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Abstract. In this paper, we mainly investigate three topics on the renormaliza-
tion group (RG) method to singularly perturbed problems: 1) We will present
an explicit strategy of RG procedure to get the approximate solution up to any
order. 2) We will refer that the RG procedure can, in fact, be used to get the
normal form of differential dynamical systems. 3) We will also present the
approximating center manifolds of the perturbed systems, and investigate the
long time asymptotic behavior by means of RG formula.
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1 Introduction

Renormalization group (RG) method in the singular perturbation theory was
originally introduced by Chen et al. [1, 2] in 1980s, inspired from the classical
renormalization idea in quantum mechanics [10]. The main goal of this method
is to give a unified strategy to compute the effective approximate solution of dif-
ferent kinds of singular perturbation problems. So far, the RG method has been
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turned out to be very useful in a large number of singular perturbed problems,
such as secular problems, center manifolds etc. [2, 5, 7, 9, 11, 12, 15, 16, 19].

Maybe the first rigorous investigation of RG method can be traced back to
Ziane’s consideration of following perturbed systems [22] in 1999:







ẋ+
1

ε
Ax= f(x),

x(0)=x0,
(1.1)

where x∈Cn, ε is a small parameter, A is a complex diagonalizable matrix, and
f(x) is a polynomial nonlinear term. Based on the typically renormalization pro-
cedure, Ziane obtained two approximate results under certain assumptions, the
corresponding strategy is unified, concise and effective. Following Ziane’s for-
mulation, RG method has been successfully used to analyze a large kinds of prob-
lems including the singular perturbed semi-linear PDE problems [9,13,14,17,21].

In 2003, Temam and Wirosoetisno [20] considered a class of systems with the
form







ẋ+
1

ε
Lx+Ax+B(x)= f(t),

x(0)=x0,
(1.2)

where L is a real antisymmetric matrix, A is a positive-definite matrix, f(t) is
given with |f|∞ = esssup0≤t≤∞ |f(t)| finite, and B(x)=∑

r
i=1 Bi(x), with Bi(x) the

i-linear and completely antisymmetric in x, i.e., the inner product 〈B(x),x〉=0 for
all x ∈ Rd. The authors presented an implicit procedure to obtain the approxi-
mate solution up to any order, they also made several dynamical analysis about
the conservation, or dissipation of energy in different cases, which implies the
simplicity of RG method compared with other ones.

In 2008, Chiba [5] considered another class of singular perturbation problems
as the following form:

ẋ= εg(x,t,ε), x∈U, (1.3)

where U is an open set in Cn and the closure Ū is compact, g(x,t,ε) is a vector field
parameterized by ε∈R+. Inspired by the KBM theory, he presented a higher order
RG theory for above system with a key assumption that the nonlinear terms are
almost-periodic in t, and the set of corresponding Fourier exponents having no
accumulation on R. Moreover, his work turns out that, in many cases, RG theory
can also lead to the existence of approximate invariant manifolds, inheritance of
symmetries from those for the original equation to those for the RG equation, and
unify traditional singular perturbation methods, such as the averaging method,
the multiple time scale method and the center manifold reduction, etc.
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One common feature of above two results is that the RG strategies they used
are the same as the one adopted in averaging method [18], which is, in fact, differ-
ent to the typical RG idea, and only work on the KBM conditions. While, as it was
presented in [2], there are many other kinds of problems, rather than KBM cases,
that can also be solved by RG method, such as boundary layer problem [23].
Therefore, it is necessary to develop some more systematic and unified schemes
for general perturbed problems.

However, from the original RG scheme, i.e., by introducing a free parameter
to remove the secular terms in the naive expansion, it is hard to get a consistent
and clear methodology that can be applied to other kinds of problems. In 2012,
Kirkinis [11] pointed out that the RG method for asymptotic analysis is still in
the early stages of development, and there are still many unsettled issues. One
of the interesting questions raised by Kirkinis is, “Is there a consistent and clear
methodology that one can apply to even linear, singularly perturbed PDEs?” The
main goal of the present paper is to carry out the study on above questions. We
will focus on the following n-dimensional differential system:

ẋ=Ax+εf(x), x∈U, (1.4)

where “ ˙ ” means the derivative with respect to time t, A is a complex matrix,
assumed for simplicity to be diagonalizable, U containing 0 is an open subset of
Cn, and f :U→Cn is a vector-valued nonlinear polynomial function, i.e., it can be
rewritten as

f(x)= ∑
α∈Nn ,2≤|α|≤N

fαxα

with fα ∈Cn the vector valued coefficient of xα = xα1
1 ···xαn

n , and |α|=α1+···+αn.
We remark that, with a time scaling, system (1.4) is, in fact, the same as (1.1). In
2008, Lee DeVille et al. [6] computed the approximate solution of (1.4) by classi-
cal RG method up to second order, and referred that the RG method can be used
to compute the corresponding normal form of the given system. Here, we will
develop a newly combined technique to give a systematic and explicit strategy
of the RG method up to any order for the system (1.4), and give a complete con-
sideration of its dynamical meaning in both aspects of normal form and center
manifolds.

The article is organized as follows. In Section 2, we will present a systematic
and explicit procedure of the RG method to obtain the asymptotic solution of
(1.4) up to any order. In Section 4, the rigorous approximate estimates in different
cases will be presented. In Section 5, the obtaining of the normal form will be
naturally presented in any order. And we will give further consideration to the
center manifolds approximation at the last section.
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2 Renormalization group illustration

In this section, we present an explicitly systematic RG procedure to get approxi-
mate solutions up to any order. Compared with the classical RG idea, our strat-
egy can be viewed as a combined method with the free parameter and the higher
order expansions.

Without loss of generality, we assume A=diag{λ1,··· ,λn}. Let

g(t,x)=G
(

t,x,z(t)
)

with G(t,x,z) : R×U×C
2n →C a vector-valued polynomial function, and z(t)=

(eλ1t,··· ,eλnt, e−λ1t,··· ,e−λnt). Then it is not difficult to see that g(t,x) can be
rewritten as

g(t,x)= ḡ(x)+gN(t,x)+gNT(t,x)

with ḡ(x) the terms independent of time t in g(t,x), gNT(t,x) the terms having
polynomials in t, and gN(t,x)=g(t,x)−ḡ(x)−gNT(t,x).

Definition 2.1. We call ḡ(x) the resonance term of g(t,x), denoted by [g(t,x)]R, gN(t,x)
the non-resonance term of g(t,x), denoted by [g(t,x)]N , and gNT(t,x) the non-resonance-

time term of g(t,x), denoted by [g(t,x)]NT.

Step 1. [Expansion of order ε1] Expand x as

x=x0+εx1+O
(

ε2
)

. (2.1)

Substitute (2.1) into Eq. (1.4), and equate the same degrees of ε, we get

ẋ0=Ax0,

ẋ1=Ax1+f(x0),

and we can easily solve them as

x0= eAty0,

x1= eAty1+eAt
∫ t

0
e−Asf

(

eAsy0

)

ds

= eAty1+eAtR(1)(y0)t+eAtF(1)(t,y0)−eAtF(1)(0,y0),

where y0,y1∈Cn are integral constants to be determined, and

R(1)(y)=
[

e−Atf
(

eAty
)

]

R
=

n

∑
i=1

(

∑
α∈Ni

r

fi
αyα

)

ei,

F(1)(t,y)=
∫ t[

e−Asf
(

eAsy
)

]

N
ds=

n

∑
i=1

(

∑
α 6∈Ni

r

fi
α

e(〈α,Λ〉−λi)t

〈α,Λ〉−λi
yα

)

ei
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with {ei}
n
i=1 the eigenvectors of A, and

Ni
r =

{

α∈N
n : |α|≥2, 〈α,Λ〉

.
=

n

∑
j=1

λjαj=λi

}

.

One can note that R(1)(y) is the first order resonant term so that

e−AtR(1)
(

eAty
)

=R(1)(y), t∈R,

and

F(1)(t,y)=
∫ t[

e−Asf
(

eAsy
)

]

N
ds=

∫ t(

e−Asf
(

eAsy
)

−R(1)(y)
)

ds.

Then, we can get the naive expansion

x= eAty0+ε
(

eAty1+eAtR(1)(y0)t+eAtF(1)(t,y0)−eAtF(1)(0,y0)
)

+O
(

ε2
)

= eAt
(

y0+εy1+εR(1)(y0)µ−εF(1)(0,y0)
)

+εeAt
(

R(1)(y0)(t−µ)+F(1)(t,y0)
)

+O
(

ε2
)

with a free parameter µ around time t. By renormalization as y = y0+εy1+

εR(1)(y0)µ−εF(1)(0,y0), the naive expansion can be formally rewritten as

x= eAty+εeAt
(

R(1)(y)(t−µ)+F(1)(t,y)
)

+O
(

ε2
)

.

Step 2. [Expansion of order ε2] Based on the first step, without loss of general-

ity, we can represent x0=eAty and x1=eAt(R(1)(y)(t−µ)+F(1)(t,y)), and expand
x up to order ε2 as

x= eAty+εeAt
(

R(1)(y)(t−µ)+F(1)(t,y)
)

+ε2x2+O
(

ε3
)

. (2.2)

Now substitute (2.2) into (1.4), and equate the terms in ε2, we have

ẋ2=Ax2+
∂

∂x
f(x0)x1,

and its general solution

x2= eAty2+eAt
∫ t

µ
e−As ∂

∂x
f
(

eAsy
)

x1ds

= eAty2+eAtR(2)(y)(t−µ)+eAtF(2)(t,y)+eAtF̃
(2)

(t−µ,t,y)+eAtF(2)(µ,y),
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where y2 is the integral constant to be determined, and

R(2)(y)=

[

e−At ∂

∂x
f
(

eAty
)

x1(t)−
∂

∂y
F(1)(t,y)R(1)(y)

]

R

,

F(2)(t,y)=
∫ t
[

e−As ∂

∂x
f
(

eAsy
)

x1(s)−
∂

∂y
F(1)(s,y)R(1)(y)

]

N

ds,

F̃
(2)

(t−µ,t,y)=
∫ t
(

[

e−As ∂

∂x
f
(

eAsy
)

x1(s)

]

NT

+
∂

∂y
F(1)(s,y)R(1)(y)

)

ds

=
∫ t
(

[

e−As ∂

∂y
f
(

eAsy
)

]

R

R(1)(y)(s−µ)

+

[

e−As ∂

∂y
f
(

eAsy
)

]

N

R(1)(y)(s−µ)+
∂

∂y
F(1)(s,y)R(1)(y)

)

ds

=
∂

∂y
F(1)(t,y)R(1)(y)(t−µ)+

1

2

∂

∂y
R(1)(y)R(1)(y)(t−µ)2.

Then make renormalization as y+ε2y2+ε2F(2)(µ,y)→y, we can rewrite (2.2) as

x= eAty+eAt
(

εR(1)(y)+ε2R(2)(y)
)

(t−µ)

+eAt
(

εF(1)(t,y)+ε2F(2)(t,y)
)

+ε2eAtF̃
(2)

(t−µ,t,y)+O
(

ε3
)

. (2.3)

Step 3. [Expansion of order εm+1] Assume we can expand x up to order εm as

x= eAty+eAt
m

∑
i=1

εiR(i)(y)(t−µ)+eAt
m

∑
i=1

εiF(i)(t,y)

+eAt
m

∑
i=2

εiF̃
(i)
(t−µ,t,y)+O

(

εm+1
)

(2.4)

with

F̃
(i)
(t−µ,t,y)=

i−1

∑
j=1

∂

∂y
F(j)(t,y)R(i−j)(y)(t−µ)+O

(

(t−µ)2
)

, i=2,.. .,m.

Let

xi = eAtR(i)(y)(t−µ)+eAtF(i)(t,y)+eAtF̃
(i)
(t−µ,t,y), i=2,.. .,m,
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and expand x up to order εm+1 as

x= eAty+eAt
m

∑
i=1

εiR(i)(y)(t−µ)+eAt
m

∑
i=1

εiF(i)(t,y)

+
m

∑
i=2

εieAtF̃
(i)
(t−µ,t,y)+εm+1xm+1+O

(

εm+2
)

. (2.5)

Substitute (2.5) in (1.4), and equate the terms of εm+1, we get

ẋm+1=Axm+1+
dm

dεm
f

(

m

∑
l=0

εlxl(t)+O
(

εm+1
)

)

|ε=0

=Axm+1+
m

∑
j=1

1

j!
∂jf(x0) ∑

k1+···+kj=m

ki≥1

xk1
···xkj

, (2.6)

where ∂jf, the j-th derivative of f, is a tensor with j indices (j must be contracted
with the vectors xk1

,··· ,xkj
). Eq. (2.6) can be solved as

xm+1= eAtym+1+eAt
∫ t

µ
e−As

m

∑
j=1

1

j!
∂jf
(

eAsy
)

∑
k1+···+kj=m

ki≥1

xk1
···xkj

ds

= eAtym+1+eAtR(m+1)(y)(t−µ)+eAtF(m+1)(t,y)

+eAtF̃
(m+1)

(t−µ,t,y)+eAtF(m+1)(µ,y), (2.7)

where ym+1 is the integral constant to be determined, and

R(m+1)(y)

=

[

e−At
m

∑
j=1

1

j!
∂jf(x0) ∑

k1+···+kj=m

ki≥1

xk1
···xkj

−
m

∑
j=1

∂

∂y
F(j)(t,y)R(m+1−j)(y)

]

R

,

F(m+1)(t,y)

=
∫ t
[

e−As
m

∑
j=1

1

j!
∂jf(x0) ∑

k1+···+kj=m

ki≥1

xk1
···xkj

−
m

∑
j=1

∂

∂y
F(j)(s,y)R(m+1−j)(y)

]

N

ds,
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F̃
(m+1)

(t−µ,t,y)

=
∫ t
([

e−As
m

∑
j=1

1

j!
∂jf(x0) ∑

k1+···+kj=m

ki≥1

xk1
···xkj

]

NT

+
m

∑
j=1

∂

∂y
F(j)(s,y)R(m+1−j)(y)

)

ds

=
m

∑
j=1

∂

∂y
F(j)(t,y)R(m+1−j)(y)(t−µ)+O

(

(t−µ)2
)

.

Make renormalization as y+εm+1ym+1+εm+1F(m+1)(µ,y)→y, we can rewrite (2.5)
as

x= eAty+eAt
m+1

∑
i=1

εiR(i)(y)(t−µ)+eAt
m+1

∑
i=1

εiF(i)(t,y)

+eAt
m

∑
i=2

εiF̃
(i)
(t−µ,t,y)+O

(

εm+2
)

. (2.8)

Step 4. [Approximate solution] By noting that x(t) should be independent of
the parameter µ, we have

dx

dµ
|µ=t=0.

Taking it into (2.4), we obtain

O(εm+1)= eAt dy

dt
−eAt

m

∑
i=1

εiR(i)(y)+eAt
m

∑
i=1

εi ∂

∂y
F(i)(t,y)

dy

dt

−
m

∑
i=2

εieAt
i−1

∑
j=1

∂

∂y
F(j)(t,y)R(i−j)(y)

= eAt

(

id+
m

∑
i=1

εi ∂

∂y
F(i)(t,y)

)

dy

dt
−eAt

m

∑
i=1

εiR(i)(y)

−eAt

( m

∑
i=1

εi ∂

∂y
F(j)(t,y)

)( m

∑
j=1

εjR(j)(y)

)

= eAt

(

id+
m

∑
i=1

εi ∂

∂y
F(i)(t,y)

)

dy

dt

−eAt

(

id+
m

∑
i=1

εi ∂

∂y
F(i)(t,y)

)( m

∑
j=1

εjR(j)(y)

)
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= eAt

(

id+
m

∑
i=1

εi ∂

∂y
F(i)(t,y)

)(

dy

dt
−

m+1

∑
j=1

εjR(j)(y)

)

.

Then we get the m-th RG equation

dy

dt
=

m

∑
j=1

εjR(j)(y), (2.9)

and the m-th order approximate solution

xε= eAty+eAt
m

∑
i=1

εiF(i)(t,y). (2.10)

It is easy to conclude that xε(t) satisfies

ẋε =Axε+eAtẏ+eAt
m

∑
i=1

εi d

dt
F(i)(t,y)

=Axε+eAt
m

∑
j=1

εjR(j)(y)+eAt
m

∑
i=1

εi ∂

∂t
F(i)(t,y)

+eAt
m

∑
i=1

εi ∂

∂y
F(i)(t,y)

m

∑
j=1

εjR(j)(y)

=Axε+εf(xε)+εm+1Sm(t,y,ε), (2.11)

where

Sm(t,y,ε)=
m−1

∑
l=0

(

dl

dεl
f(xε(t))|ε=0

)

εl+1−εf
(

xε(t)
)

=
+∞

∑
l=m

(

dl

dεl
f(xε(t))|ε=0

)

εl+1.

Remark 2.1. (1) Compared with the RG procedures in Temam [20] and Chiba

[3], our strategy is more direct and much closer to the original RG idea in [2].

(2) By induction, one can easily conclude that Sm(t,y,ε)=O(‖y‖m), this, com-

bined with Definition 2.1, promotes us to investigate the normal form of the

original equations later.

(3) The above strategy can be extended to more general perturbation f(x,t,ε),
which is polynomial in x, almost periodic in t and Cr or analytic in ε.
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3 Convergence estimates

In order to investigate the error estimates between the original solution and ap-
proximate solution, we make the following assumption.

(H) The solution of the initial problem







dy

dτ
=∑

m
j=1εj−1R(j)(y),

y(0)=y0

(3.1)

exists on interval (a,b) with a<0<b independent of ε.

Theorem 3.1. Assume that (H) holds and A is a diagonalizable matrix with all the

eigenvalues having real parts not more than zero. Let x(t) be the solution of (1.4) with

initial condition x(0) = x0, and ‖y0−x0‖=O(εm) for some m ∈ N. Then, for any

T∈ (0,b), there exists ε0>0, such that for any ε∈ (0,ε0)

|x(t)−xε(t)|<Mεm , t∈ [0,T/ε] , (3.2)

where M>0 is dependent on T,m,ε0 and y0.

Proof. Let wε(t)=x(t)−xε(t). Then by (2.11), we have

ẇε=Awε+ε
(

f(x)−f(xε)
)

−εm+1Sm(t,y,ε),

wε(t)= eAtwε(0)+ε
∫ t

0
eA(t−s)

(

f(x(s))−f(xε(s))
)

ds

−εm+1
∫ t

0
eA(t−s)Sm

(

s,y(s),ε
)

ds.

Therefore

‖wε(t)‖≤‖wε(0)‖+ε
∫ t

0
‖(f(x(s))−f(xε(s)))‖ds

+εm+1
∫ t

0
‖Sm(s,y(s),ε)‖ds. (3.3)

By (H), there exists a positive constant C0 which only depends on T and y0,

such that the solution y(t) of (2.9) with y(0)=y0 can be bounded as

‖y(t)‖≤C0 , t∈ [0,T/ε] .
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Hence, there exists a positive constant C1 which depends on T and y0, such that

for t∈ [0, T
ε ],

∥

∥R(j)(y(t))
∥

∥≤C1, j=1,.. .,m,
∥

∥eAtF(1)(t,y(t))
∥

∥≤C1,
∥

∥

∥

∥

∂

∂y
eAtF(1)(t,y(t))

∥

∥

∥

∥

≤C1.

Now, it is not difficult to see that both eAtF(1)(t,y(t)) and ∂
∂yeAtF(1)(t,y(t)) only

contain the terms which are exponential in t and the corresponding exponents

are non-positive. By induction, we assume that, for j ∈ {1,.. .,k}, eAtF(j)(t,y(t))
and ∂

∂y eAtF(j)(t,y(t)) only contain the terms which are exponential in t and the

corresponding exponents are non-positive. Then

eAtF(k+1)(t,y)= eAt
∫ t
[

e−As

( m

∑
j=1

1

j!
∂jf(x0) ∑

k1+···+kj=m

ki≥1

xk1
···xkj

−
m

∑
j=1

∂

∂y
eAsF(j)(s,y)R(m+1−j)(y)

)

]

N

ds,

which implies that eAtF(k+1)(t,y) only contains all the terms exponential in t with

non-positive exponents, and therefore, there exists a positive constant C2 which

depends on T,m and y0, such that for any j∈{1,.. .,m} and t∈ [0,T/ε],

∥

∥eAtF(j)(t,y(t))
∥

∥≤C2,
∥

∥

∥

∥

∂

∂y
eAtF(j)(t,y(t))

∥

∥

∥

∥

≤C2.

These inequalities imply that there exist a sufficiently small ε0 >0 and a positive

constant C3 which depends on T,m,ε0 and y0, such that for ε ∈ (0,ε0) and t ∈
[0,T/ε],

‖xε(t)‖≤C3 , ‖Sm(t,y,ε)‖≤C3.

Now, for given T∈ (0,b) and ε∈ (0,ε0), let

t0=sup{t1∈ [0,T/ε] | ‖wε(t)‖≤1,t∈ [0,t1 ]}.
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Obviously, t0 > 0 for sufficient small ε0, and there exists a positive constant C4

which depends on C3 such that

‖wε(t)‖≤‖wε(0)‖+εC4

∫ t

0
‖wε(s)‖ds+C3Tεm, t∈ [0,t0].

Hence, by Gronwall’s inequality,

‖wε(t)‖≤
(

‖wε(0)‖+C3Tεm
)

eC4T ≤Mεm, t∈ [0,t0],

where M is a positive constant which depends on T,m and y0. Therefore, with

sufficient small ε0, one can immediately conclude that t0=T/ε.

Corollary 3.1. Assume that (H) holds and A is a diagonalizable matrix with all the

eigenvalues having negative real parts. Let x(t) be the solution of (1.4) with initial

condition x(0)= x0, and ‖y0−x0‖=O(εm) for some m∈N. Then, for any T∈ (0,b),
there exist ε0>0 and σ<α, such that, for any ε∈ (0,ε0),

‖x(t)−xε(t)‖<Mεme−σt, t∈ [0,T/ε] , (3.4)

where M is a positive constant which depends on T,m,ε0 and y0. Moreover, if the solution

of (3.1) is globally bounded, then (3.4) is valid for t∈ (0,+∞).

Proof. Let λ1,··· ,λn be eigenvalues of A, then there exists a positive constant α

such that Reλi < −α, i = 1,.. .,n. Therefore, there exists a positive constant C0

which depends on α, such that

‖wε(t)‖≤ C0e−αt‖wε(0)‖+εC0

∫ t

0
e−α(t−s)‖(f(x(s))−f(xε(s)))‖ds

+εm+1C0

∫ t

0
e−α(t−s)‖Sm(s,y(s),ε)‖ds.

From the proof of Theorem 3.1, there exists a positive constant C1 which de-

pends on T and y0, such that, the solution y(t) of (2.9) with y(0) = y0 can be

bounded as

‖y(t)‖≤C1, t∈ [0,T/ε] ,

‖R(j)(y(t))‖≤C1 , t∈ [0,T/ε] , j∈{1,.. .,m}.

Furthermore, for any j∈{1,.. . ,m}, eAtF(j)(t,y(t)) and ∂
∂y eAtF(j)(t,y(t)) only con-

tain the terms which are exponential in t with non-positive real part exponents.
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We note that the terms in eAtF(j)(t,y(t)) and ∂
∂y eAtF(j)(t,y(t)) are, in fact, ex-

ponential in t with negative real part exponents, that is to say, there exist β≥ α

and a positive constant C2 which depends on T,m and y0, such that for any

j∈{1,.. .,m} and t∈ [0,T/ε],

∥

∥R(j)(y(t))
∥

∥≤C2,
∥

∥eAtF(j)(t,y(t))
∥

∥≤C2e−βt,
∥

∥

∥
eAt ∂

∂y
F(j)(t,y(t))

∥

∥

∥
≤C2e−βt,

∥

∥xj(t)
∥

∥≤C2e−βt.

These inequalities imply that there exist a sufficiently small ε0 >0 and a positive

constant C3 which depends on T,m,ε0 and y0, such that for any ε ∈ (0,ε0) and

t∈ [0,T/ε],
‖xε(t)‖≤C3e−αt, ‖Sm(t,y,ε)‖≤C3e−αt.

For given T∈ (0,b) and ε∈ (0,ε0), let

t0=sup
{

t1∈ [0,T/ε] | ‖wε(t)‖≤1, t∈ [0,t1 ]
}

.

With the same idea in Theorem 3.1, we can find that t0>0 for sufficient small ε0,

and there exists a positive constant C5 which depends on C3 such that

eαt‖wε(t)‖≤‖C0wε(0)‖+εC5

∫ t

0
eαs‖wε(s)‖ds+C5εm+1t, t∈ [0,t0].

Hence, by Gronwall’s inequality,

‖wε(t)‖≤
(

C0‖wε(0)‖+C6εm
)

e−σt≤Me−σtεm, t∈ [0,t0],

here σ≤ α−ε0C5. Note that C3, C5,C6 and M are polynomially dependent on ε0,

so σ can be chosen of order O(1). Furthermore, since M is a positive constant

which depends on T,m,ε0 and y0, with sufficient small ε0, we can conclude that

t0 = T/ε. Then, the whole proof can be completed by noting the fact that all

the constants obtained above will be independent of T, if the solution of (3.1) is

globally bounded.

Corollary 3.2. Assume that (H) holds and A is a diagonalizable matrix with all the

eigenvalues having zero real parts. Let x(t) be the solution of (1.4) with initial condition
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x(0)= x0, and ‖y0−x0‖=O(εm) for some m∈N. Then, for any [T1,T2]⊂ (a,b) with

T1≤0≤T2, there exist ε0>0, such that for any ε∈ (0,ε0),

‖x(t)−xε(t)‖<Mεm , t∈ [T1/ε,T2/ε] ,

where M>0 is a positive constant which depends on T1,T2,m,ε0 and y0.

Proof. The statement can be proved similar to the proof of Theorem 3.1.

We remark that a same result as Corollary 3.2 was proved by Chiba [5] by
combining the RG method and the KBM idea [18].

4 Normal form

As referred in Remark 2.1, we make a further investigation on some properties
related to the normal form.

Lemma 4.1. For any j∈N, µ∈R and y∈Cn,

R(j)
(

eAµy
)

= eAµR(j)(y), (4.1)

eAtF(j)
(

t,eAµy
)

= eA(t+µ)F(j)(t+µ,y). (4.2)

Proof. Firstly, for j=1,

R(1)
(

eAµy
)

=
[

e−Atf
(

eA(t+µ)y
)

]

R
= eAµ

[

e−A(t+µ)f
(

eA(t+µ)y
)

]

R
= eAµR(1)(y),

eAtF(1)
(

t,eAµy
)

= eAt
∫ t(

e−Asf
(

eA(s+µ)y
)

−eAµR(1)(y)
)

ds

= eA(t+µ)
∫ t(

e−A(s+µ)f
(

eA(s+µ)y
)

−R(1)(y)
)

ds

= eA(t+µ)
∫ t+µ(

e−Asf
(

eAsy
)

−R(1)(y)
)

ds

= eA(t+µ)F(1)(t+µ,y).

Now, by inductions, we assume that (4.1) and (4.2) hold for all j∈{1,.. .,m}, then

for any j∈{1,.. .,m}, µ∈R and z∈Cn,

∂

∂y
F(j)
(

t,eAµz
)

= e−At ∂

∂z
eAtF(j)

(

t,eAµz
)

e−Aµ

= e−At ∂

∂z
eA(t+µ)F(j)(t+µ,z)e−Aµ,

xj

(

t,eAµz
)

=xj(t+µ,z).
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Hence

R(m+1)
(

eAµy
)

=

[

e−At
m

∑
j=1

1

j!
∂jf
(

x0(t+µ)
)

∑
k1+···+kj=m

ki≥1

xk1
(t+µ)···xkj

(t+µ)

−e−At
m

∑
j=1

∂

∂z
eA(t+µ)F(j)(t+µ,z)R(m+1−j)(y)

]

R

= eAµR(m+1)(y),

eAtF(m+1)
(

t,eAµy
)

= eAt
∫ t
[

e−As
m

∑
j=1

1

j!
∂jf
(

x0(s+µ)
)

∑
k1+···+kj=m

ki≥1

xk1
(s+µ)···xkj

(s+µ)

−e−As
m

∑
j=1

∂

∂y
F(j)(s+µ,y)R(m+1−j)(y)

]

N

ds

= eA(t+µ)
∫ t+µ

[

e−As
m

∑
j=1

1

j!
∂jf
(

x0(s)
)

∑
k1+···+kj=m

ki≥1

xk1
(s)···xkj

(s)

−e−As
m

∑
j=1

∂

∂y
F(j)(s,y)R(m+1−j)(y)

]

ds

= eA(t+µ)F(m+1)(t+µ,y).

The proof is complete.

Theorem 4.1. For any m∈N, Eq. (1.4) locally has a Cm normal form as

dz

dt
=Az+

m

∑
j=1

εjR(j)(z)+O
(

εm+1,‖z‖m
)

(4.3)

with the normal form transformation

x=h(z)=z+
m

∑
i=1

εiF(i)(0,z). (4.4)

Proof. For given m∈N, let

H(t,y)= eAty+
m

∑
i=1

εiF(i)(t,y),
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then, by Lemma 4.1, we know that

H
(

t,eAµy
)

= eA(t+µ)y+
m

∑
i=1

εiF(i)(t+µ,y).

So the transformation (4.4) can be viewed as

x=h(z)=H(0,z)=H(t,e−Atz). (4.5)

Denoting by z̄= e−Atz, and taking (4.5) into Eq. (1.4), we obtain

Ax+εf(x)=Ax+eAt dz̄

dt
+eAt

m

∑
i=1

εi ∂

∂t
F(i)(t,z̄)+eAt

m

∑
i=1

εi ∂

∂y
F(i)(t,z̄)

dz̄

dt

=Ax+eAt dz̄

dt
+

m−1

∑
l=0

(

dl

dεl
f
(

eAtz̄+eAt
m

∑
i=1

εiF(i)(t,z̄)
)

|ε=0

)

εl+1

−
m

∑
i=2

εieAt
i−1

∑
j=1

∂

∂y
F(j)(t,z̄)R(i−j)(z̄)−eAt

m

∑
j=1

εjR(j)(z̄)

+eAt
m

∑
i=1

εi ∂

∂y
F(i)(t,z̄)

dz̄

dt

=Ax+εf(x)+eAt

(

id+
m

∑
i=1

εi ∂

∂y
F(i)(t,z̄)

)(

dz̄

dt
−

m

∑
j=1

εjR(j)(z̄)

)

−εf

(

eAtz̄+eAt
m

∑
i=1

εiF(i)(t,z̄)

)

+
m−1

∑
l=0

(

dl

dεl
f
(

eAtz̄+eAt
m

∑
i=1

εiF(i)(t,z̄)
)

|ε=0

)

εl+1

−
2m

∑
i=m+1

εieAt
i−1

∑
j=1

∂

∂y
F(j)(t,z̄)R(i−j)(z̄)

=Ax+εf(x)+

(

id+
m

∑
i=1

εi ∂

∂y
F(i)(0,z)

)(

dz

dt
−Az−

m

∑
j=1

εjR(j)(z)

)

−εf

(

z+
m

∑
i=1

εiF(i)(0,z)

)

+
m−1

∑
l=0

(

dl

dεl
f
(

z+
m

∑
i=1

εiF(i)(0,z)
)

|ε=0

)

εl+1

−
2m

∑
i=m+1

εi
i−1

∑
j=1

∂

∂y
F(j)(0,z)R(i−j)(z),
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which leads to
(

id+
m

∑
i=1

εi ∂

∂y
F(i)(0,z)

)(

dz

dt
−Az−

m

∑
j=1

εjR(j)(z)

)

+εm+1Sm(0,z,ε)=0,

that is to say

dz

dt
=Az+

m

∑
j=1

εjR(j)(z)−

(

id+
m

∑
i=1

εi ∂

∂y
F(i)(0,z)

)−1

εm+1Sm(0,z,ε)

=Az+
m

∑
j=1

εjR(j)(z)+O
(

εm+1,‖z‖m
)

.

Then, the proof can be completed by combining the locally convergence from

Theorem 3.1.

Remark 4.1. Based on the above discussions, it can be shown that the RG scheme

we developed can be used to formulate the normal form for general differential

equations by setting ε=1. Here, we should point out that the obtained RG normal

form is, in general, different from the classical Poincaré-Dulac normal form up to

any finite order. On the one hand, RG normal form is explicit, while the later one

is implicit. On the other hand, it is not hard to see the fact that the RG normal

form contains more terms rather than the latter one up to any order. For example,

let us consider the following planar system:










dx1

dt
= x1+x2

1x2+x3
1x2

2,

dx2

dt
=−x2+δx1x2+x2

2+x1x2
2,

(4.6)

where δ is a parameter. By direct calculation, one can get the RG normal form for

(4.6) to order (‖(y1,y2)‖
2)










dy1

dt
=y1+y2

1y2+y3
1y2

2,

dy2

dt
=−y2+y1y2

2,

while the corresponding Poincaré-Dulac normal form is










dy1

dt
=y1,

dy2

dt
=−y2.
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Further, the RG normal form for (4.6) to order (‖(y1,y2)‖
3) can be obtained as











dy1

dt
=y1+y2

1y2+y3
1y2

2,

dy2

dt
=−y2+(1+δ)y1y2

2,

while the corresponding Poincaré-Dulac normal form is











dy1

dt
=y1+y2

1y2,

dy2

dt
=−y2+(1+δ)y1y2

2.

One can note that, in each order, the RG normal form contains more terms than

the Poincaré-Dulac normal form. Especially, when δ = 0, even the RG normal

form to order (‖(y1,y2)‖
2) contains more terms than the Poincaré-Dulac normal

form to order (‖(y1,y2)‖
3).

5 Approximating center manifold

In this section, we try to investigate how does the renormalized solution asymp-
totically approach to the center manifold. We remark that Chiba considered this
topic in [4] by means of KBM idea. Here, we carry out it in our strategy, and try
to give more detailed results.

For simplicity, we consider the case when matrix A in (1.4) can be represented
as

A=

(

B O
O C

)

,

where B is a d×d matrix having eigenvalues with zero real parts, C is a q×q matrix
having eigenvalues with negative real parts, O denotes zero matrix, d+q=n. In
what follows, for x∈C

n, we represent it as x=(x̄,x̂) with x̄∈C
d, x̂∈C

q. Then, (1.4)
can be rewritten as

{

˙̄x=Bx̄+εf̄(x̄,x̂),
˙̂x=Cx̂+εf̂(x̄,x̂),

(5.1)

and it has local center manifold around the original point. Furthermore, we have
following observations.
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Lemma 5.1. The m-th RG equation can be rewritten as


















dȳ

dt
=

m

∑
j=1

εjR̄
(j)(ȳ),

dŷ

dt
=

m

∑
j=1

εjR̂
(j)
(y),

(5.2)

and the m-th order approximate solution

xε= eAty+
m

∑
i=1

εiF
(i)
c (t,ȳ)+

m

∑
i=1

εiF
(i)
s (t,y),

where R̄
(j)(ȳ) is obtained by the first d parts of R(j)(y), R̂

(j)
(y) is obtained by the last

q parts of R(j)(y), F
(j)
c (t,ȳ) contains the oscillation terms in eAtF(j)(t,y), F

(j)
s (t,y) con-

tains the exponential decay terms, and R̂
(j)
(y)|ŷ=0=0, F

(j)
s (t,y)|ŷ=0=0, j=1,.. .,m.

Proof. Firstly, one can note that

R(1)(y)=
[

e−Atf
(

eAty
)

]

R
=

n

∑
i=1

(

∑
α∈Ni

r

fi
αyα

)

ei =

(

R̄
(1)

(ȳ)

R̂
(1)

(y)

)

,

eAtF(1)(t,y)= eAt
∫ t[

e−Asf
(

eAsy
)

]

N
ds=

n

∑
i=1

(

∑
α 6∈Ni

r

fi
α

e〈α,Λ〉t

〈α,Λ〉−λi
yα

)

ei

=F
(1)
c (t,ȳ)+F

(1)
s (t,y),

where F
(1)
c (t,ȳ) contains the oscillation terms in eAtF(1)(t,y), F

(1)
s (t,y) contains the

exponential decay terms which are also polynomial in ŷ, and the lowest order in

ŷ is at least 1. By inductions, we assume that for j∈{1,.. .,k},

R(j)(y)=

(

R̄
(j)
(ȳ)

R̂
(j)
(y)

)

,

eAtF(j)(t,y)=F
(j)
c (t,ȳ)+F

(j)
s (t,y),

where F
(j)
c (t,ȳ) contains the oscillation terms in eAtF(j)(t,y), F

(j)
s (t,y) contains the

exponential decay terms, and R̂
(j)
(y)|ŷ=0=0, F

(j)
s (t,y)|ŷ=0=0, j=1,.. .,k. Then

R(k+1)(y)=

[

e−At
k

∑
j=1

1

j!
∂jf(x0) ∑

k1+···+kj=k,ki≥1

xk1
···xkj

−
k

∑
j=1

∂

∂y
F(j)(t,y)R(k+1−j)(y)

]

R
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=

[

(

e−Bt

e−Ct

) k

∑
j=1

1

j!
∂jf(x0) ∑

k1+···+kj=k,ki≥1

τl=c,s,l=1,...,j

F
(k1)
τ1

···F
(kj)
τj

−
k

∑
j=1

∂

∂y
F(j)(t,y)R(k+1−j)(y)

]

R

=

(

R̄
(k+1)

(ȳ)

R̂
(k+1)

(y)

)

with R̂
(k+1)

(y)|ŷ=0=0, and

eAtF(k+1)(t,y)

= eAt
∫ t
[

e−As
k

∑
j=1

1

j!
∂jf(x0) ∑

k1+···+kj=k,ki≥1

xk1
···xkj

−
k

∑
j=1

∂

∂y
F(j)(s,y)R(k+1−j)(y)

]

N

ds

= eAt
∫ t
[

e−As
k

∑
j=1

1

j!
∂jf(x0) ∑

k1+···+kj=k,ki≥1

τl=c,s,l=1,...,j

F
k1
τ1
···F

kj
τj
−

k

∑
j=1

∂

∂y
F(j)(s,y)R(k+1−j)(y)

]

N

ds

=F
(k+1)
c (t,ȳ)+F

(k+1)
s (t,y)

with F
(k+1)
c (t,ȳ) the oscillation terms in eAtF(j)(t,y), and F

(j)
s (t,y) the exponential

decay terms satisfying F
(k+1)
s (t,y)|ŷ=0=0. Then the proof can be concluded.

Lemma 5.2. S={y∈Cn|ŷ=0} is an invariant manifold of system (5.2). Furthermore,

M,
⋃

t∈R H(t,S)=H(0,S).

Proof. The first statement is obvious. For any given µ ∈R and y∈ S , eAµy∈ S ,

therefore, by Lemma 4.1,

H(µ,y)=H
(

0,eAµy
)

∈H(0,S)⊂
⋃

t∈R

H(t,S).

Hence the proof can be concluded by the arbitrary choice of µ∈R and y∈S .

Theorem 5.1. There exist ε0 > 0 and open set U ⊂ Cd with 0 ∈ U , such that for any

ε∈ (0,ε0), M0,H(0,U×{0}) is the local center manifold of system

ż=Az+εf(z)+εm+1Sm(t,y,ε). (5.3)

Furthermore, M0 is an O(εm+1) approximation of a local center manifold Mε of (5.1).
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Proof. Firstly, for any z0∈M, there exists y0∈S , such that z0=H(0,y0), therefore,

the solution z(t) of (5.3) with z(0)=z0 can be, in fact, presented as

z(t)=H
(

t,y(t)
)

∈H(0,S)=M,

this implies that M is an invariant manifold of (5.3).

Secondly, consider the equations

z=

(

z̄

ẑ

)

=

(

ȳ

0

)

+
m

∑
i=1

εiF
(i)
c (0,ȳ),

or














z̄= ȳ+
m

∑
i=1

εiF̄
(i)
c (0,ȳ)

△
= h̄(ȳ,ε),

ẑ=
m

∑
i=1

εiF̂
(i)
c (0,ȳ).

(5.4)

Then, by the implicit function theorem, there exist some ε0 > 0 and open set 0∈

U ⊂Cd, such that the first equation in (5.4) can be written as ȳ= h̄
−1

(z̄,ε)= z̄+
O(‖(z̄,ε)‖2), which is analytic in (z̄,ε) in U×(0,ε0). Hence

ẑ=
m

∑
i=1

εiF̂
(i)
c

(

0,h̄
−1

(z̄,ε)
)

=O
(

‖z̄‖2,ε
)

, z̄∈ h̄
(

U ,(0,ε0)
)

, ε∈ (0,ε0), (5.5)

this means

M0=H
(

0,U×{0}
)

=

{

z∈C
n|ẑ=

m

∑
i=1

εiF̂
(i)
c

(

0,h̄
−1

(z̄,ε)
)

, z̄∈ h̄
(

U ,(0,ε0)
)

}

is the local center manifold of (5.3).

Furthermore, it is easy to note that, there exists an open set V ⊂ V̄ ⊂U with

0∈V , such that H(0,V×{0}) is normally hyperbolic and (5.3) is an O(εm+1) per-

turbation of (5.1), then, by Fenichel theorem [8], we can get a normally hyperbolic

manifold Mε of (5.1), which is an O(εm+1) perturbation of H(0,V×{0}), with no

loss of generality, we can express Mε as

x̂=
m

∑
i=1

εiF̂
(i)
c

(

0,h̄
−1

(x̄)
)

+εm+1h0(x̄,ε), x̄∈ h̄
(

V ,(0,ε0)
)

, ε∈ (0,ε0). (5.6)

Taking (5.6) into (5.1), and combining with the property of (5.5), one can easily

conclude that h0(x̄,ε)=O(‖x̄‖2), which implies that Mε is indeed the local center

manifold of (5.1).



120 W. Li and S. Shi / Commun. Math. Res., 38 (2022), pp. 99-122

Corollary 5.1. There exist some ε0>0 and an open set V⊂Cd with 0∈V , such that, for

any ε∈ (0,ε0),

dist

(

z(t),Mε

)

<M
(

εm+1+e−αt
)

, t∈ [0,T/ε] ,

where z(t) is the solution of (5.3) with z(0)= z0 ∈H(0,V×Cq), −α is the biggest real

part of eigenvalues of C, and T,M>0 are constants only depending on ε0 and V .

Proof. From Theorem 5.1, we only need to prove that for ε∈ (0,ε0 ]

dist

(

z(t),M0

)

<Me−αt, t∈ [0,T/ε] . (5.7)

In fact, we can consider the solution w(t) of (5.3) on M0 such that w(0)=H(0,y1)
with ȳ1= ȳ0,ŷ1=0, here y0∈V satisfies H(0,y0)=z0. Then

z(t)= eAty+
m

∑
i=1

εiF
(i)
c (t,ȳ)+

m

∑
i=1

εiF
(i)
s (t,y),

w(t)= eAt

(

ȳ

0

)

+
m

∑
i=1

εiF
(i)
c (t,ȳ)∈M0,

where y(t) is the solution of RG equation (5.2) with y(0)=y0. Based on the dis-

cussions in above sections, for any ε∈ (0,ε0], there exists T>0 such that

w(t)∈M0 , t∈ [0,T/ε] ,

and furthermore, there exists M>0 depending on ε0 and V such that

‖z(t)−w(t)‖≤

∥

∥

∥

∥

eAt

(

0

ŷ

)
∥

∥

∥

∥

+
m

∑
i=1

εi
∥

∥

∥
F
(i)
s (t,y)

∥

∥

∥
≤Me−αt, t∈ [0,T/ε] .

So (5.7) holds and the proof is complete.
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