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Abstract. On the basis of a well-established binomial structure and the so-
called Poisson-Lindley distribution, a new two-parameter discrete distribution
is introduced. Its properties are studied from both the theoretical and practi-
cal sides. For the theory, we discuss the moments, survival and hazard rate
functions, mode and quantile function. The statistical inference on the model
parameters is investigated by the maximum likelihood, moments, proportions,
least square, and weighted least square estimations. A simulation study is con-
ducted to observe the performance of the bias and mean square error of the
obtained estimates. Then, applications to two practical data sets are given.
Finally, we construct a new flexible count data regression model called the
binomial-Poisson Lindley regression model with two practical examples in the
medical area.
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1 Introduction

In physics, counts are encountered as radioactive decay, or photon counting us-
ing a Geiger tube, and for modelling such physical issue, Hu et al. [9] introduced
the binomial-discrete family of discrete distributions characterized by the com-
pounding of two discrete distributions: The binomial distribution and a generic
discrete distribution with support N = {0,1,.. .}. It is defined by the following
probability mass function (PMF):

g(x;p,ζ)=
∞

∑
n=x

(
n

x

)
px(1−p)n−xPζ(N=n), (1.1)

where p∈(0,1) and N denotes a discrete random variable with support N, which
may depend on a parameter vector denoted by ζ. Hu et al. [9] studied the spe-
cial member of the family defined with N following the Poisson random variable
with parameter λ, and showed that g(x;p,λ) corresponds to the PMF of a Pois-
son distribution with parameter λp. But the Poisson distribution is not always
suitable for modeling and analysis of data counts, because its mean and variance
are equal. Therefore, there is a need to introduce other distributions for counts.
Recently, Kus et al. [13] investigated another special member of the family that
arises with N following the discrete Lindley distribution. The binomial-discrete
Lindley distribution has seen the light. Then, it was proved that it could provide
better fits than the former discrete Lindley distribution for six different data sets.
Several extensions of the binomial-discrete family can be found in Akdogan et
al. [1] and Deniz [7].

In this paper, we investigate a new special member of the binomial-discrete
family from a statistical point of view and, based on it, we set up a new regres-
sion model. This member assumes that N follows a well-known extension of the
discrete Lindley distribution: the so-called the Poisson-Lindley (PL) distribution.
The motivations behind the PL distribution are recalled below. First of all, it is
defined by the following PMF:

f (x;θ)=
θ2(x+θ+2)

(1+θ)x+3
, x∈N, (1.2)

where θ > 0. The PL distribution possesses tractable probability functions, as
well as desirable properties, such as unimodality, overdispersion and increasing
hazard rate function (HRF). Thanks to its skewness and kurtosis features, it can
provide a better alternative to the Poisson, geometric and negative binomial dis-
tributions for modelling purposes. Further theoretical facts and applications for
the PL distribution can be found in Sankaran [17] and Shanker and Fesshaye [18].
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Hence, we introduce a new two-parameter discrete distribution with support
N, called the binomial Poisson-Lindley (Bin-PL) distribution with parameters p
and θ. It is defined by the PMF in (1.1) with Pθ(N=n)= f (n;θ). It has the PL distri-
bution as a sub-distribution. Moreover, it is a mixture of geometric and negative
binomial distributions. Hence, properties of the negative binomial distribution
can be useful for determining those of the Bin-PL distribution. Further, the Bin-
PL distribution has a bimodality feature besides the unimodal and decreasing
ones.

Bimodal distributions can be seen in traffic analysis, where traffic peaks ap-
pear during the AM rush hour and then again during the PM rush hour. Also,
this phenomenon is observed in medicine and in daily water distribution, as in
the forms of showering and cooking in the morning and evening periods. Also,
properties of the distribution recommend it for analyzing rightly skewed and
leptokurtic data, as shall be shown later. Based on the introduced distribution,
we propose a new flexible count data regression model called the Bin-PL model.
Two practical examples are provided to show that the Bin-PL regression model
works very well, and this is confirmed by comparing it with the classical Poisson,
uniform-Poisson (UP) [7] and Bell [4] models.

The rest of the paper is structured as follows. Section 2 presents the basics of
the Bin-PL distribution. Many of its properties, such as unimodality of the PMF,
quantile function, stochastic orderings, and moments are described in Section 3.
Several point estimation methods are considered for the Bin-PL model parame-
ters and simulation studies are conducted to check the capacity of these methods
in Section 4. Two applications are given to show the practicality of the Bin-PL
model in Section 5. In Section 6, a new count regression model is introduced
and an extra two practical data applications are carried out to show that the new
model is useful for analyzing the practical data. Some concluding remarks end
the paper in Section 7.

2 Basics on the Bin-PL distribution

First of all, let us discuss some basics of the Bin-PL distribution, as well as its
immediate properties.

2.1 On the probability mass function

The result below presents a simple expression of the PMF of the Bin-PL distribu-
tion.
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Proposition 2.1. The PMF of the Bin-PL distribution with parameters p and θ can be

expressed as

g(x;p,θ)=
θ2

1+θ

px

(θ+p)x+2
(x+θ+p+1), x∈N. (2.1)

Proof. For |u|<1, the following formulas hold:

+∞

∑
n=x

(
n

x

)
nun =

1

(1−u)x+2
ux(u+x),

+∞

∑
n=x

(
n

x

)
un=

1

(1−u)x+1
ux.

Therefore, based on (1.1) and (1.2), after some algebra, we get

g(x;p,θ)=
+∞

∑
n=x

(
n

x

)
px(1−p)n−x θ2(n+θ+2)

(1+θ)n+3

=
θ2

(1+θ)3
px(1−p)−x

[
+∞

∑
n=x

(
n

x

)
n

(
1−p

1+θ

)n

+(θ+2)
+∞

∑
n=x

(
n

x

)(
1−p

1+θ

)n
]

=
θ2

(1+θ)3
px(1−p)−x

[(
θ+1

θ+p

)2(1−p

θ+p

)x(1−p

1+θ
+x

)
+(θ+2)

θ+1

θ+p

(
1−p

θ+p

)x
]

=
θ2

1+θ

px

(θ+p)x+2
(x+θ+p+1).

This ends the proof of Proposition 2.1.

In the next of the study, the Bin-PL distribution will be sometimes denoted by
Bin-PL (p,θ) when the parameters need to be specified.

As a first remark, when p=1, we get the PL distribution, so our new distribu-
tion generalizes it. Also, for θ=1, we see mixing portions are half. Furthermore,
we can express g(x;p,θ) as

g(x;p,θ)=
θ2

(1+θ)(θ+p)

(
p

θ+p

)x

+
θ2

(1+θ)(θ+p)2
(x+1)

(
p

θ+p

)x

=
θ

1+θ
g1(x;p,θ)+

1

1+θ
g2(x;p,θ), (2.2)

where for i ∈ {1,2}, gi(x;p,θ) is the PMF of the negative binomial distribution
denoted by NB(i,p/(θ+p)), i.e.,

gi(x;p,θ)=(x+1)i−1

(
1− p

θ+p

)i( p

θ+p

)x

, x∈N.
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Figure 1: PMF of the Bin-PL distribution for different values of p and θ.

Hence, our Bin-PL distribution can be viewed as a mixture of negative binomial
(geometric) NB(1,p/(θ+p)) (= G(p/(θ+p))) and negative binomial NB(2,p/
(θ+p)) distributions, with mixing proportions θ/(1+θ) and 1/(1+θ), respec-
tively. Consequently, the well-known properties of the negative binomial distri-
bution can be useful to determine those of the Bin-PL distribution.

Fig. 1 presents the plots of the PMF of the Bin-PL distribution for some choices
of p and θ. From Fig. 1, we observe that the PMF can be decreasing and unimodal
when x is increasing.

3 On the properties of the new distribution

Some properties of the Bin-PL distribution are now discussed. First, we have

g(0;p,θ)=
θ2

1+θ

θ+p+1

(θ+p)2

and
g(x+1;p,θ)

g(x;p,θ)
=

p

θ+p

(
1+

1

x+θ+p+1

)
,
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which is clearly a decreasing function in x, implying the unimodality of the Bin-
PL distribution. Furthermore, we have

g(x+2;p,θ)g(x;p,θ)

[g(x+1;p,θ)]2
=1− 1

(x+θ+p+2)2
<1,

implying that g(x;p,θ) is log-concave. As an immediate consequence, the Bin-PL
distribution has an increasing failure rate (see Johnson et al. [10, p. 209]).

Corollary 3.1. Since log-concave probability mass functions are strongly unimodal (see

Keilson and Gerber [11]), the Bin-PL distribution is unimodal.

Corollary 3.2. The mode of the Bin-PL distribution is given by

mod=

{
⌊m⌋, g

(
⌊m⌋;p,θ

)
> g
(
⌊m⌋+1;p,θ

)
,

⌊m⌋+1, g
(
⌊m⌋;p,θ

)
< g
(
⌊m⌋+1;p,θ

)
,

where

m=
−(p+θ+1)−1

log(p)−log(p+θ)

and ⌊x⌋ denotes the integer part of x. When

θ=w=
1

2

(√
p2+10p+9−(p+3)

)
,

we have

g
(
⌊m⌋;p,θ

)
= g
(
⌊m⌋+1;p,θ

)
,

and the PMF of the Bin-PL distribution is bimodal with modes given by ⌊m⌋ and ⌊m⌋+1.

These facts are illustrated in Fig. 2.

The result below presents a simple expression of the cumulative distribution
function (CDF) of the Bin-PL distribution.

Proposition 3.1. The CDF of the Bin-PL distribution can be expressed as, for any inte-

ger t,

F(t;p,θ)=1−
(

θ2+pθ+2θ+tθ+p
)

pt+1

(1+θ)(p+θ)t+2
. (3.1)
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Figure 2: PMF for different values of w and m.

Proof. It follows from the mixture representation (2.2), geometric series expan-

sions and some algebra, that

F(t;p,θ)=
t

∑
x=0

g(x;p,θ)

=
θ2

(1+θ)(θ+p)

t

∑
x=0

(
p

θ+p

)x

+
θ2

(1+θ)(θ+p)2

t

∑
x=0

(x+1)

(
p

θ+p

)x

=
θ

1+θ

[
1−
(

p

θ+p

)t+1
]
+

1

1+θ

[
1+(t+1)

(
p

θ+p

)t+2

−(t+2)

(
p

θ+p

)t+1
]

=1− 1

1+θ

[
(t+θ+2)

(
p

θ+p

)t+1

−(t+1)

(
p

θ+p

)t+2
]

=1−
(
θ2+pθ+2θ+tθ+p

)
pt+1

(1+θ)(p+θ)t+2
.

This ends the proof of Proposition 3.1.
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Figure 3: HRF of the Bin-PL distribution for different values of p and θ.

Using (2.1), the survival function of the Bin-PL distribution is given by, for
any integer t,

S(t;p,θ)=1−F(t;p,θ)=

(
θ2+pθ+2θ+tθ+p

)
pt+1

(1+θ)(p+θ)t+2
. (3.2)

Using (2.1) and (3.2), the HRF can be written as

h(x;p,θ)=
g(x;p,θ)

S(x;p,θ)
=

θ2(1+θ+x+p)

p(pθ+p+xθ+2θ+θ2)
.

Bin-PL distribution has a non decreasing HRF for all values of p and θ. From
Fig. 3, we observe that the HRF is non decreasing when x is increasing.

3.1 Quantile function

The quantile function of the Bin-PL distribution is obtained by

Q(u;p,θ)=
LambertW

(
−ξ(u−1)exp(ξ)

)

log(p)−log(p+θ)
− θ2+(p+2)θ+p

θ
, (3.3)
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where

ξ=(θ+1)(p+θ)log

(
p

p+θ

)

and

LambertW(z)=
∞

∑
n=1

(−n)n−1zn

(n!)
.

From (3.3), the a-th quantile (xa) of the Bin-PL distribution is written by

xa=

{
⌊Q(u;p,θ)⌋+1, ⌊Q(u;p,θ)⌋ 6=Q(u;p,θ),

⌊Q(u;p,θ)⌋ ,⌊Q(u;p,θ)⌋+1, ⌊Q(u;p,θ)⌋=Q(u;p,θ).

That is xa satisfies F(x−a ;p,θ)≤ p≤F(xa;p,θ). The median of the Bin-PL distribu-
tion is also obtained by equating a to 0.5.

3.2 Stochastic ordering

In distribution theory, stochastic ordering is an important concept for evaluating
the comparative behavior of random variables. If the distribution has the like-
lihood ratio order, then it has the stochastic order and hazard rate order. It is
known that X<lr Y implies that X <hr Y which implies that X<st Y, see Ramesh
and Kirmani [16].

Theorem 3.1. If Y ∼ Bin-PL(p,θ) and X ∼ NB(1,p/(θ+p)), then X <lr Y (which

implies that X<hr Y which implies that X<st Y).

Proof. Let pY(x) be the PMF of Y and pX(x) be the PMF of X given by (2.1). Then,
the ratio function is given by

W(x)=
pY(x)

pX(x)
=

[
θ2/(1+θ)

][
px/(θ+p)x+2

]
(x+θ+p+1)

[
θ/(θ+p)

][
p/(θ+p)

]x =
θ(x+θ+p+1)

(θ+1)(θ+p)
.

Since W(x)≤W(x+1) for all θ>0 and p∈ (0,1). The proof is complete.

3.3 On the moments

Now, let X∼ Bin-PL(p,θ). By using the representation (2.2), the moment gener-
ating function of X is given by

M(t;p,θ)=E
(

etX
)
=

θ2

(1+θ)

(
1

(θ+p−pet)2
+

1

θ+p−pet

)
, t< log

(
1+

θ

p

)
.
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The mean and variance of X are, respectively, given by

µ=E(X)=
p(2+θ)

θ(1+θ)
, σ2=V(X)=

p
(
4pθ+2p+pθ2+3θ2+2θ+θ3

)

θ2(1+θ)2
.

The coefficient of variation is given by

CV=
σ

µ
=

√
4pθ+2p+pθ2+3θ2+2θ+θ3

(θ+2)
√

p
. (3.4)

Fig. 4 presents the plots of CV for different values of the parameters p and θ.
From Fig. 4, we see that the coefficient of variation is increasing when p is fixed
and θ is increasing. Also, it is decreasing when θ is fixed and p is increasing.
Moreover, we observe that the Bin-PL distribution has a low-variance for θ < 1
and high-variance for θ≥1.

Figs. 5 and 6 present the plots of skewness and kurtosis of the Bin-PL dis-
tribution, respectively. From these figures, we observe that, when p and θ are
increasing, the values of skewness and kurtosis are increasing. Furthermore, the
Bin-PL distribution is rightly skewed and leptokurtic.

Figure 4: CV of the Bin-PL distribution for different values of p and θ.
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Figure 5: Skewness of the Bin-PL distribution for different values of p and θ.

Figure 6: Kurtosis of the Bin-PL distribution for different values of p and θ.

4 Estimation methods with simulation

In this section, the performance of various strategies for estimating model param-
eters is examined using simulation studies.

4.1 Maximum likelihood method

Estimation of the Bin-PL model parameters, i.e., p and θ, is investigated by the
maximum likelihood (ML) method. Let x1,. . .,xn be n (integer) values generated
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from the Bin-PL distribution. Thus, (x1,. . .,xn) is a sample from the Bin-PL dis-
tribution. Then, based on Proposition 2.1, the likelihood and log-likelihood func-
tions of the Bin-PL model are, respectively, given by

L(p,θ)=
n

∏
i=1

g(xi;p,θ)=
θ2n

(1+θ)n

p∑
n
i=1 xi

(θ+p)2n+∑
n
i=1 xi

n

∏
i=1

(xi+θ+p+1)

and

ℓ(p,θ)= log[L(p,θ)]=2nlog(θ)−nlog(1+θ)+log(p)
n

∑
i=1

xi

−log(θ+p)

(
2n+

n

∑
i=1

xi

)
+

n

∑
i=1

log(xi+θ+p+1).

Then, the ML estimates of p and θ are defined by
(

p̂, θ̂
)
=argmax

(
ℓ(p,θ)

)
(p,θ)∈(0,1)×(0,∞)

.

They also satisfied the following non-linear equations:

∂ℓ(p̂, θ̂)

∂p
=0,

∂ℓ(p̂, θ̂)

∂θ
=0,

simultaneously, with

ℓ(p,θ)

∂p
=

1

p

n

∑
i=1

xi−
1

θ+p

(
2n+

n

∑
i=1

xi

)
+

n

∑
i=1

1

xi+θ+p+1
,

ℓ(p,θ)

∂θ
=

2n

θ
− n

1+θ
− 1

θ+p

(
2n+

n

∑
i=1

xi

)
+

n

∑
i=1

1

xi+θ+p+1
.

In particular, the MLEs are linked by the following simple expression:

1

p̂

n

∑
i=1

xi =
2n

θ̂
− n

1+ θ̂
.

Based on the existing theory of the ML method, under well established regularity
conditions, the asymptotic distribution of each of the proposed random version
of the estimators is the normal distribution, with the mean equal to the related
unknown parameter, and with variance equal to the corresponding component
of the inverse of the observed information matrix. With this asymptotic property,
asymptotic confidence intervals and statistical tests can be constructed. See, for
instance, [3].
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4.2 Least and weighted least squares methods

Let x(1)<x(2)<···<x(n) be the ordered observations from the Bin-PL distribution.
Using the CDF given in (3.1), for i=1,.. .,n, we have

F
(

x(i);p,θ
)
=1−

(
θ2+pθ+2θ+tθ+p

)
px(i)+1

(1+θ)(p+θ)x(i)+2
. (4.1)

The classical empirical CDF, denoted by F∗(x(i)), can be used in order to esti-

mate F(x(i);p,θ). Substituting the empirical CDF in (4.1), we obtain the following
model:

F∗(x(i);p,θ
)
=

(
1−
(
θ2+pθ+2θ+tθ+p

)
px(i)+1

(1+θ)(p+θ)x(i)+2

)
+εi,

where εi is the error term for i-th observation. Now, least squares error (LS) esti-
mators of the parameters can be obtained by minimizing the following function
with respect to p and θ:

L(p,θ)=
n

∑
i=1

ε2
i =

n

∑
i=1

(
F∗(x(i))−F(x(i);p,θ)

)2
.

Similarly, the weighted least squares (WLS) estimates of p and θ are obtained
by minimizing the following function:

LW(p,θ)=
n

∑
i=1

(n+2)(n+1)2

i(n−i+1)
ε2

i =
n

∑
i=1

(n+2)(n+1)2

i(n−i+1)

(
F∗(x(i))−F(x(i);p,θ)

)2
.

All the minimization problems can be done via some numerical methods, such
as the Nelder-mead or BFGS methods.

4.3 Method of proportions

The method of proportions (MP) was proposed by Khan et al. [12] to estimate the
parameters of the discrete Weibull distribution. Here, we use the same method
for estimating the parameters of the Bin-PL distribution. We define the indicator
function by

υ(xi)=

{
1, xi =0,

0, xi >0.

Then y = (1/n)∑
n
i=1υ(xi) denotes the proportion of 0’s in the sample. It is

clear that the random version of y is a consistent and an unbiased estimator of
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the probability f (0;p,θ)= [θ2/(1+θ)][(θ+p+1)/(θ+p)2 ]. Similarly, the propor-
tion of 1’s in the sample, say z, is suitable estimate of the probability f (1;p,θ)=
[θ2/(1+θ)][p(θ+p+2)/(θ+p)3 ]. Therefore, the proportion estimates of p and θ
parameters, say p̂ and θ̂, are obtained from the solution of the following equa-
tions:

θ̂2

1+ θ̂

(θ̂+ p̂+1)

(θ̂+ p̂)2
=y, (4.2)

θ̂2

1+ θ̂

p̂(θ̂+ p̂+2)

(θ̂+ p̂)3
= z. (4.3)

Eqs. (4.2) and (4.3) can be solved numerically using Newton-Raphson method.

4.4 Method of moments

To estimate the parameters of the Bin-PL distribution by the method of moments
(MM), we equate the first and second sample moments with their corresponding
population moments to get

p(2+θ)

θ(1+θ)
=y (4.4)

and (
θ2+2pθ+2θ+6p

)
p

θ2(θ+1)
= z, (4.5)

where

y=
1

n

n

∑
i=1

xi, z=
1

n

n

∑
i=1

x2
i

are the first and second sample moments, respectively. Therefore, by solving (4.4)
and (4.5), we get

θ̂=
2z−2y−4y2+

√
y2(4y2+2y−2z)

2y2+y−z
, p̂=

yθ̂
(
θ̂+1

)

2+ θ̂
.

Those are estimates of θ and p, respectively.

4.5 Simulation study

To gain some information about the performance of the estimates obtained by
the preceding estimation methods, we consider a set of simulation studies. In
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the simulation study, 5000 trials were used to estimate the biases (Bias) and mean
square errors (MSEs) of the ML, LS, WLS, MM and MP estimates. Different sam-
ple sizes are considered. Three parameter settings are considered. The results are
given in Tables 1-3.

From Tables 1-3, it can be said that all estimates are asymptotically unbiased,
when the sample size n increases, that is, the biases close to zero and the MSEs
decrease to zero. Moreover, LS, MM, and WLS estimates of p and θ are better
than the others in terms of bias and MSE in almost small sample sizes.

Table 1: Bias and MSE of the estimates for some sample size and parameters p=0.2 and θ=2.

Bias MSE

Methods n p θ p θ

ML estimates 100 0.0162 -0.0264 0.0038 0.0641

200 0.0029 0.0036 0.0026 0.0340

400 0.0026 0.0028 0.0009 0.0266

500 0.0022 0.0022 0.0009 0.0066

750 0.0020 -0.0021 0.0008 0.0056

LS estimates 100 0.0010 -0.0007 0.0036 0.0001

200 0.0010 -0.0005 0.0018 0.0001

400 0.0008 -0.0005 0.0009 0.0001

500 0.0003 0.0000 0.0007 0.0000

750 -0.0002 -0.0000 0.0005 0.0000

WLS estimates 100 0.0010 -0.0007 0.0036 0.0001

200 0.0010 -0.0005 0.0018 0.0001

400 0.0008 -0.0005 0.0009 0.0001

500 0.0003 0.0000 0.0007 0.0000

750 -0.0002 -0.0012 0.0005 0.0000

MP estimates 100 0.0023 -0.0008 0.0042 0.0001

200 0.0017 -0.0005 0.0021 0.0000

400 0.0013 -0.0003 0.0011 0.0000

500 0.0006 -0.0002 0.0008 0.0000

750 0.0001 -0.0001 0.0006 0.0000

MM estimates 100 -0.0026 0.0000 0.0036 0.0000

200 -0.0009 -0.0000 0.0018 0.0000

400 -0.0003 -0.0001 0.0009 0.0000

500 -0.0003 -0.0000 0.0007 0.0000

750 -0.0005 -0.0000 0.0005 0.0000
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Table 2: Bias and MSE of the estimates for some sample size and parameters p=0.7 and θ=0.5.

Bias MSE

Methods n p θ p θ

ML estimates 100 0.0017 0.0733 0.0232 0.0226

200 0.0963 0.0482 0.0197 0.0188

400 0.0498 0.0364 0.0173 0.0106

500 0.0296 0.0321 0.0164 0.0081

750 0.0255 0.0313 0.0138 0.0074

LS estimates 100 0.0151 0.0161 0.0493 0.0221

200 -0.0117 0.0111 0.0212 0.0099

400 -0.0106 -0.0050 0.0194 0.0080

500 -0.0016 -0.0003 0.0176 0.0074

750 0.0162 0.0102 0.0087 0.0065

WLS estimates 100 0.0151 0.0161 0.0493 0.0221

200 -0.0017 0.0111 0.0212 0.0099

400 -0.0106 -0.0050 0.0134 0.0080

500 -0.0016 -0.0003 0.0176 0.0074

750 0.0162 0.0102 0.0087 0.0065

MP estimates 100 -0.0233 -0.0119 0.0353 0.0188

200 -0.0120 -0.0060 0.0195 0.0098

400 -0.0070 -0.0037 0.0094 0.0046

500 -0.0042 -0.0021 0.0074 0.0038

750 -0.0030 -0.0014 0.0050 0.0025

MM estimates 100 -0.0322 0.0405 0.0066 0.0119

200 0.0032 0.0042 0.0064 0.0021

400 0.0038 0.0039 0.0048 0.0016

500 0.0031 0.0030 0.0038 0.0013

750 0.0032 0.0026 0.0031 0.0010

5 Fitting data examples

In this section, two practical data examples are carried out to show the applica-
bility of the Bin-PL model compared to the other models. The Poisson-Lindley
(PL) (Sankaran [17]), uniform-geometric (UG) (Akdogan et al. [1]), negative bi-
nomial, geometric and Poisson models are used to fit the two real-life data sets.
In order to specify the best model, we calculate the Kolmogorov-Smirnov (KS),
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Table 3: Bias and MSE of the estimates for some sample size and parameters p=0.5 and θ=4.

Bias MSE

Methods n p θ p θ

ML estimates 100 0.0084 -0.0135 0.0184 0.0201

200 -0.0065 -0.0079 0.0106 0.0194

400 0.0037 -0.0018 0.0048 0.0152

500 0.0034 -0.0016 0.0036 0.0067

750 0.0025 -0.0015 0.0026 0.0014

LS estimates 100 0.0050 -0.0023 0.0212 0.0005

200 0.0021 -0.0014 0.0103 0.0003

400 0.0014 -0.0007 0.0052 0.0001

500 0.0012 -0.0004 0.0042 0.0001

750 -0.0002 -0.0004 0.0027 0.0001

WLS estimates 100 0.0050 -0.0023 0.0212 0.0005

200 0.0021 -0.0014 0.0103 0.0003

400 0.0014 -0.0007 0.0052 0.0001

500 0.0012 -0.0004 0.0042 0.0001

750 -0.0002 -0.0004 0.0027 0.0001

MP estimates 100 0.0085 -0.0044 0.0253 0.0007

200 0.0037 -0.0020 0.0122 0.0003

400 0.0022 -0.0011 0.0061 0.0001

500 0.0018 -0.0009 0.0049 0.0001

750 0.0002 -0.0004 0.0032 0.0001

MM estimates 100 -0.0052 -0.0003 0.0202 0.0004

200 -0.0022 -0.0002 0.0100 0.0002

400 -0.0011 -0.0001 0.0052 0.0001

500 -0.0008 -0.0001 0.0041 0.0001

750 -0.0007 0.0001 0.0027 0.0001

Anderson-Darling (AD) and Cramer von Mises (CVM) goodness-of-fit statistics
and the related p-value for all models. The MM is used in practical data applica-
tions since it is observed better than the other methods in cases of bias and MSE
in simulation studies. Computations of the MM are obtained by the optim rou-
tine and all goodness-of-fit statistics are calculated by the goftest routine in the
software R.
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Data set 1: The first data set consists of survival times in days of 72 guinea
pigs and is given in Table 4. These data are taken from Bjerkedal et al. [2].

Table 4: Data set 1.

15 22 24 24 32 32 33 34 38 38 43 44 48 52 53 54 54 55 56

57 58 58 59 60 60 60 60 61 62 63 65 65 67 68 70 70 72 73 75

76 76 81 83 84 85 87 91 95 96 98 99 109 110 121 127 129 131

143 146 146 175 175 211 233 258 258 263 297 341 341 376.

Data set 2: The second data set is given in Table 6 and consists of the 2003 final
examination marks of 48 slow space students in mathematics at the Indian Insti-
tute of Technology at Kanpur. The data set is taken from Gupta and Kundu [8].

According to Tables 5-7, the Bin-PL distribution is more appropriate for an-
alyzing the considered data than the PL, UG, negative binomial, geometric and
Poisson distributions. The empirical CDF and estimated CDF of the Bin-PL dis-
tribution are provided in Figs. 7 and 8. As a result, it is observed that the Bin-PL
distribution provides a better fit for the considered data than the other models.

Table 5: Some results for data set 1.

Bin-PL Geometric Poisson NB PL UG

KS 0.1275 0.2159 0.5755 0.4115 0.1291 0.2865

AD 1.8774 4.6895 Inf 67.887 1.8812 8.2259

CVM 0.3371 0.8490 7.1848 4.2234 0.3366 1.6021

KS p-value 0.1885 0.0024 0.0000 0.0000 0.1810 0.0000

AD p-value 0.1095 0.0041 0.0000 0.0000 0.1070 0.0000

CVM p-value 0.1093 0.0054 0.0000 0.0000 0.1067 0.0000

p̂1 0.7738 0.0099 99.8194 25.6075 0.0198 0.0046

p̂2 0.0153 0.2093

Table 6: Data set 2.

29 25 50 15 13 27 15 18 7 7 8 19 12 18 5 21 15 86 21 15 14 39 15 14

70 44 6 23 58 19 50 23 11 6 34 18 28 34 12 37 4 60 20 23 40 65 19 31
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Table 7: Some results for data set 2.

Bin-PL Geometric Poisson NB PL UG

KS 0.1056 0.2222 0.3997 0.1483 0.1108 0.2768

AD 0.6438 3.2014 Inf 2.2753 0.7156 5.2776

CVM 0.0935 0.5706 2.4394 0.2616 0.1041 1.0079

KS p-value 0.6557 0.0174 0.0000 0.2415 0.5966 0.0012

AD p-value 0.6067 0.0218 0.0000 0.0654 0.5441 0.0021

CVM p-value 0.6195 0.0260 0.0000 0.1741 0.5667 0.0021

p̂1 0.4999 0.0372 25.8958 4.8729 0.0745 0.0181

p̂2 0.0379 0.1611

Figure 7: Empirical CDF and estimated CDF of the Bin-PL distribution based on data set 1.

Figure 8: Empirical CDF and estimated CDF of the Bin-PL distribution based on data set 2.
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6 Count regression analysis

In this section, we construct a count regression model based on the Bin-PL distri-
bution, with applications.

6.1 Methodology

Let X be the response variable and y be associated p×1 vector of covariates. We
consider that the response variable X follows the Bin-PL distribution with mean
µ(y). Furthermore, the mean of response variable is linked with the explanatory
variables by log linear form, i.e., µi =exp(βyT

i ), where β=(β1,β1,. . .,βp) and yi =

(1,y1i,y2i,. . .,ypi). By replacing θ with (p−µ+
√

p2+6µp+µ2)/(2µ), we obtain
the re-parameterize PMF as

p(xi)=
(p−µi+ζi)/(2µi)

2

1+(p−µi+ζi)/(2µi)

pxi
[
(xi+(p−µi+ζi)/(2µi)+p+1)

]
(
(p−µi+ζi)/(2µi)+p

)xi+2

and the corresponding log-likelihood equation is given as

ℓ(p,θ)=
n

∑
i=1

log

{ (
(p−exp

(
βyT

i

)
+ζi)/(2exp(βyT

i ))
)2

1+
(

p−exp
(

βyT
i

)
+ζi

)
/
(
2exp(βyT

i )
)

× pxi
[
xi+(p−exp(βyT

i )+ζi)/(2exp(βyT
i ))+p+1

]
(
(p−exp(βyT

i )+ζi)/(2exp(βyT
i ))+p

)xi+2

}
,

where

ζi =

√
p2+6exp

(
βyT

i

)
p+
(
exp(βyT

i )
)2

.

The above equations are not in closed form and can not be solved explicitly. Some
numerical methods can be used to achieve solutions (see, Ma and Gui [15]). In the
next, we give two examples of applications of Bin-PL count regression model by
comparing it to some existing models, namely Poisson, Bell, and uniform-Poisson
regression models.

6.2 Illustrative example 1

In this subsection, we show the Bin-PL regression application, taking into account
the data obtained from Crawley [5]. The data set consists of one response and two
explanatory variables. The number of infected blood cells (per mm2) belonging to
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Table 8: Estimates from the Bin-PL regression and the other regression models.

Paremeter Estimate (Bin-PL) Estimate (Bell) Estimate (Poisson)

β1 0.4860 0.4946 0.5091

β2 -1.1798 -1.1726 -1.1775

β3 0.2225 0.2058 0.1846

p̂ 0.9985

ℓ̂ -629.61 -632.02 -693.77

AIC 1267.22 1270.03 1393.53

an individual is dependent, smoking (yes: 0; no: 1) and gender (female: 0; male:
1) variables are explanatory variables. The demographic statistics of this data set
and the results of the Bell regression model are given by (Lemonte et al. [14]).
From Table 8, Bin-PL regression model outperforms better than the Poisson and

Bell regression models on the basis of ℓ̂ and AIC.
To test the closeness of the Bin-PL regression model to other competitive mod-

els, H0, null hypothesis against the H1, alternative hypothesis must be tested.
Hypotheses are given as follows:

H0 : E
(
ℓBin−PL(Θ̂1)−ℓPoisson(Θ̂2t)

)
=0,

H1 : E
(
ℓBin−PL(Θ̂1)−ℓPoisson(Θ̂2)

)
6=0.

For testing the hypotheses, we use the likelihood ratio test proposed by Vuong
[19], with test statistics given as

Z=
1

w
√

n

(
ℓBin−PL(Θ̂1)−ℓPoisson(Θ̂2)

)
,

where

w2=
1

n

n

∑
i=1

[
log

(
p(xi;Θ̂1)

g(xi;Θ̂2)

)]2

−
[

1

n

n

∑
i=1

log

(
p(xi;Θ̂1)

g(xi;Θ̂2)

)]2

and p(.;.) and g(.;.) represent the PMF of Bin-PL and Poisson models, respec-
tively. Furthermore, Z is asymptotically normally distributed. The Vuong test
statistic Z value with corresponding p-values are given in Table 9. It is worth
mentioning that the p-values are also calculated using the Vuong test statistic Z.

From Table 9, in both cases, the p-value is less than 0.05 (significance level at
5%). Hence, we can strongly conclude that the proposed Bin-PL regression model
is preferred over the Poisson and Bell models.
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Table 9: Vuong test results for Example 1.

Z p−value

Bin-PL & Poisson 6.3283 0.000

Bin-PL & Bell 2.6456 0.012

6.3 Illustrative example 2

In this subsection, we illustrate the Bin-PL regression application, taking into ac-
count the data obtained from Deb and Trivedi [6]. The data set consists of one
response and ten explanatory variables for Bin-PL regression application. The
number of stays after hospital admission (HOSP) is the response variable and the
explanatory variables are: EXCLHLTH (Self-perceived health status excellent: 1,
else: 0), POORHLTH (Self-perceived health status poor: 1, else: 0), NUMCHRON
(Number of chronic conditions), AGE, MALE (Male: 1, else: 0), MARRIED (Mar-
ried: 1, else: 0), FAMINC (Equals family income in $10,000), EMPLOYED (em-
ployed: 1, else: 0), PRIVINS (Private health: 1, else: 0), MEDICAID (Medicaid: 1,
else: 0) variables are also explanatory variables. Deb and Trivedi [6] give details
about the definition of these variables and the summary statistics. From Table 10,

Table 10: Estimates from the Bin-PL regression and the other regression models.

Bin-PL Uniform-Poisson Poisson

Variable Parameter Estimate(S.E) Estimate(S.E) Estimate(S.E)

β1 -3.548(0.40) -3.530(0.37) -3.376(0.34)

EXCLHLTH β2 -0.714(0.18) -0.725 (0.18) -0.726(0.17)

POORHLTH β3 0.612(0.08) 0.627 (0.07) 0.618(0.06)

NUMCHRON β4 0.275(0.02) 0.274 (0.02) 0.263(0.02)

AGE β5 0.200(0.05) 0.197 (0.04) 0.178(0.04)

MALE β6 0.164(0.07) 0.154 (0.06) 0.131(0.06)

MARRIED β7 -0.049(0.07) -0.043 (0.07) -0.039(0.06)

FAMINC β8 0.005(0.01) 0.005 (0.01) 0.007(0.01)

EMPLOYED β9 0.023(0.12) 0.023 (0.11) 0.022(0.10)

PRIVINS β10 0.178(0.09) 0.200 (0.08) 0.197(0.07)

MEDICAID β11 0.220(0.12) 0.227 (0.11) 0.236(0.09)

p̂ 0.800(0.26)

ℓmax -2875.49 -2951.33 -3042.83

AIC 5774.98 5924.66 6107.66
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Table 11: Vuong test results for Example 2.

Z p−value

Bin-PL & Poisson 7.3309 0.000

Bin-PL & Uniform-Poisson 3.9687 0.000

Bin-PL regression model outperforms well than the Poisson and UP regression

models on the basis of ℓ̂ and AIC.
For testing the closeness of Bin-PL regression model with other competitive

models, hypotheses and Vuong test procedures used in the first illustrative appli-
cation are also applied for the second application. The Vuong test statistic value
with corresponding p-values are given in Table 11. The p-values are calculated
using the Vuong test statistic Z.

From Table 11, in both cases, the p-value is less than 0.05 (significance level at
5%). Hence, we can strongly conclude that the proposed Bin-PL regression model
is preferred over the Poisson and UP models.

7 Concluding remarks

In this paper, a new discrete distribution with support N was introduced. Some
distributional properties are obtained. Several estimators were studied to esti-
mate the two model parameters. Extensive simulation studies for three different
parameter settings were carried out. Fitting two practical data sets by this distri-
bution is considered. A new count regression model has been introduced. The
regression model is applied to two medical data sets and it is observed that our
model is competitive in modeling practical data.
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