+4 with the rate (1+t)−(N−5)/2, see Section 4 for more details.

Consequently, this scheme of the a priori estimates is closed by requiring N≥8.

Notation. Now we list the conventions for notation in this paper. C> 0 denotes
generic constants independent of the data and time, but may depend on the pa-
rameters of the problem, κ,µ, B̄, ρ̄, θ̄ and N, which is referred to as “universal” and
allowed to change from line to line. A1.A2 means that A1≤CA2 for a universal
constant C>0, A1.A2+A3 means that A1≤A2+CA3 and

∂t A1+A2.A3 means ∂t Ã1+A2.A3 for A1. Ã1.A1. (1.23)

N={0,1,.. .} denotes for the collection of non-negative integers. When using
space-time differential multi-indices, we write N

1+d={α=(α0,α1,. . .,αd)} to em-
phasize that the 0-index term is related to temporal derivatives. For just spatial
derivatives, we write N

d. For α∈N
1+d, ∂α=∂α0

t ∂α1
1 ···∂αd

d . We define the standard
commutators

[
∂α, f

]
g=∂α( f g)− f ∂αg and

[
∂α, f ,g

]
=∂α( f g)− f ∂αg−∂α f g. (1.24)

2 Tangential energy evolution

In this section, we will derive energy evolution estimates for temporal and hori-
zontal spatial derivatives of the solution to (1.4) by using the entropy-dissipation
structure (1.6). It will be assumed throughout the rest of the paper that the solu-
tion to (1.4) is given on [0,T] and obeys the a priori assumption

E2N(t)≤δ, ∀t∈ [0,T] (2.1)
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for a sufficiently small constant δ>0. This implies in particular that

1

2
ρ̄≤ρ≤2ρ̄,

1

2
θ̄≤ θ≤2θ̄, ∀(t,x)∈ [0,T]×Ω̄. (2.2)

Note that (2.1) and (2.2) will be always used in the following; in particular, the
smallness (2.1) is used in many nonlinear estimates so that various polynomials
of E2N are bounded by CE2N .

In order to use the nonlinear structure of (1.4) to derive the tangential energy
evolution estimates at the 2N level, one applies ∂α for α∈N

1+2 to (1.4) to find





(∂t+u·∇)∂α̺+ρdiv∂αu=F1,α in Ω,

ρ(∂t+u·∇)∂αu+∇(Rθ∂α̺+Rρ∂αϑ)=curl∂αb×(B̄+b)+F2,α in Ω,

cvρ(∂t+u·∇)∂αϑ+pdiv∂αu−µ∆∂αϑ=F3,α in Ω,

∂t∂
αb=curl∂αE, ∂αE=∂αu×(B̄+b)−κcurl∂αb+F4,α in Ω,

div∂αb=0 in Ω,

∂αu3=0, ∂3∂αϑ=0, ∂αb3=0, ∂αE×e3=0 on ∂Ω,

(2.3)

where

F1,α =−
[
∂α,u

]
·∇̺−

[
∂α,̺

]
divu, (2.4a)

F2,α =−
[
∂α,ρ(∂t+u·∇)

]
u−∇

(
R[∂α,̺,ϑ]

)
−
[
∂α,b

]
×curlb, (2.4b)

F3,α =−
[
∂α,cvρ(∂t+u·∇)

]
ϑ−
[
∂α,p

]
divu+κ∂α

(
|curlb|2

)
, (2.4c)

F4,α =−
[
∂α,b

]
×u (2.4d)

with notation of commutators given in (1.24).
These nonlinear terms Fi,α are estimated as follows.

Lemma 2.1. For |α|≤2N, it holds that

∥∥(F1,α,F2,α,F3,α,F4,α
)∥∥2

0
.EN+4E2N . (2.5)

Proof. Note that all terms in Fi,α are at least quadratic and each term can be writ-

ten in the form XY, where X involves fewer derivatives than Y. One may use the

definition of En to estimate ‖Y‖2
0.E2N and the usual Sobolev embeddings along

with the definition of En to estimate ‖X‖2
L∞ .EN+4. Then

‖XY‖2
0 ≤‖X‖2

L∞‖Y‖2
0.EN+4E2N ,

and the estimate (2.5) follows by summing terms.
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For n≥3, define the tangential energy by

Ēn :=
n

∑
j=0

∥∥∂
j
t(̺,u,ϑ,b)

∥∥2

0,n−j
(2.6)

and the corresponding dissipation by

D̄n :=
n

∑
j=0

∥∥∂
j
t(ϑ,b)

∥∥2

1,n−j
, (2.7)

where anisotropic Sobolev norms (1.13) have been used. Then one has the fol-
lowing tangential energy evolution at the 2N level.

Proposition 2.1. It holds that

d

dt
Ē2N+D̄2N .

√
EN+4E2N. (2.8)

Proof. Let α∈N
1+2 with |α| ≤ 2N. First, taking the inner product of the second

equation in (2.3) with ∂αu and then integrating by parts over Ω, by using the first

equation in (1.4) and the boundary conditions, one has

1

2

d

dt

∫

Ω
ρ|∂αu|2−

∫

Ω

(
Rθ∂α̺+Rρ∂αϑ

)
div∂αu

=
∫

Ω
curl∂αb×(B̄+b)·∂αu+

∫

Ω
F2,α ·∂αu. (2.9)

The first equation in (2.3) leads to

−
∫

Ω
Rθ∂α̺div∂αu=

∫

Ω

Rθ

ρ

(
∂t∂

α̺+u·∇∂α̺−F1,α
)

∂α̺

=
1

2

d

dt

∫

Ω

Rθ

ρ
|∂α̺|2− 1

2

∫

Ω
Rρ(∂t+u·∇)

(
θ

ρ2

)
|∂α̺|2−

∫

Ω

Rθ

ρ
F1,α∂α̺. (2.10)

Next, taking the inner product of the third equation with ∂αϑ/θ and using the

relation p=Rρθ give

1

2

d

dt

∫

Ω

cvρ

θ
|∂αϑ|2+

∫

Ω

µ

θ
|∇∂αϑ|2+

∫

Ω
Rρdiv∂αu∂αϑ

=
1

2

∫

Ω
cvρ(∂t+u·∇)

(
1

θ

)
|∂αϑ|2−

∫

Ω
µ∂αϑ∇

(
1

θ

)
·∇∂αϑ+

∫

Ω
F3,α∂αϑ, (2.11)
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while taking the inner product of the fourth equation with ∂αb yields

1

2

d

dt

∫

Ω
|∂αb|2+κ

∫

Ω
|curl∂αb|2

=
∫

Ω
∂αu×(B̄+b)·curl∂αb+

∫

Ω
F4,α ·curl∂αb. (2.12)

Consequently, combining (2.9)-(2.12) yields that, by (2.5),

1

2

d

dt

∫

Ω

(
Rθ

ρ
|∂α̺|2+ρ|∂αu|2+ cvρ

θ
|∂αϑ|2+|∂αb|2

)

+
∫

Ω

(µ

θ
|∇∂αϑ|2+κ|curl∂αb|2

)

=
∫

Ω

(
1

2
Rρ(∂t+u·∇)

(
θ

ρ2

)
|∂α̺|2+ 1

2
cvρ(∂t+u·∇)

(
1

θ

)
|∂αϑ|2

−µ∂αϑ∇
(

1

θ

)
·∇∂αϑ

)

+
∫

Ω

(
Rθ

ρ
F1,α∂α̺+F2,α ·∂αu+F3,α∂αϑ+F4,α ·curl∂αb

)

.
√

EN+4

(
‖∂α̺‖2

0+‖∂αϑ‖2
0+‖∂αϑ‖0‖∇∂αϑ‖0

)
+‖F1,α‖0‖∂α̺‖0

+‖F2,α‖0‖∂αu‖0+‖F3,α‖0‖∂αϑ‖0+‖F4,α‖0‖curl∂αb‖0

.
√

EN+4E2N+
√

EN+4

√
E2N

(
‖∇∂αϑ‖0+‖curl∂αb‖0

)
. (2.13)

By Cauchy’s inequality, one deduces from (2.13) that, by the convention notation

(1.23),
d

dt
‖∂α(̺,u,ϑ,b)‖2

0+‖∇∂αϑ‖2
0+‖curl∂αb‖2

0.
√

EN+4E2N. (2.14)

It follows by using the Poincaré inequality and (1.9) that

‖∂αϑ‖2
0.‖∇∂αϑ‖2

0+

∣∣∣∣
∫

Ω
∂αϑ

∣∣∣∣
2

.‖∇∂αϑ‖2
0+EN+4E2N. (2.15)

Employing the Hodge-type estimates (A.3) of Lemma A.1 with r=1 and by (1.9),

one finds

‖∂αb‖2
1.‖curl∂αb‖2

0. (2.16)

Then the estimate (2.8) follows from (2.14) by summing over such α.
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Now we rewrite (1.4) as a perturbation of the linearized equations





∂t̺+ ρ̄divu=G1 in Ω,

ρ̄∂tu+∇(Rθ̺̄+Rρ̄ϑ)=curlb× B̄+G2 in Ω,

cvρ̄∂tϑ+ p̄divu−µ∆ϑ=G3 in Ω,

∂tb−κ∆b= B̄ ·∇u− B̄divu+G4 in Ω,

divb=0 in Ω,

u3=0, ∂3ϑ=0, b3=0, κ∂3bh=−B̄3uh on ∂Ω,

(2.17)

where p̄=Rρ̄θ̄ and

G1=−div(̺u), (2.18a)

G2=−̺∂tu−ρu·∇u−∇(R̺ϑ)+curlb×b, (2.18b)

G3=−cv̺∂tϑ−cvρu·∇ϑ−(p− p̄)divu+κ |curlb|2 , (2.18c)

G4=curl(u×b). (2.18d)

The nonlinear terms Gi are estimated as follows.

Lemma 2.2. It holds that

2N−1

∑
j=0

∥∥∂
j
t

(
G1,G2,G3,G4

)∥∥2

2N−j−1
.min

{
EN+4,DN+4

}
E2N . (2.19)

Proof. (2.19) can be proved similarly to Lemma 2.1.

One has the following tangential energy evolution at the N+4,.. .,2N−2 lev-
els.

Proposition 2.2. For n=N+4,.. .,2N−2, it holds that

d

dt

(
Ēn−B̄n

)
+D̄n.

√
E2NDn, (2.20)

where B̄n is defined by (2.27), which satisfies

∣∣B̄n

∣∣.
√
E2NEn. (2.21)

Proof. For n= N+4,.. .,2N−2, similarly as the derivation of (2.13), one deduces

from (2.17) that for α∈N
1+2 with |α|≤n,

1

2

d

dt

∫

Ω

(
Rθ̄

ρ̄
|∂α̺|2+ ρ̄|∂αu|2+ cvρ̄

θ̄
|∂αϑ|2+|∂αb|2

)
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+
∫

Ω

(µ

θ̄
|∇∂αϑ|2+κ|curl∂αb|2

)

=
∫

Ω

(
Rθ̄

ρ̄
∂αG1∂α̺+∂αG2 ·∂αu+∂αG3∂αϑ+∂αG4 ·curl∂αb

)
. (2.22)

It follows from (2.19) that

∫

Ω

(
∂αG3∂αϑ+∂αG4 ·curl∂αb

)

.‖∂αG3‖0‖∂αϑ‖0+‖∂αG4‖0‖curl∂αb‖0.
√

DN+4E2N

√
Dn. (2.23)

Now we estimate the term G1. If |α|≤n−1, then (2.19) implies

∫

Ω
∂α̺∂αG1.‖∂α̺‖0‖∂αG1‖0.

√
Dn

√
DN+4E2N . (2.24)

If |α|=n and α1+α2≥1, then one writes α=α′+(α−α′) for α′∈N
2 with α′≤α and

|α′|=1 and then integrates by parts over Ω to have, since n≤4N−2 and by (2.19),

∫

Ω
∂α̺∂αG1=

∫

Ω
∂α−α′̺∂α+α′G1

.‖∂α−α′̺‖0‖∂α+α′G1‖0.
√
Dn

√
DN+4E2N. (2.25)

The remaining case, α0 = n, can be handled by the integration by parts in t and

using (2.19) as

∫

Ω
∂n

t ̺∂n
t G1=

d

dt

∫

Ω
∂n−1

t ̺∂n
t G1−

∫

Ω
∂n−1

t ̺∂n+1
t G1

.
d

dt

∫

Ω
∂n−1

t ̺∂n
t G1+

∥∥∂n−1
t ̺

∥∥
0

∥∥∂n+1
t G1

∥∥
0

.
d

dt

∫

Ω
∂n−1

t ̺∂n
t G1+

√
Dn

√
DN+4E2N . (2.26)

Consequently, combining (2.24)-(2.26) (and doing the similar computations for

the G2 term) and (2.23), one concludes (2.20) from (2.22) by summing over such

α, where

B̄n :=
∫

Ω

(
Rθ̄

ρ̄
∂n−1

t ̺∂n
t G1+∂n−1

t u·∂n
t G2

)
, (2.27)

which, by (2.19), satisfies (2.21).



Y. Wang and Z. Xin / Commun. Math. Res., 38 (2022), pp. 1-27 13

3 Boundedness estimates of EN

In this section, we will explore further the structures of (1.4) to derive the esti-
mates involving the normal derivatives of the solution, with the tangential energy
evolution estimates in hand.

For the estimates of the normal derivatives of the velocity u, as for the Euler
equations, a natural way is to estimate first the fluid vorticity, curlu, and then
to use the Hodge-type estimates. Applying curl to the second equation in (1.4)
yields that

ρ(∂t+u·∇)curlu= B̄ ·∇curlb+curl(curlb×b)−
[
curl,ρ(∂t+u·∇)

]
u. (3.1)

It follows from the second component of the fourth equation in (2.17) that

B̄·∇(curlb)1≡ B̄h ·∇h(curlb)1+ B̄3∂3(curlb)1

= B̄h ·∇h(curlb)1+ B̄3∂3∂2b3+
B̄3

κ

(
κ∆hb2−∂tb2+ B̄·∇u2−B̄2divu+G4

2

)
. (3.2)

On the other hand, one can write, by using the first equation in (2.17), that

B̄·∇u2−B̄2divu= B̄h ·∇hu2− B̄3(curlu)1+ B̄3∂2u3+
B̄2

ρ̄
(∂t̺−G1). (3.3)

Hence, as a consequence of (3.2) and (3.3), the first component of (3.1) can be
rewritten as

ρ(∂t+u·∇)(curlu)1+
B̄2

3

κ
(curlu)1

= B̄h ·∇h(curlb)1+ B̄3∂3∂2b3+
B̄3

κ

(
κ∆hb2−∂tb2+ B̄h ·∇hu2+ B̄3∂2u3+

B̄2

ρ̄
∂t̺

)

+
B̄3

κ

(
− B̄2

ρ̄
G1+G4

2

)
+
(

curl(curlb×b)
)

1
−
[
curl,ρ(∂t+u·∇)

]
u1. (3.4)

Similarly, one has

ρ(∂t+u·∇)(curlu)2+
B̄2

3

κ
(curlu)2

= B̄h ·∇h(curlb)2− B̄3∂3∂1b3−
B̄3

κ

(
κ∆hb1−∂tb1+ B̄h ·∇hu1+ B̄3∂1u3+

B̄1

ρ̄
∂t̺

)

− B̄3

κ

(
− B̄1

ρ̄
G1+G4

1

)
+
(

curl(curlb×b)
)

2
−
[
curl,ρ(∂t+u·∇)

]
u2. (3.5)
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Eqs. (3.4) and (3.5) yield a transport-damping evolution structure for (curlu)h ,
which depends crucially on the positivity of the magnetic diffusion coefficient
κ>0 and the non-vanishing of B̄3 6=0.

Applying ∂α for α∈N
1+3 with |α|≥1 to (3.4) and (3.5) gives

ρ(∂t+u·∇)∂α(curlu)h+
B̄2

3

κ
∂α(curlu)h =∂αLh+Φα

h , (3.6)

where for i=1,2,

Li = B̄h ·∇h(curlb)i+(−1)i+1B̄3∂3∂3−ib3 (3.7)

+(−1)i+1 B̄3

κ

(
κ∆hb3−i−∂tb3−i+ B̄h ·∇hu3−i+ B̄3∂3−iu3+

B̄3−i

ρ̄
∂t̺

)

and
Φα

h =∂αΦh−
[
∂α,ρ(∂t+u·∇)

]
(curlu)h (3.8)

with that for i=1,2,

Φi =(−1)i+1 B̄3

κ

(
− B̄3−i

ρ̄
G1+G4

3−i

)
+
(

curl(curlb×b)
)

i

−
[
curl,ρ(∂t+u·∇)

]
ui. (3.9)

The nonlinear terms Φα
h can be estimated as follows.

Lemma 3.1. It holds that for |α|≤2N−1,

‖Φα
h‖2

0.min{EN+4,DN+4}E2N . (3.10)

Proof. The proof follows in the same way as for Lemmas 2.1.

The estimates involving normal derivatives at the 2N level are derived as fol-
lows.

Proposition 3.1. It holds that

d

dt
‖(curlu)h‖2

2N−1+
2N

∑
j=0

∥∥∂
j
t(̺,u)

∥∥2

2N−j
+

2N

∑
j=0

∥∥∂
j
t(ϑ,b)

∥∥2

2N−j+1

. Ē2N+D̄2N+EN+4E2N (3.11)

and that

E2N . Ē2N+‖(curlu)h‖2
2N−1+EN+4E2N . (3.12)
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Proof. Fix ℓ= 0,.. .,2N−1. Let α∈N
3 with |α| ≤ 2N−1 such that α3 ≤ 2N−1−ℓ.

Taking the inner product of (3.6) with ∂α(curlu)h and then integrating by parts

over Ω, one obtains

1

2

d

dt

∫

Ω
ρ|∂α(curlu)h|2+

B̄2
3

κ

∫

Ω
|∂α(curlu)h|2

=
∫

Ω

(
∂αLh+Φα

h

)
·∂α(curlu)h . (3.13)

By Cauchy’s inequality, (3.7) and (3.10), it follows from summing (3.13) over such

α that

d

dt
‖(curlu)h‖2

2N−1−ℓ,ℓ+‖(curlu)h‖2
2N−1−ℓ,ℓ.∑

α

‖∂αLh‖2
0+‖Φα

h‖2
0

.‖u‖2
2N−1−ℓ,ℓ+1+‖b‖2

2N−ℓ,ℓ+1+‖∂t(b,̺)‖2
2N−1+EN+4E2N . (3.14)

Now employing the Hodge-type estimates (A.1) of Lemma A.1 with r=2N−ℓ≥1

and using the first equation in (2.17) and (2.19), one obtains

‖u‖2
2N−ℓ,ℓ.‖u‖2

0,ℓ+2N−ℓ
+‖(curlu)h‖2

2N−1−ℓ,ℓ+‖divu‖2
2N−1−ℓ,ℓ

≤‖u‖2
0,2N+‖(curlu)h‖2

2N−1−ℓ,ℓ+‖∂t̺‖2
2N−1−ℓ,ℓ+‖G1‖2

2N−1

.‖u‖2
0,2N+‖(curlu)h‖2

2N−1−ℓ,ℓ+‖∂t̺‖2
2N−1+EN+4E2N. (3.15)

On the other hand, consider the following elliptic problem:

{
−κ∆b= B̄ ·∇u− B̄divu−∂tb+G4 in Ω,

b3=0, κ∂3bh=−B̄3uh on ∂Ω.
(3.16)

By the standard Hr elliptic estimates with r= 2N−ℓ+1≥ 2, the trace theory (as

2N−ℓ≥1) and (2.19), one has

‖b‖2
2N−ℓ+1,ℓ.‖bh‖2

0+‖u‖2
2N−ℓ,ℓ+‖∂tb‖2

2N−ℓ−1,ℓ+‖G4‖2
2N−ℓ−1,ℓ+|uh|22N− 1

2

.‖bh‖2
0+‖u‖2

2N−ℓ,ℓ+‖∂tb‖2
2N−1+EN+4E2N. (3.17)

Then it follows from (3.14), (3.15) and (3.17) that

d

dt
‖(curlu)h‖2

2N−1−ℓ,ℓ+‖u‖2
2N−ℓ,ℓ+‖b‖2

2N−ℓ+1,ℓ

.‖u‖2
2N−1−ℓ,ℓ+1+‖b‖2

2N−ℓ,ℓ+1+‖∂t(b,̺)‖2
2N−1+EN+4E2N . (3.18)
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A suitable linear combination of (3.18) for ℓ=0,.. .,2N−1 yields that

d

dt
‖(curlu)h‖2

2N−1+‖u‖2
2N+‖b‖2

2N+1

.‖u‖2
0,2N+‖b‖2

1,2N+‖∂t(b,̺)‖2
2N−1+EN+4E2N . (3.19)

Next, applying curl to the second equation in (2.17) yields

∂t curlu= B̄ ·∇curlb+curlG2. (3.20)

For j=1,.. .,2N−1, employing the Hodge-type estimates (A.2) of Lemma A.1 with

r=2N− j≥1, by (3.20), the first equation in (2.17) and (2.19), one obtains

∥∥∂
j
tu
∥∥2

2N−j
.
∥∥∂

j
tuh

∥∥2

0
+
∥∥∂

j
tcurlu

∥∥2

2N−j−1
+
∥∥∂

j
tdivu

∥∥2

2N−j−1

.
∥∥∂

j
tuh

∥∥2

0
+
∥∥∂

j−1
t b

∥∥2

2N−j+1
+
∥∥∂

j−1
t G2

∥∥2

2N−j

+
∥∥∂

j+1
t ̺

∥∥2

2N−j−1
+
∥∥∂

j
tG

1
∥∥2

2N−j−1

.
∥∥∂

j
tuh

∥∥2

0
+
∥∥∂

j−1
t b

∥∥2

2N−(j−1)
+
∥∥∂

j+1
t ̺

∥∥2

2N−(j+1)
+EN+4E2N. (3.21)

On the other hand, for j = 0,.. .,2N−1, by the Poincaré inequality and (1.9) and

using the second equation in (2.17) and (2.19), one has

∥∥∂
j
t̺
∥∥2

2N−j
.
∥∥∂

j
t∇̺

∥∥2

2N−j−1

.
∥∥∂

j+1
t u

∥∥2

2N−j−1
+
∥∥∂

j
t(ϑ,b)

∥∥2

2N−j
+
∥∥∂

j
tG

2
∥∥2

2N−j−1

.
∥∥∂

j+1
t u

∥∥2

2N−(j+1)
+
∥∥∂

j
t(ϑ,b)

∥∥2

2N−j
+EN+4E2N . (3.22)

We shall use the estimates (3.21) and (3.22) repeatedly. First, letting j=2N−1 in

(3.21) yields

∥∥∂2N−1
t u

∥∥2

1
.
∥∥∂2N−1

t u
∥∥2

0
+
∥∥∂2N−2

t b
∥∥2

2
+
∥∥∂2N

t ̺
∥∥2

0
+EN+4E2N . (3.23)

Next, for j= 1,.. .,2N−2, (3.21) together with (3.22) (with j replaced by j+1) im-

plies

∥∥∂
j
tu
∥∥2

2N−j
.
∥∥∂

j
tu
∥∥2

0
+
∥∥∂

j−1
t b

∥∥2

2N−(j−1)
+
∥∥∂

j+2
t u

∥∥2

2N−(j+2)

+
∥∥∂

j+1
t (ϑ,b)

∥∥2

2N−(j+1)
+EN+4E2N . (3.24)
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Using a simple induction based on the estimate (3.24), one obtains

2N−2

∑
j=1

∥∥∂
j
tu
∥∥2

2N−j
.

2N−2

∑
j=1

∥∥∂
j
tu
∥∥2

0
+

2N−3

∑
j=0

∥∥∂
j
tb
∥∥2

2N−j
+
∥∥∂2N−1

t u
∥∥2

1
+
∥∥∂2N

t u
∥∥2

0

+
2N−1

∑
j=2

∥∥∂
j
t(ϑ,b)

∥∥2

2N−j
+EN+4E2N . (3.25)

This together with the estimates (3.23) and (3.22) for j=0,.. .,2N−1 implies

2N

∑
j=0

∥∥∂
j
t̺
∥∥2

2N−j
+

2N

∑
j=1

∥∥∂
j
tu
∥∥2

2N−j

.
2N

∑
j=1

∥∥∂
j
tu
∥∥2

0
+
∥∥∂2N

t ̺
∥∥2

0
+

2N−1

∑
j=0

∥∥∂
j
t(ϑ,b)

∥∥2

2N−j
+EN+4E2N. (3.26)

Now, applying ∂
j
t, j= 1,.. .,2N−1, to the problem (3.16) and the standard Hr

elliptic estimates with r=2N− j+1≥2, the trace theory (as 2N− j≥1) and (2.19)

show that
∥∥∂

j
tb
∥∥2

2N−j+1
.
∥∥∂

j
tbh

∥∥2

0
+
∥∥∂

j
tu
∥∥2

2N−j
+
∥∥∂

j+1
t b

∥∥2

2N−j−1

+
∥∥∂

j
tG

4
∥∥2

2N−j−1
+
∣∣∂j

tuh

∣∣2
2N−j− 1

2

.
∥∥∂

j
tbh

∥∥2

0
+
∥∥∂

j
tu
∥∥2

2N−j
+
∥∥∂

j+1
t b

∥∥2

2N−(j+1)
+EN+4E2N . (3.27)

On the other hand, consider the following elliptic problem:
{
−µ∆ϑ=−p̄divu−cvρ̄∂tθ+G3 in Ω,

∂3ϑ=0 on ∂Ω.
(3.28)

Applying ∂
j
t, j = 0,.. .,2N−1, to the problem (3.28) and the standard Hr elliptic

estimates with r=2N− j+1≥2 and (2.19) show that
∥∥∂

j
tϑ
∥∥2

2N−j+1
.
∥∥∂

j
tϑ
∥∥2

0
+
∥∥∂

j
tu
∥∥2

2N−j
+
∥∥∂

j+1
t ϑ

∥∥2

2N−j−1
+
∥∥∂

j
tG

3
∥∥2

2N−j−1

.
∥∥∂

j
tϑ
∥∥2

0
+
∥∥∂

j
tu
∥∥2

2N−j
+
∥∥∂

j+1
t ϑ

∥∥2

2N−(j+1)
+EN+4E2N . (3.29)

Collecting (3.26), (3.27) with summing over j= 1,.. .,2N−1 and (3.29) with sum-

ming over j=0,.. .,2N−1 yields that

2N

∑
j=0

∥∥∂
j
t̺
∥∥2

2N−j
+

2N

∑
j=1

∥∥∂
j
tu
∥∥2

2N−j
+

2N−1

∑
j=0

∥∥∂
j
tϑ
∥∥2

2N−j+1
+

2N−1

∑
j=1

∥∥∂
j
tb
∥∥2

2N−j+1
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.‖u‖2
2N+

2N

∑
j=1

∥∥∂
j
tu
∥∥2

0
+
∥∥∂2N

t ̺
∥∥2

0
+

2N−1

∑
j=0

∥∥∂
j
t(ϑ,b)

∥∥2

2N−j
+EN+4E2N . (3.30)

Now combining (3.19) and (3.30) leads to

d

dt
‖(curlu)h‖2

2N−1+
2N

∑
j=0

∥∥∂
j
t(̺,u)

∥∥2

2N−j
+

2N−1

∑
j=0

∥∥∂
j
t(ϑ,b)

∥∥2

2N−j+1
(3.31)

.‖u‖2
0,2N+

2N

∑
j=1

∥∥∂
j
tu
∥∥2

0
+
∥∥∂2N

t ̺
∥∥2

0
+

2N−1

∑
j=0

∥∥∂
j
t(ϑ,b)

∥∥2

2N−j
+‖b‖2

1,2N+EN+4E2N .

This together with the Sobolev interpolation implies that

d

dt
‖(curlu)h‖2

2N−1+
2N

∑
j=0

∥∥∂
j
t(̺,u)

∥∥2

2N−j
+

2N−1

∑
j=0

∥∥∂
j
t(ϑ,b)

∥∥2

2N−j+1
(3.32)

.‖u‖2
0,2N+

2N

∑
j=1

∥∥∂
j
tu
∥∥2

0
+
∥∥∂2N

t ̺
∥∥2

0
+

2N−1

∑
j=0

∥∥∂
j
t(ϑ,b)

∥∥2

0
+‖b‖2

1,2N+EN+4E2N ,

which yields (3.11) by controlling the first fourth terms in the right hand side by

Ē2N and the fifth term by D̄2N .

We now prove (3.12). Recalling (3.15) with ℓ= 0, (3.26), (3.27) and (3.29) for

j=0,.. .,2N−1, and then summing them up, similarly as the derivation of (3.32),

one deduces

E2N .‖u‖2
0,2N+

2N

∑
j=1

∥∥∂
j
tu
∥∥2

0
+
∥∥∂2N

t ̺
∥∥2

0
+

2N−1

∑
j=0

∥∥∂
j
t(ϑ,b)

∥∥2

0

+‖(curlu)h‖2
2N−1+EN+4E2N , (3.33)

which yields (3.12) since the first four terms in the right hand side can be con-

trolled by Ē2N .

We now deduce the boundedness estimates of E2N. Set

E
w
N+4(t) :=(1+t)N−5

EN+4(t). (3.34)

Theorem 3.1. Let N≥8. It holds that

E2N(t)+
∫ t

0
D̄2N(s)ds.E2N(0)+ sup

0≤s≤t

E2N(s)
√

Ew
N+4(s), ∀t∈ [0,T]. (3.35)
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Proof. First, integrating (2.8) in time implies that for N≥8,

Ē2N(t)+
∫ t

0
D̄2N(s)ds

. Ē2N(0)+ sup
0≤s≤t

E2N(s)
√

Ew
N+4(s)

∫ t

0
(1+s)−(N−5)/2ds

.E2N(0)+ sup
0≤s≤t

E2N(s)
√

Ew
N+4(s). (3.36)

Next, a Gronwall type argument for (3.11) yields

‖(curlu)h(t)‖2
2N−1.E2N(0)+ sup

0≤s≤t

Ē2N(s)+
∫ t

0
D̄2N(s)ds

+ sup
0≤s≤t

(
E2N(s)EN+4(s)

)2
. (3.37)

Hence, one concludes (3.35) from (3.36), (3.37) and (3.12).

4 Decay estimates of EN+4

In this section, to close the full energy estimates (3.35), we will derive the decay
estimates of EN+4. This will follow from a set of energy-dissipation estimates
related to En and Dn.

Note that the tangential dissipation estimates of D̄n control only the tempera-
ture ϑ and magnetic field b. The tangential dissipation estimates for the velocity
u rely on the coupling between the fluid and the magnetic field and the presence
of the heat conductivity, and one has the following.

Proposition 4.1. For n=N+4,.. .,2N, it holds that

n−1

∑
j=0

∥∥∂
j
tu
∥∥2

0,n−j−1
. D̄n+DN+4E2N . (4.1)

Proof. Let n=N+4,.. . ,2N. It follows from the fourth and third equations in (2.17)

that

∂tb−κ∆b= B̄ ·∇u+
B̄

p̄

(
cvρ̄∂tϑ−µ∆ϑ−G3

)
+G4. (4.2)

By the vertical component of (4.2) and using the fifth equation in (2.17), one ob-

tains

B̄·∇
(

u3−
µ

p̄
∂3ϑ

)
≡ B̄h ·∇h

(
−µ

p̄
∂3ϑ

)
+ B̄·∇u3−

µB̄3

p̄
∂2

3ϑ (4.3)



20 Y. Wang and Z. Xin / Commun. Math. Res., 38 (2022), pp. 1-27

= B̄h ·∇h

(
−µ

p̄
∂3ϑ

)
+∂tb3−κ∆hb3+κ∂3divh bh−

B̄3

p̄

(
cvρ̄∂tϑ−µ∆hϑ−G3

)
−G4

3 .

As B̄3 6=0 and since u3=0 and ∂3ϑ=0 on ∂Ω, by the Poincaré-type inequality, (4.3)

and (2.19), one deduces that for j=0,.. .,n−1,

∥∥∥∥∂
j
t

(
u3−

µ

p̄
∂3ϑ

)∥∥∥∥
2

0,n−j−1

.

∥∥∥∥B̄·∇∂
j
t

(
u3−

µ

p̄
∂3ϑ

)∥∥∥∥
2

0,n−j−1

.
∥∥∂

j
t(ϑ,b)

∥∥2

1,n−j
+
∥∥∂

j+1
t (ϑ,b3)

∥∥2

0,n−j−1
+
∥∥∂

j
tG

3
∥∥2

n−j−1
+
∥∥∂

j
tG

4
3

∥∥2

n−j−1

. D̄n+DN+4E2N. (4.4)

This implies

∥∥∂
j
tu3

∥∥2

0,n−j−1
.

∥∥∥∥∂
j
t

(
u3−

µ

p̄
∂3ϑ

)∥∥∥∥
2

0,n−j−1

+
∥∥∂

j
tϑ
∥∥2

1,n−j−1

. D̄n+DN+4E2N . (4.5)

Now by the horizontal components of (4.2), one finds

B̄·∇
(

κ∂3bh+ B̄3uh−
µB̄h

p̄
∂3ϑ

)
(4.6)

≡ B̄h ·∇h

(
κ∂3bh−

µB̄h

p̄
∂3ϑ

)
+ B̄3

(
κ∂2

3bh+ B̄·∇uh−
µB̄h

p̄
∂2

3ϑ

)

= B̄h ·∇h

(
κ∂3bh−

µB̄h

p̄
∂3ϑ

)
+ B̄3

(
∂tbh−κ∆hbh−

B̄h

p̄
(cv ρ̄∂tϑ−µ∆hϑ−G3)−G4

h

)
.

Since ∂3ϑ= 0 and κ∂3bh+ B̄3uh = 0 on ∂Ω, by the Poincaré-type inequality again,

(4.6) and (2.19), one deduces that for j=0,.. .,n−1,

∥∥∥∥∂
j
t

(
κ∂3bh+ B̄3uh−

µB̄h

p̄
∂3ϑ

)∥∥∥∥
2

0,n−j−1

.

∥∥∥∥B̄·∇∂
j
t

(
κ∂3bh+ B̄3uh−

µB̄h

p̄
∂3ϑ

)∥∥∥∥
2

0,n−j−1

.
∥∥∂

j
t(ϑ,bh)

∥∥2

1,n−j
+
∥∥∂

j+1
t (ϑ,bh)

∥∥2

0,n−j−1
+
∥∥∂

j
tG

3
∥∥2

n−j−1
+
∥∥∂

j
tG

4
h

∥∥2

n−j−1

. D̄n+DN+4E2N . (4.7)
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This implies, using B̄3 6=0 again, that

∥∥∂
j
tuh

∥∥2

0,n−j−1
.

∥∥∥∥∂
j
t

(
κ∂3bh+ B̄3uh−

µB̄h

p̄
∂3ϑ

)∥∥∥∥
2

0,n−j−1

+
∥∥∂

j
t(ϑ,bh)

∥∥2

1,n−j−1

. D̄n+DN+4E2N . (4.8)

This together with (4.5) gives (4.1).

Next, we derive the dissipation estimates of ∂n−1
t ̺.

Proposition 4.2. For n=N+4,.. .,2N, it holds that

d

dt

∫

Ω
ρ̄∂n−1

t u·∂n−2
t u+

∥∥∂n−1
t ̺

∥∥2

0
. D̄n+

√
E2NDn. (4.9)

Proof. Let n = N+4,.. .,2N. One applies ∂n−2
t to the first equation in (2.17) and

then takes the inner product with Rθ̄
ρ̄ ∂n−1

t ̺ to have

∫

Ω

Rθ̄

ρ̄

∣∣∂n−1
t ̺

∣∣2+
∫

Ω
Rθ̄∂n−1

t ̺div∂n−2
t u=

∫

Ω

Rθ̄

ρ̄
∂n−1

t ̺∂n−2
t G1. (4.10)

By (2.19), one obtains

∫

Ω

Rθ̄

ρ̄
∂n−1

t ̺∂n−2
t G1.

∥∥∂n−1
t ̺

∥∥
0

∥∥∂n−2
t G1

∥∥
0
.
√
Dn

√
DN+4E2N. (4.11)

Integrating by parts over Ω and using the second equation in (2.17), one has

∫

Ω
Rθ̄∂n−1

t ̺div∂n−2
t u=−

∫

Ω
∇
(

Rθ̄∂n−1
t ̺

)
·∂n−2

t u

=
∫

Ω

(
ρ̄∂n

t u+∇
(

Rρ̄∂n−1
t ϑ

)
−curl∂n−1

t b× B̄−∂n−1
t G2

)
·∂n−2

t u. (4.12)

Integrating by parts in time yields

∫

Ω
ρ̄∂n

t u·∂n−2
t u=

d

dt

∫

Ω
ρ̄∂n−1

t u·∂n−2
t u−

∫

Ω
ρ̄
∣∣∂n−1

t u
∣∣2. (4.13)

One obtains directly

−
∫

Ω

(
∇
(

Rρ̄∂n−1
t ϑ

)
−curl∂n−1

t b× B̄
)
·∂n−2

t u.
∥∥∂n−1

t (ϑ,b)
∥∥

1

∥∥∂n−2
t u

∥∥
0

(4.14)
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and by (2.19),

∫

Ω
∂n−1

t G2 · ρ̄∂n−2
t u.

∥∥∂n−1
t G2

∥∥
0

∥∥∂n−2
t u

∥∥
0
.
√

DN+4E2N

√
Dn. (4.15)

Consequently, combining (4.10)-(4.15) yields, by Cauchy’s inequality,

d

dt

∫

Ω
ρ̄∂n−1

t u·∂n−2
t u+

∥∥∂n−1
t ̺

∥∥2

0

.
∥∥(∂n−2

t u,∂n−3
t u)

∥∥2

0
+
∥∥∂n−1

t (ϑ,b)
∥∥2

1
+
√
E2NDn. (4.16)

One thus concludes (4.9) by controlling the first term in the right hand side by

using (4.1) and the second term by D̄n−1, since n≥N+4.

Now we derive the full energy-dissipation estimates.

Proposition 4.3. For n=N+4,.. .,2N, it holds that

d

dt

(
‖(curlu)h‖2

n−2+
∫

Ω
ρ̄∂n−1

t u·∂n−2
t u

)
+Dn. D̄n+

√
E2NDn (4.17)

and that

En. Ēn+‖(curlu)h‖2
n−2+EN+4E2N . (4.18)

Proof. Let n=N+4,.. . ,2N. It follows similarly as the derivation of (3.32), with 2N

replaced by n−1, that

d

dt
‖(curlu)h‖2

n−2+
n−1

∑
j=0

∥∥∂
j
t(̺,u)

∥∥2

n−j−1
+

n−2

∑
j=0

∥∥∂
j
t(ϑ,b)

∥∥2

n−j
(4.19)

.‖u‖2
0,n−1+

n−1

∑
j=1

∥∥∂
j
tu
∥∥2

0
+
∥∥∂n−1

t ̺
∥∥2

0
+

n−2

∑
j=0

∥∥∂
j
t(ϑ,b)

∥∥2

0
+‖b‖2

1,n−1+DN+4E2N .

One may appeal to (4.1) to control the first two terms in the right hand side, and

the fourth and fifth terms are bounded by D̄n−2. One then combines the resulting

inequality and (4.9) to conclude (4.17).

We now prove (4.18). Taking ℓ=0 and replacing 2N by n−1 in (3.15), taking

j=0 and replacing 2N by n−1 in (3.27) and (3.29), and then combining them yield

‖u‖2
n−1+‖(ϑ,b)‖2

n .‖u‖2
0,n−1+‖(curlu)h‖2

n−2+‖(ϑ,b)‖2
0

+‖∂t(̺,ϑ,b)‖2
n−2+EN+4E2N . (4.20)
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Replacing 2N by n−1 in (3.30) (but without estimating ‖ϑ‖2
n) leads to

n

∑
j=0

∥∥∂
j
t̺
∥∥2

n−j
+

n

∑
j=1

∥∥∂
j
tu
∥∥2

n−j
+

n−1

∑
j=1

∥∥∂
j
t(ϑ,b)

∥∥2

n−j+1

.
n

∑
j=1

∥∥∂
j
tu
∥∥2

0
+
∥∥∂n

t ̺
∥∥2

0
+

n−1

∑
j=0

∥∥∂
j
t(ϑ,b)

∥∥2

2N−j
+EN+4E2N. (4.21)

Hence, combining (4.20)-(4.21) gives

En. Ēn+‖(curlu)h‖2
n−2+‖∂t̺‖2

n−2+
n−1

∑
j=0

∥∥∂
j
t(ϑ,b)

∥∥2

n−j
+EN+4E2N . (4.22)

This together with the Sobolev interpolation implies that

En. Ēn+‖(curlu)h‖2
n−2+‖∂t̺‖2

0+
n−1

∑
j=0

∥∥∂
j
t(ϑ,b)

∥∥2

0
+EN+4E2N

. Ēn+‖(curlu)h‖2
n−2+EN+4E2N. (4.23)

This is (4.18).

With the previous estimates in hand, we now derive the decay estimates.

Theorem 4.1. It holds that

∫ t

0
D2N(s)ds+

N−6

∑
j=0

(1+t)N−5−j
EN+4+j(t)+

N−6

∑
j=0

∫ t

0
(1+s)N−5−j

DN+4+j(s)ds

.E2N(0)+ sup
0≤s≤t

E2N(s)
√

Ew
N+4(s). (4.24)

Proof. First, taking n=2N in (4.17), one deduces that for E2N ≤δ small,

d

dt

(
‖(curlu)h‖2

2N−2+
∫

Ω
ρ̄∂2N−1

t u·∂2N−2
t u

)
+D2N . D̄2N . (4.25)

Integrating (4.25) in time and by (3.35) gives in particular that

∫ t

0
D2N(s)ds.E2N(0)+ Ē2N(t)+

∫ t

0
D̄2N(s)ds

.E2N(0)+ sup
0≤s≤t

E2N(s)
√

Ew
N+4(s). (4.26)
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Next, it follows from (4.17) that for n=N+4,.. .,2N−2,

d

dt

(
‖(curlu)h‖2

n−2+
∫

Ω
ρ̄∂n−1

t u·∂n−2
t u

)
+Dn. D̄n. (4.27)

On the other hand, it follows from (4.18) that

En. Ēn+‖(curlu)h‖2
n−2. (4.28)

One can deduce from (4.27), (4.28), (2.20) and (2.21) that

d

dt
En+Dn≤0. (4.29)

Observe that Eℓ≤Dℓ+1. Then we will employ a time weighted inductive argu-

ment here. To begin with, it follows from (4.29) that for j=0,.. .,N−4,

d

dt
EN+4+j+DN+4+j≤0. (4.30)

Multiplying (4.30) by (1+t)N−5−j and using EN+4+j≤DN+5+j, one gets

d

dt

(
(1+t)N−5−j

EN+4+j

)
+(1+t)N−5−j

DN+4+j

≤ (N−5− j)(1+t)N−6−j
EN+4+j. (1+t)N−5−(j+1)

DN+4+(j+1). (4.31)

Integrating (4.31) in time directly and using a suitable linear combination of the

resulting inequalities, one obtains

N−6

∑
j=0

(1+t)N−5−j
EN+4+j(t)+

N−6

∑
j=0

∫ t

0
(1+s)N−5−j

DN+4+j(s)ds

.E2N(0)+
∫ t

0
D2N−1(s)ds. (4.32)

This together with (4.26) implies (4.24).

5 Global well-posedness

We are now ready to present the proof of Theorem 1.1.

Proof. The estimate (4.24) implies in particular (1.16), for E2N ≤ δ small. Then

combining the estimates (3.35) and (1.16) yields (1.15). This closes the a priori

assumption (2.1) if E2N(0)≤ ε0 for ε0 >0 sufficiently small. Therefore, the global

well-posedness follows by using a standard continuity argument.
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Appendix A . Hodge-type estimates

Lemma A.1. Let r≥1 be an integer. Then it holds that

‖v‖r .‖v‖0,r+‖(curlv)h‖r−1+‖divv‖r−1. (A.1)

If v3=0 on ∂Ω, then

‖v‖r .‖vh‖0+‖curlv‖r−1+‖divv‖r−1. (A.2)

If v3=0 on ∂Ω and
∫

Ω
vh=0, then

‖v‖r .‖curlv‖r−1+‖divv‖r−1. (A.3)

Proof. One may refer to [21, Lemma A.9] for the proof of (A.1). Now for v3 = 0

on ∂Ω, by the standard elliptic estimates on −∆v3 = (curlcurlv)3−∂3divv, one

obtains

‖v3‖r.‖(curlv)h‖r−1+‖divv‖r−1. (A.4)

On the other hand, one has

‖∇vh‖r−1.‖∇v3‖r−1+‖curlv‖r−1+‖divv‖r−1. (A.5)

Then (A.2) follows from (A.4)-(A.5), and (A.3) follows by using further the Poin-

caré inequality.
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