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Abstract

For an integrator when applied to a highly oscillatory system, the near conservation

of the oscillatory energy over long times is an important aspect. In this paper, we study

the long-time near conservation of oscillatory energy for the adapted average vector field

(AAVF) method when applied to highly oscillatory Hamiltonian systems. This AAVF

method is an extension of the average vector field method and preserves the total energy of

highly oscillatory Hamiltonian systems exactly. This paper is devoted to analysing another

important property of AAVF method, i.e., the near conservation of its oscillatory energy

in a long term. The long-time oscillatory energy conservation is obtained via constructing

a modulated Fourier expansion of the AAVF method and deriving an almost invariant of

the expansion. A similar result of the method in the multi-frequency case is also presented

in this paper.
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1. Introduction

This paper is concerned with the long-time oscillatory energy behaviour of energy-preserving

methods for the highly oscillatory Hamiltonian system
{
q̇ = ∇pH(q, p), q(0) = q0,

ṗ = −∇qH(q, p), p(0) = p0,
(1.1)

where the Hamiltonian function is given by

H(q, p) =
1

2

(
‖p‖2 + ‖Ωq‖2

)
+ U(q). (1.2)

Here U(q) is a real-valued function. According to the partition of the square matrix

Ω =

(
0d1×d1 0d2×d2

0d1×d1 ωId2×d2

)
(1.3)
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with a large positive parameter ω, the vectors p = (p1, p2) ∈ R
d1 × R

d2 and q = (q1, q2) ∈
R

d1 × R
d2 are partitioned accordingly. As is known, the oscillatory energy of the system (1.1)

is

I(q, p) =
1

2
p⊺2p2 +

1

2
ω2q⊺2 q2 (1.4)

and it is nearly conserved over long times along the solution of (1.1) (see [17]). Our attention

of this paper will particularly focus on the near conservation of the oscillatory energy (1.4) for

energy-preserving methods over long-time intervals.

In order to preserve the total energy of Hamiltonian systems exactly by numerical methods,

energy-preserving (EP) methods have been proposed and researched. In the recent decades,

various kinds of EP methods have been derived, such as the average vector field (AVF) method

[4, 5, 31], discrete gradient methods [26, 27], the energy-preserving collocation methods [7, 13],

Hamiltonian Boundary Value Methods (HBVMs) [2, 3], energy-preserving exponentially-fitted

methods [29,30], and time finite elements methods [1,22,37]. By taking advantage the frequency

matrix of second-order highly oscillatory systems, a novel adapted AVF (AAVF) method has

been formulated and studied in [36, 41] for the highly oscillatory Hamiltonian system (1.2). It

has been proved in [36,41] that this AAVF method exactly preserves the total energy (1.2) and

it reduces to the AVF method when the frequency matrix vanishes. However, most existing

publications dealing with EP methods focus on the formulation of the methods and the analysis

of the EP property. It seems that the long-time behaviour of AAVF method concerning other

structure-preserving aspects has never been studied in the literature, such as the long-time

numerical conservation of oscillatory energies. As is well known that an important property of

highly oscillatory systems is the near conservation of the oscillatory energy over long times.

On the other hand, in the recent two decades, modulated Fourier expansion has been present-

ed and developed as an important mathematical tool in the study of the long-time behaviour

for numerical methods/differential equations (see, e.g. [6, 9, 11, 16, 39]). It was firstly given

in [15] and has been used in the long-time analysis for various numerical methods, such as for

the Störmer–Verlet method in [14, 16], for trigonometric integrators in [6, 17], for an implicit-

explicit method in [28, 33], for heterogeneous multiscale methods in [32], for splitting methods

in [10,12] and for a filtered Boris method in [18]. However, it is noted that, until now, the tech-

nique of modulated Fourier expansions has not been well applied to the long-term analysis for

energy-preserving method in the literature. Very recently, the authors of [35] studied long-time

momentum and actions behaviour of energy-preserving methods for semilinear wave equations.

Based on the facts stated above, the main contribution of this paper is to analyse the

long-time oscillatory energy conservation for the AAVF method. To this end, the technique

of modulated Fourier expansions with some adaptations will be used in the analysis. To our

knowledge, this paper is the first one that rigorously studies the remarkable long-time oscilla-

tory energy conservation of EP methods on highly oscillatory Hamiltonian systems by using

modulated Fourier expansions.

The rest of this paper is organised as follows. We first present the scheme of AAVF method

and carry out an illustrative numerical experiment in Section 2. Section 3 derives the modulated

Fourier expansion of the AAVF method and analyse the bounds of the modulated Fourier

functions. In Section 4, we show an almost invariant of the modulation system and then the

main result concerning the long-time oscillatory energy conservation of AAVF method is derived.

Section 5 extends the analysis to multi-frequency case and studies the long-time conservation

of AAVF method when applied to multi-frequency highly oscillatory Hamiltonian systems. The

last section includes the concluding remarks of this paper.
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2. The AAVF method and Illustrative Numerical Experiments

2.1. The AAVF method

The highly oscillatory Hamiltonian system (1.1) can be rewritten as a system of second-order

differential equations

q′′(t) + Ω2q(t) = f(q(t)), q(0) = q0, q′(0) = p0, (2.1)

where f is the negative gradient of the real-valued function U(q). For effectively integrating

this second-order highly oscillatory system, a novel kind of EP methods was derived in [36,41].

Definition 2.1 ([36, 41]). The adapted AVF (AAVF) method for solving (2.1) is defined by





qn+1 = φ0(V )qn + hφ1(V )pn + h2φ2(V )

∫ 1

0

f((1− τ)qn + τqn+1)dτ,

pn+1 = −hΩ2φ1(V )qn + φ0(V )pn + hφ1(V )

∫ 1

0

f((1− τ)qn + τqn+1)dτ,

(2.2)

where h is the stepsize, and φ0, φ1 and φ2 are matrix-valued functions of V = h2Ω2 defined by

φl(V ) :=

∞∑

k=0

(−1)kV k

(2k + l)!
, l = 0, 1, 2. (2.3)

It is noted that in terms of this definition, we have

φ0(V ) = cos(hΩ), φ1(V )= sinc(hΩ) := sin(hΩ)(hΩ)−1, φ2(V ) = (I − cos(hΩ))(hΩ)−2.

It can be observed that this method (2.2) reduces to the AVF method when Ω = 0.

Theorem 2.2 ([36, 41]). The AAVF method (2.2) is symmetric and exactly preserves the total

energy (1.2).

In this paper, we pay attention to its long-time numerical behaviour in oscillatory energy

preservation and prove the result by modulated Fourier expansions.

2.2. Numerical experiments

As an illustrative numerical example, we apply this method to the Fermi–Pasta–Ulam prob-

lem, which can be expressed by a Hamiltonian system with the Hamiltonian

H(y, x) =
1

2

2m∑
i=1

y2i +
ω2

2

m∑
i=1

x2
m+i +

1

4
[(x1 − xm+1)

4

+
m−1∑
i=1

(xi+1 − xm+i−1 − xi − xm+i)
4 + (xm + x2m)4].

For the AAVF formula (2.2), we consider applying midpoint rule, Simpson’s rule and four-

point Gauss-Legendre’s rule to the integral and denote the corresponding methods by AAVF1,

AAVF2 and AAVF3, respectively. Following [17], we choose m = 3 and

x1(0) = 1, y1(0) = 1, x4(0) =
1

ω
, y4(0) = 1
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with zero for the remaining initial values. The system is integrated in the interval [0, 1000]

with h = 0.02, 0.01 and ω = 200. We remark that the values of hω are 4 and 2. The errors of

the oscillatory energy I against t for different methods are shown in Figs. 2.1-2.3. From the

results, it can be observed a fact that these three methods approximately conserve the oscillatory

energy I very well over a long term. Moreover, it seems that no matter which quadrature is

used, there is no difference in the oscillatory energy conservation. All the phenomena will be

explained theoretically in the rest of this paper. For comparison, we also apply the AVF method

with midpoint rule to this problem and the corresponding results are shown in Fig. 2.4. It can

be seen that this energy-preserving method dose not have a good conservation of oscillatory

energy.

0 200 400 600 800 1000
−8

−6

−4

−2

0

t

lo
g

1
0
(
G

E
I
)

Oscillatory energy conservation with h=0.02

0 200 400 600 800 1000
−8

−6

−4

−2

0

t

lo
g

1
0
(
G

E
I
)

Oscillatory energy conservation with h=0.01

Fig. 2.1. AAVF 1: the logarithm of the oscillatory energy errors against t.
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Fig. 2.2. AAVF 2: the logarithm of the oscillatory energy errors against t.
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Fig. 2.3. AAVF 3: the logarithm of the oscillatory energy errors against t.
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Fig. 2.4. AVF: the logarithm of the oscillatory energy errors against t. (The errors are too large and

thus the results are not shown in the left graph.)

3. Modulated Fourier Expansion

In this section, we derive a modulated Fourier expansion of the AAVF method. The following

assumptions are needed in our analysis.

Assumption 3.1.

• The initial values of (1.1) are assumed to satisfy

1

2
‖p(0)‖2 + 1

2
‖Ωq(0)‖2 ≤ E (3.1)

with a constant E independent of ω.

• The numerical solution of the AAVF method is assumed to stay in a compact set.

• The stepsize is required to have a lower bound such that hω ≥ c0 > 0.

• We assume that the numerical non-resonance condition is true

∣∣∣∣sin
(1
2
khω

)∣∣∣∣ ≥ c
√
h for k = 1, . . . , N with N ≥ 2. (3.2)

These assumptions have been considered many times in the long-term analysis of other

methods without EP property and we refer to [8, 15, 17] for example.

In this paper, we define five operators by

L1(hD) := ehD − 2 cos(hΩ) + e−hD,

L2(hD) := e
1
2hD + e−

1
2hD,

L3(hD) := (ehD − 1)(ehD + 1)−1,

L4(hD, τ, k) := (1− τ)e−ih2 kωe−
h
2 D + τei

h
2 kωe

h
2 D,

L(hD) := (L−1
2 L1)(hD),

(3.3)

where D is the differential operator. The following properties of these operators will be used in

our analysis.
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Proposition 3.2. The Taylor expansions of L(hD) are given by

L(hD) =

(
0 0

0 1− cos(hω)

)
− 1

8

(
4 0

0 3 + cos(hω)

)
(ihD)2 + · · · ,

L(hD + ihω) =

( −4 csc(hω) sin3(hω2 ) 0

0 0

)

+

(
3+cos(hω)

2 sec(hω2 ) tan(hω2 ) 0

0 2 sin(hω2 )

)
(ihD) + · · · ,

L(hD + ikhω) =

( −4 csc(khω) sin3(khω2 ) 0

0 (cos(khω)− cos(hω)) sec(khω2 )

)

+

(
3+cos(khω)

2 sec(khω2 ) tan(khω2 ) 0

0 2+cos(khω)+cos(hω)
2 sec(khω2 ) tan(khω2 )

)
(ihD)

+ · · ·

for |k| > 1. The operator L3(hD) can be expressed in its Taylor expansions as follows:

L3(hD) =
1

2
(hD)− 1

24
(hD)3 + · · · ,

L3(hD + ikhω) = tan(
khω

2
)i+

1

1 + cos(khω)
(hD) + · · ·

for |k| > 0. Moreover, for the operator L4(hD, τ, k) with |k| > 0, the following result holds

L4(hD,
1

2
, k) = cos(

khω

2
) +

1

2
sin(

khω

2
)(ihD) + · · · .

Proof. These results can be derived by carefully computing the Taylor expansions of the

operators. �

Theorem 3.3. Suppose that the conditions given in Assumption 3.1 are true. The numerical

solution of the AAVF method (2.2) admits the following modulated Fourier expansion for 0 ≤
t = nh ≤ T :

qn =
∑

|k|<N

eikωtζkh(t) + Rh,N(t), pn =
∑

|k|<N

eikωtηkh(t) + Sh,N(t), (3.4)

where N is a fixed integer determined by (3.2) and the remainder terms are bounded by

Rh,N (t) = O(hN ), Sh,N (t) = O(hN−1). (3.5)

According to the partition of the square matrix Ω (1.3), the vector ζkh = (ζkh,1, ζ
k
h,2) ∈ R

d1 ×R
d2

and ηkh = (ηkh,1, η
k
h,2) ∈ R

d1 × R
d2 are partitioned accordingly. The coefficient functions ζkh , η

k
h

as well as all their derivatives are bounded by

ζ0h,1 = O(1), η0h,1 = O(1), ζ0h,2 = O(h2), η0h,2 = O(h
3
2 ),

ζ1h,1 = O(h2), η1h,1 = O(h), ζ1h,2 = O(h), η1h,2 = iωζ1h,2 +O(h),

ζkh,1 = O(hk+1), ηkh,1 = O(hk), ζkh,2 = O(hk+1), ηkh,2 = O(hk)

(3.6)

for k = 2, . . . , N − 1. Since the numerical approximation is real, the Fourier coefficients satisfy

ζ−k
h = ζkh and η−k

h = ηkh. The constants symbolised by the O-notation depend on the constants

from Assumption 3.1 and the final time T , but are independent of h and ω.
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Proof. In this proof, we will construct the functions

qh(t) =
∑

|k|<N

eikωtζkh(t), ph(t) =
∑

|k|<N

eikωtηkh(t) (3.7)

with smooth coefficient functions ζkh and ηkh, such that there is only a small defect when (3.7)

is inserted into the numerical scheme (2.2).

I. Construction of the coefficients functions.

It follows from the symmetry of the AAVF method that

qn+1 − 2 cos(hΩ)qn + qn−1

=h2φ2(V )
[ ∫ 1

0

f((1− τ)qn + τqn+1)dτ +

∫ 1

0

f((1− τ)qn + τqn−1)dτ
]

=h2φ2(V )
[ ∫ 1

0

f((1− τ)qn + τqn+1)dτ +

∫ 1

0

f((1− τ)qn−1 + τqn)dτ
]
, (3.8)

where we have used the following property

∫ 1

0

f((1− τ)qn + τqn−1)dτ =

∫ 1

0

f((1− τ)qn−1 + τqn)dτ.

For the term (1− τ)qn + τqn+1, we look for a function of the form

q̃h(t+
h

2
, τ) =

∑

|k|<N

eikω(t+h
2 )ξkh(t+

h

2
, τ)

as its modulated Fourier expansion. Then one has

q̃h(t+
h

2
, τ) = (1− τ)

∑

|k|<N

eikωtζkh(t) + τ
∑

|k|<N

eikω(t+h)ζkh(t+ h)

=
∑

|k|<N

eikω(t+h
2 )
(
(1 − τ)e−ikω h

2 e−
h
2 D + τeikω

h
2 e

h
2 D
)
ζkh(t+

h

2
),

which yields

ξkh(t+
h

2
, τ) =

(
(1 − τ)e−ikω h

2 e−
h
2 D + τeikω

h
2 e

h
2 D
)
ζkh(t+

h

2
)

=L4(hD, τ, k)ζkh(t+
h

2
). (3.9)

Similarly, for (1 − τ)qn−1 + τqn, we have the following modulated Fourier expansion

q̃h(t−
h

2
, τ) =

∑

|k|<N

eikω(t− h
2 )ξkh(t−

h

2
, τ)

with

ξkh(t−
h

2
, τ) =

(
(1 − τ)e−ikω h

2 e−
h
2 D + τeikω

h
2 e

h
2 D
)
ζkh(t−

h

2
)

=L4(hD, τ, k)ζkh(t−
h

2
). (3.10)
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Inserting these modulated Fourier expansions into (3.8) implies

qh(t+ h)− 2 cos(hΩ)qh(t) + qh(t− h)

=h2φ2(V )
[ ∫ 1

0

f(q̃h(t+
h

2
, τ))dτ +

∫ 1

0

f(q̃h(t−
h

2
, τ))dτ

]
.

According to the definitions given in (3.3), this result can be rewritten as

L1(hD)qh(t) = h2φ2(V )L2(hD)

∫ 1

0

f(q̃h(t, τ))dτ,

which means

L(hD)qh(t) = h2φ2(V )

∫ 1

0

f(q̃h(t, τ))dτ.

By expanding the nonlinear function f at ξ0h(t) into its Taylor series, and comparing the coef-

ficients of eikωt, one arrives at

L(hD)ζ0h(t) = h2φ2(V )

∫ 1

0

(
f(ξ0h(t, τ)) +

∑

m≥2
s(α)=0

1

m!
f (m)(ξ0h(t, τ))(ξh(t, τ))

α
)
dτ,

L(hD + ikhω)ζkh(t) = h2φ2(V )

∫ 1

0

∑

m≥1
s(α)=k

1

m!
f (m)(ξ0h(t, τ))(ξh(t, τ))

αdτ, k 6= 0,

where α = (α1, . . . , αm) with integer αi satisfying 0 < |αi| < N , s(α) =
∑m

j=1 αj , (ξh(t, τ))
α

is an abbreviation for (ξα1

h (t, τ), . . . , ξαm

h (t, τ)). Here we used the result L(hD)eikωtζkh(t) =

eikωtL(hD + ikhω)ζkh(t) which was given in [17]. This formula as well as (3.9) and (3.10)

gives the modulation system for the coefficients ζkh(t) of the modulated Fourier expansion qn.

Considering the dominate terms in the relations motivates the following ansatz:

ζ̈0h,1(t) = G0
±10(·)+

√
hG0

±11(·) + · · · , ζ0h,2(t) =
1

ω2

(
G0

±20(·)+
√
hG0

±21(·) + · · ·
)
,

ζ1h,1(t) =
−h2 cos(hω2 )

4 sin2(hω2 )

(
G1

±10(·)+
√
hG1

±11(·) + · · ·
)
,

ζ̇1h,2(t) =
−i

2ω
sinc(

hω

2
)
(
G1

±20(·)+
√
hG1

±21(·) + · · ·
)
,

ζkh,1(t) =
−h2 cos(khω2 )

4 sin2(khω2 )

(
Gk

±10(·)+
√
hGk

±11(·) + · · ·
)
,

ζkh,2(t) =
h2φ2(hω) cos(

khω
2 )

−2 sin(k+1
2 hω) sin(k−1

2 hω)

(
Gk

±20(·)+
√
hGk

±21(·) + · · ·
)
,

(3.11)

where the dots stand for power series in
√
h and the coefficient functions of the series are

denoted by G. It is noted that the functions depend smoothly on the variables ζ0h,1, ζ̇
0
h,1, ζ

1
h,2.

The functions Gk (for k ≥ 1) contain at least k times the factor ζ1h,2 and thus ζkh,1(t) = O(hk+1)

and ζkh,2(t) = O(hk+1). Following [15, 16], we truncate the ansatz after the O(hN+1) terms.

Using the scheme of the AAVF method (2.2) again, it is obtained that

qn+1 = φ0(V )qn + hφ1(V )pn + hφ2(V )φ−1
1 (V )(pn+1 + hΩ2φ1(V )qn − φ0(V )pn),
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which can be simplified as

qn+1 −
(
φ0(V ) + V φ2(V )

)
qn = hφ2(V )φ−1

1 (V )pn+1 + h
(
φ1(V )− φ0(V )φ−1

1 (V )φ2(V )
)
pn.

According to the definition of φ-functions given by (2.3), it can be verified straightforwardly

that
φ0(V ) + V φ2(V ) = I,

φ2(V )φ−1
1 (V ) = φ1(V )− φ0(V )φ−1

1 (V )φ2(V ) = tan(
1

2
hΩ)(hΩ)−1.

We then obtain

qn+1 − qn = Ω−1 tan(
1

2
hΩ)(pn+1 + pn). (3.12)

By the definition of L3, this relation can be expressed as

L3(hD)qh(t) = Ω−1 tan(
1

2
hΩ)ph(t).

Therefore, we get the modulation system for the coefficients ηkh(t) of the modulated Fourier

expansion pn as

η0h(t) = Ω tan−1(
1

2
hΩ)L3(hD)ζ0h(t), ηkh(t) = Ω tan−1(

1

2
hΩ)L3(hD + ikhω)ζkh(t) (3.13)

for k 6= 0. In the light of the Taylor series of L3, one has the following relationship between ηkh
and ζkh :

η0h,1(t) = ζ̇0h,1(t) +O(h2), η0h,2(t) =
cos(hω2 )

sinc(hω2 )
ζ̇0h,2(t) +O(h),

η1h,1(t) = iω
sinc(hω2 )

cos(hω2 )
ζ1h,1(t) +O(h), η1h,2 = iωζ1h,2 +O(h),

ηkh,1(t) = ikω
sinc(khω2 )

cos(khω2 )
ζkh,1(t) +O(h), ηkh,2(t) = iω

tan( khω
2 )

tan(hω
2 )

ζkh,2 +O(h),

(3.14)

where |k| > 1. This presents the modulation equation of ηkh.

II. Initial values. By the conditions that (3.4) is satisfied without the remainder term

for t = 0 and t = h, the initial values for the differential equations of ζ0h,1 and ζ1h,2 can be

determined as follows.

Considering the conditions ph(0) = p0 and qh(0) = q0, we get

p0,1 = η0h,1(0) +O(h) = ζ̇0h,1(0) +O(h),

q0,1 = ζ0h,1(0) +O(h2),

q0,2= ζ1h,2(0) + ζ−1
h,2(0) +O(h2) = 2Re(ζ1h,2(0)) +O(h2).

This gives the initial values

ζ0h,1(0) = q0,1 +O(h2),

ζ̇0h,1(0) = p0,1 +O(h), Re(ζ1h,2(0)) = q0,2/2 +O(h2).

Moreover, it follows from (3.1) that q0,2 = O(ω−1), which implies that Re(ζ1h,2(0)) = O(h). In

what follows, we derive the value of Im(ζ1h,2(0)).
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From qh,1(h) = q1,1, qh,2(h) = q1,2 and the first formula of AAVF method, it follows that

q1,2 − cos(hω)q0,2 = hsinc(hω)p0,2 +O(h2).

We compute

q1,2 − cos(hω)q0,2 = qh,2(h)− cos(hω)qh,2(0)

=
∑

|k|<N

eikωhζkh,2(h)− cos(hω)
∑

|k|<N

ζkh,2(0)

=ζ0h,2(h) + eiωhζ1h,2(h) + e−iωhζ−1
h,2(h)− cos(hω)

(
ζ0h,2(0) + ζ1h,2(0) + ζ−1

h,2(0)
)
+O(h2).

Expanding the functions ζ0h,2(h), ζ1h,2(h), ζ−1
h,2(h) at h = 0 yields

q1,2 − cos(hω)q0,2 =(1− cos(hω))ζ0h,2(0) + i sin(hω)(ζ1h,2(0)− ζ−1
h,2(0)) +O(h2).

It is clear that

(1 − cos(hω))ζ0h,2(0) = 2 sin2(hω/2)ζ0h,2(0) = O(h2).

Thus it is confirmed that

i sin(hω)(ζ1h,2(0)− ζ−1
h,2(0)) =hsinc(hω)p0,2 +O(h2),

which yields 2Im(ζ1h,2(0)) = −ω−1p0,2 +O(h) = O(h).

III. Bounds of the coefficients functions. Based on Assumption 3.1, the ansatz given

by (3.11) and (3.14), and the initial values presented in the above part, the bounds shown in

(3.6) are easily derived.

IV. Remainder. For t = nh, let

δq(t+ h) =qh(t+ h)− φ0(V )qh(t)− hφ1(V )ph(t)

− h2φ2(V )

∫ 1

0

f((1− τ)qh(t) + τqh(t+ h))dτ,

δp(t+ h) =ph(t+ h) + hΩ2φ1(V )qh(t)− φ0(V )ph(t)

− hφ1(V )

∫ 1

0

f((1− τ)qh(t) + τqh(t+ h))dτ.

It is clear from the two-step formulation that δq(t + h) + δq(t − h) = O(hN+2). According to

the choice for the initial values, we obtain δq(0) = O(hN+2). Thus letting t = h, 2h, . . . , yields

δq(2h) = 2O(hN+2), δq(3h) = 3O(hN+2), . . . ,

which gives δq(t) = nO(hN+2) = O(thN+1). Then according to (3.12), one gets δp = O(hN ).

By letting Rn = qn − qh(t) and Sn = pn − ph(t), we obtain the following error recursion
(

ΩRn+1

Sn+1

)
=

(
cos(hΩ) sin(hΩ)

− sin(hΩ) cos(hΩ)

)(
ΩRn

Sn

)

+ h




hΩφ2(V )

∫ 1

0

(
f((1− τ)qn + τqn+1)− f((1− τ)qh(t) + τqh(t+ h))

)
dτ

φ1(V )

∫ 1

0

(
f((1− τ)qn + τqn+1)− f((1− τ)qh(t) + τqh(t+ h))

)
dτ




+

(
Ωδq
δp

)
.
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By using the Lipschitz continuous of the nonlinearity, one obtains

‖f((1− τ)qn + τqn+1)− f((1− τ)qh(t) + τqh(t+ h))‖ ≤ ‖Rn‖+ ‖Rn+1‖ .

Using the norm ‖(Rn, Sn)‖∗ = ‖(ΩRn, Sn)‖ , we have

‖(Rn+1, Sn+1)‖∗ ≤‖(Rn, Sn)‖∗ + hC(‖Rn‖+ ‖Rn+1‖) + ‖(δq, δp)‖∗ , (3.15)

Then the remainder (3.5) can be derived by solving the error recursion (3.15) and the application

of a discrete Gronwall inequality. The proof of this theorem is complete. �

4. Long-time Oscillatory Energy Conservation

This section is devoted to showing the long-time oscillatory energy conservation of the AAVF

method.

Denote ζ =
(
ζ−N+1
h , · · · , ζ−1

h , ζ0h, ζ
1
h, · · · , ζN−1

h

)
. The modulation functions of the AAVF

method have the following almost invariant.

Theorem 4.1. Suppose that the conditions of Theorem 3.3 hold. For the coefficient functions

of the modulated Fourier expansion, there exists a function Î[ζ] such that

Î[ζ](t) = Î[ζ](0) +O(thN ),

where 0 ≤ t ≤ T. Moreover, this almost invariant can be expressed as

Î[ζ] = 2ω2 cos(12hω)

sinc(12hω)

(
ζ−1
h,2

)⊺
ζ1h,2 +O(h2).

Proof. With the proof of Theorem 3.3 proposed in the previous section, one obtains

L(hD)qh(t) = h2φ2(V )

∫ 1

0

f(q̃h(t, τ))dτ +O(hN+2),

where we use the following notations:

qh(t) =
∑

|k|<N

qkh(t), q̃h(t, τ) =
∑

|k|<N

q̃kh(t, τ).

Here qkh and q̃kh are defined as qkh(t) = eikωtζkh(t) and q̃kh(t, τ) = eikωtξkh(t, τ), respectively. By

considering the definitions of q̃h, qh and comparing the coefficients of eikωt, we obtain the

equations in terms of qkh :

L(hD)qkh(t) = −h2φ2(V )∇−kU(q̃(t, τ)) +O(hN+2),

where U(q̃(t, τ)) is defined as

U(q̃(t, τ)) =
∫ 1

0

U(q̃0h(t, τ))dτ +
∑

s(α)=0

1

m!

∫ 1

0

U (m)(q̃0h(t, τ))(q̃h(t, τ))
αdτ, (4.1)

and q̃(t, τ) is given by

q̃(t, τ) =
(
q̃−N+1
h (t, τ), . . . , q̃0h(t, τ), . . . , q̃

N−1
h (t, τ)

)
.
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Define a vector function q̃(λ, t, τ) of λ as below

q̃(λ, t, τ) =
(
ei(−N+1)λω q̃−N+1

h (t, τ), · · · , q̃0h(t, τ), · · · , ei(N−1)λωq̃N−1
h (t, τ)

)
.

It can be observed from the definition (4.1) that U(q̃(λ, t, τ)) is independent of λ and τ . Thus,

considering its derivative with respect to λ implies

0 =
∂

∂λ
U(q̃(λ, t, τ)) =

( ∂

∂q̃
U(q̃(λ, t, τ))

)⊺ ∂

∂λ
q̃(λ, t, τ)

=
∑

|k|<N

ikωeikλω(q̃kh(λ, t, τ))
⊺∇kU(q̃(λ, t, τ)).

The choice of λ = 0 and τ = 1
2 yields

∑
|k|<N

ikω(q̃kh(t,
1
2 ))

⊺∇kU(q̃(t, 1
2 )) = 0. Therefore, one gets

0 =
∑

|k|<N

ikω(q̃−k
h (t,

1

2
))⊺∇−kU(q̃(t,

1

2
))

=
∑

|k|<N

ikω(q̃−k
h (t,

1

2
))⊺

1

−h2
φ−1
2 (V )L(hD)qkh(t) +O(hN ). (4.2)

Inserting the expressions of qkh and q̃kh into (4.2) gives

O(hN ) =
∑

|k|<N

ikω(ξ−k
h (t,

1

2
))⊺

1

−h2
φ−1
2 (V )L(hD + ikωh)ζkh(t)

=
∑

|k|<N

ikω(L4(hD,
1

2
,−k)ζ−k

h (t))⊺
1

−h2
φ−1
2 (V )L(hD + ikωh)ζkh(t). (4.3)

By Proposition 3.2, we get

L4(hD,
1

2
,−k)ζ−k

h (t) = (·)ζ̄kh + ih(·) ˙̄ζkh + h2(·)¨̄ζkh + · · · ,

L(hD + ikωh)ζkh = (·)ζkh + ih(·)ζ̇kh + h2(·)ζ̈kh + · · · .

Looking closer to the right-hand side of (4.3), using the above expressions of L4 and L, and

considering the formulae on p. 508 of [17], it can be verified that the right-hand side of (4.3)

is a total derivative. Therefore, there exists a function Î such that d
dt
Î[ζ](t) = O(hN ). An

integration of it immediately implies the first statement of the theorem.

Considering the expressions of L4 and L, the formulae on p. 508 of [17] and the bounds of

Theorem 3.3, the construction of Î is obtained by the right-hand side of (4.3) as follows:

Î[ζ] =2
2hω sin(12hω) cos(

1
2hω)

h2φ2(hω)

1

2

(
ζ−1
h,2

)⊺
ζ1h,2 +O(h2)

=2ω2 cos(12hω)

sinc(12hω)

(
ζ−1
h,2

)⊺
ζ1h,2 +O(h2).

We complete the proof of this theorem. �

We are now in a position to present the main result of this paper.
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Theorem 4.2. Define I[ζ] = Î[ζ]/σ(hω), where σ(hω) is given by σ(hω) =
cos( 1

2hω)

sinc( 1
2hω)

. Under

the conditions of Theorem 3.3 and that
∣∣cos(12hω)

∣∣ ≥ chm for some m, we have the following

relation between I[ζ] and I(qn, pn):

I[ζ](nh) = I(qn, pn) +O(h).

Moreover, it holds that

I(qn, pn) = I(q0, p0) +O(h)

for 0 ≤ nh ≤ h−N+1. The constants symbolized by O are independent of n, h, ω, but depend on

N, T and the constants in the assumptions.

Proof. According to the definition of I and under the conditions of this theorem, one obtains

I[ζ] = 2ω2
(
ζ−1
h,2

)⊺
ζ1h,2 +O(h2). (4.4)

On the other hand, it follows from (3.6) that η±1
h,2(t) = ±iωζ±1

h,2(t)+O(h). Thus using the bounds

of Theorem 3.3, we have

ωqn,2 = ω
(
eiωtζ1h,2(t) + e−iωtζ−1

h,2(t)
)
+O(h),

pn,2 = iω
(
eiωtζ1h,2(t)− e−iωtζ−1

h,2(t)
)
+O(h).

This implies

I(qn, pn) =
1

2
p⊺n,2pn,2 +

1

2
ω2q⊺n,2qn,2

=
1

2

∥∥∥iω
(
eiωtζ1h,2(t)− e−iωtζ−1

h,2(t)
)∥∥∥

2

+
1

2

∥∥∥ω
(
eiωtζ1h,2(t) + e−iωtζ−1

h,2(t)
)∥∥∥

2

= 2ω2
(
ζ−1
h,2

)⊺
ζ1h,2 +O(h), (4.5)

where we have used the fact that ‖v + v̄‖2 + ‖v − v̄‖2 = 4 ‖v‖2. A comparison between (4.4)

and (4.5) gives the first stated relation of this theorem. Following the identical argument given

in Section XIII of [17], it is arrived that

I(qn, pn) = I[ζ](nh) +O(h) = I[ζ]((n− 1)h) +O(h) +O(hN+1)

= · · · = I[ζ](0) +O(h) +O(nhN+1)

= I(q0, p0) +O(h) +O(nhN+1),

which gives the second statement of this theorem under the condition 0 ≤ nh ≤ h−N+1. �

Remark 4.1. We remark that the above analysis is given for the AAVF method with the

integral appearing in (2.2). However, it is noted that the integral usually cannot be solved

exactly and a quadrature formula is needed. For this case, we will show that the main result for

the AAVF method with the integral is still true for the AAVF method with some quadrature

rule. As example, let us consider the following AAVF method with the midpoint rule
{

qn+1 = φ0(V )qn + hφ1(V )pn + h2φ2(V )f((qn + qn+1)/2),

pn+1 = −hΩ2φ1(V )qn + φ0(V )pn + hφ1(V )f((qn + qn+1)/2),
(4.6)

By some modifications for the operator and the nonlinearity in previous sections, the main

result given in Theorem 4.2 is still true for this method.

Remark 4.2. From the analysis stated above for oscillatory energy conservation, it follows

that the result of Theorem 4.2 cannot be improved even if high order quadratures are chosen

for the AAVF method (2.2), which explains the numerical phenomenon shown in Section 2.
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5. Generalization of Multi-frequency Case

This section is devoted to extending the analysis to a muti-frequency highly oscillatory

Hamiltonian system with the following Hamiltonian function

H(q, p) =
1

2

l∑
j=0

(
‖pj‖2 +

λ2
j

ǫ2
‖qj‖2

)
+ U(q), (5.1)

where q = (q0, q1, . . . , ql), p = (p0, p1, . . . , pl) with qj , pj ∈ R
dj , λ0 = 0 and λj ≥ 1 are distinct

real numbers for j ≥ 1, ǫ is a small positive parameter, and U(q) is a smooth potential function.

It is well known that this system has the oscillatory energy of the jth frequency as

Ij(q, p) =
1

2

(
‖pj‖2 +

λ2
j

ǫ2
‖qj‖2

)
,

and its total oscillatory energy is I(q, p) =
∑l

j=1 Ij(q, p).

Muti-frequency highly oscillatory Hamiltonian system often arises in a wide range of appli-

cations, such as in physics and engineering, astronomy, molecular dynamics, and in problems

of wave propagation in classical and quantum physics. There have been many efficient nu-

merical methods for solving this system and we refer to [17, 19, 20, 34, 40, 42] as well as the

references contained therein. This muti-frequency Hamiltonian system can also be rewritten as

the highly oscillatory second-order system (2.1) with Ω = diag(ω0Id0 , ω1Id1 , . . . , ωlIdl
), where

ωj = λj/ǫ. Thus the AAVF method (2.2) can be used to solve this system. In what follows,

we briefly discuss the long-time oscillatory energies conservations of the AAVF method for this

muti-frequency highly oscillatory Hamiltonian system. The technique used here is the muti-

frequency modulated Fourier expansion of the AAVF method, which can be obtained by the

generalization of Sections 3-4 of this paper and following the way used in [8]. For brevity, we

just present the main results and omit the details of proof.

5.1. The main results for multi-frequency case

Let

λ = (λ1, . . . , λl), k = (k1, . . . , kl), k · λ = k1λ1 + · · ·+ klλl,

and denote the resonance module by

M = {k ∈ Z
l : k · λ = 0}. (5.2)

Following [8], we use the following notations

ω = (ω1, . . . , ωl), 〈j〉 = (0, . . . , 1, . . . , 0), |k| = |k1|+ · · ·+ |kl|.

For the resonance module (5.2), denote by K the set of representatives of the equivalence classes

in Z
l\M which are chosen such that for each k ∈ K the sum |k| is minimal in the equivalence

class [k] = k +M, and that with k ∈ K, also −k ∈ K. For the positive integer N , we let

N = {k ∈ K : |k| ≤ N}, N ∗ = N\{(0, . . . , 0)}.

The multi-frequency modulated Fourier expansion of the AAVF method is presented in the

following theorem.
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Theorem 5.1. The initial values are supposed to satisfy H(q0, p0) ≤ E. Assume that h/ǫ ≥
c0 > 0 and the following numerical non-resonance condition is true

| sin( h
2ǫ

(k · λ))| ≥ c
√
h for k ∈ Z

l\M with |k| ≤ N

for some N ≥ 2 and c > 0. Then the AAVF method admits the following multi-frequency

modulated Fourier expansion

qn = ζ(t) +
∑

k∈N∗

ei(k·ω)tζk(t) +O(hN ), pn = η(t) +
∑

k∈N∗

ei(k·ω)tηk(t) +O(hN−1),

for 0 ≤ t = nh ≤ T . The coefficient functions as well as all their derivatives are bounded by

ζ0(t) = O(1), η0(t) = O(1),

ζj(t) = O(h2), ηj(t)) = O(h),

ζ
±〈j〉
j (t) = O(h), η

±〈j〉
j (t) = O(1),

ζk0 (t) = O
(
h|k|+1

)
, ηk0 (t) = O

(
h|k|
)
, k ∈ N ∗,

ζkj (t) = O
(
h|k|+1

)
, ηkj (t) = O

(
h|k|
)
, k 6= ±〈j〉,

for j = 1, . . . , l.

An almost-invariant is obtained for the functions of the multi-frequency modulated Fourier

expansion.

Theorem 5.2. Under the conditions of Theorem 5.1, there exists a function Î[ζ] such that

Îµ[ζ](t) = Îµ[ζ](0) +O(thN ) +O(tǫM−1)

for all µ ∈ R
l and 0 ≤ t ≤ T. Here M = min{|k| : 0 6= k ∈ M}. The almost-invariant satisfies

Îµ[ζ](t) = Îµ[ζ](0) +O(thN )

for µ ⊥ MN := {k ∈ M : |k| ≤ N} and 0 ≤ t ≤ T. Moreover, Îµ can be expressed in

Îµ[ζ] =
l∑

j=1

2ω2
j

µj

λj

cos(12hωj)

sinc(12hωj)

(
ζ
−〈j〉
j

)⊺
ζ
〈j〉
j +O(h).

Consider the following modified oscillatory energies

I∗µ(q, p) =

l∑

j=1

σ(
1

2
hωj)

µj

λj

Ij(q, p),

where σ is defined as σ(ξ) :=
cos( 1

2 ξ)

sinc( 1
2 ξ)

. We then obtain the result about the long-time modified

oscillatory energies conservations of the AAVF method for multi-frequency highly oscillatory

systems.

Theorem 5.3. Under the conditions of Theorem 5.1, we have

Îµ[~ζ, ~η](nh) = I∗µ(qn, pn) +O(h).

Moreover, it holds that

I∗µ(q
n, pn) = I∗µ(q

0, p0) +O(h)

for 0 ≤ nh ≤ h−N+1, µ ∈ R
l and µ ⊥ MN . The constants symbolised by O are independent of

n, h,Ω, but depend on N, T and the constants in the assumptions.
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5.2. Numerical experiments

In order to illustrate the numerical conservation of the modified oscillatory energies for the

AAVF method, we consider a Hamiltonian (5.1) with l = 3 and λ = (1,
√
2, 2) (see [8]). It is

shown in [8] that there is the 1 : 2 resonance between λ1 and λ3: M = {(−2k3, 0, k3) : k3 ∈ Z}.
For this problem, the dimension of q1 = (q11, q12) is assumed to be 2, and that of all the other

qj are assumed to be 1. We consider ǫ−1 = ω = 70, the potential U(q) = (0.001q0 + q11 + q22 +

q2 + q3)
4, and

q(0) = (1, 0.3ǫ, 0.8ǫ,−1.1ǫ, 0.7ǫ), p(0) = (−0.75, 0.6, 0.7,−0.9, 0.8)

as initial values. For λ = (1,
√
2, 2), it is chosen that µ1 = (1, 0, 2) and µ2 = (0,

√
2, 0) for Iµ and

the corresponding results are Iµ1 = I1+I3 and Iµ2 = I2. We still consider the methods AAVF1-

AAVF3 which are given in section 2.2. We integrate this problem on the interval [0, 10000] with

h = 0.1, 0, 01. The modified oscillatory energies conservations measured by

errI =
∣∣I∗µ1

(qn, pn)− I∗µ1
(q(nh), p(nh))

∣∣ , errI2 =
∣∣I∗µ2

(qn, pn)− I∗µ2
(q(nh), p(nh))

∣∣

are shown in Figs. 5.1–5.3.
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Fig. 5.1. AAVF1: the logarithm of the modified oscillatory energy errors against t.
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Fig. 5.2. AAVF2: the logarithm of the modified oscillatory energy errors against t.
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Fig. 5.3. AAVF3: the logarithm of the modified oscillatory energy errors against t.

6. Conclusions

In this paper, we presented a long-term analysis of the adapted average vector field (AAVF)

method for highly oscillatory Hamiltonian systems. This AAVF method can exactly preserve

the total energy of the underlying systems, but the main theme of this paper is to study its

oscillatory energy and the corresponding numerical conservation. We analysed the long-term

behaviour in the oscillatory energy conservation by developing modulated Fourier expansions

for the method. A further extension of the analysis to multi-frequency case has also been

discussed.

Last but not least, it is noted that some trigonometric energy-preserving methods have

been well developed for solving wave equations and see [23–25, 38] for example. The long

time behaviour of oscillatory energy conservations for other energy-preserving methods will be

discussed in future.
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