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Abstract. In this paper we propose and analyze a second order accurate numerical
scheme for the Cahn-Hilliard equation with logarithmic Flory Huggins energy poten-
tial. A modified Crank-Nicolson approximation is applied to the logarithmic nonlin-
ear term, while the expansive term is updated by an explicit second order Adams-
Bashforth extrapolation, and an alternate temporal stencil is used for the surface diffu-
sion term. A nonlinear artificial regularization term is added in the numerical scheme,
which ensures the positivity-preserving property, i.e., the numerical value of the phase
variable is always between -1 and 1 at a point-wise level. Furthermore, an uncondi-
tional energy stability of the numerical scheme is derived, leveraging the special form
of the logarithmic approximation term. In addition, an optimal rate convergence es-
timate is provided for the proposed numerical scheme, with the help of linearized
stability analysis. A few numerical results, including both the constant-mobility and
solution-dependent mobility flows, are presented to validate the robustness of the pro-
posed numerical scheme.
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1 Introduction

The Allen-Cahn (AC) [3] and Cahn-Hilliard (CH) [9] equations are fundamental gradient
flow models in the description of phase transitions. For any φ∈H1(Ω), the Cahn-Hilliard-
Flory-Huggins energy functional is formulated as

E(φ)=
∫

Ω

(

(1+φ)ln(1+φ)+(1−φ)ln(1−φ)−
θ0

2
φ2+

ε2

2
|∇φ|2

)

dx, (1.1)

where Ω⊂R
d (d=2 or d=3) is a bounded domain and the point-wise bound −1≤φ≤1 is

assumed for phase field variable φ. The physical parameters ε>0 and θ0>0 are associated
with the diffuse interface width and the temperature, respectively. The CH equation is
an H−1-like conserved gradient flow of the energy functional (1.1):

∂tφ=∇·(M(φ)∇µ), (1.2)

µ :=δφE= ln(1+φ)−ln(1−φ)−θ0φ−ε2∆φ, (1.3)

where M(φ)>0 stands for the mobility function. As a consequence, the gradient struc-
ture indicates an energy dissipation law: d

dt E(φ(t)) =−
∫

Ω
M(φ)|∇µ|2dx ≤ 0. See the

related references [8, 19, 23, 28]. In this article, we assume that Ω=(0,1)3, and consider
periodic boundary conditions, for simplicity of presentation. An extension of our results
for the model with homogeneous Neumann boundary conditions is straightforward.

Of course, the most visible difficulty for the Cahn-Hilliard equation (1.2) with loga-
rithmic Flory Huggins energy potential is associated with the singularity in its derivative
as the value of φ approaches −1 or 1. In fact, the positivity property, i.e., 0< 1−φ and
0 < 1+φ, has been established at the PDE analysis level in [2, 20, 28, 53]. As a further
development, a separation property has also been justified for the 1-D and 2-D equations
at a theoretical level. This property guarantees that a uniform distance exists between
the value of the phase variable and the singular limit values. Such a distance only de-
pends on ε, θ0 and the initial data. See also the related works [1, 4, 18, 28, 33, 34, 52], et
cetera. The free energy with the logarithmic pattern is considered in many cases to be
more physically realistic than the regularly use polynomial version [23].

Regarding numerical approximation of the Cahn-Hilliard equation (1.2) with the Flory-
Huggins energy (1.1), there have been extensive works [29, 41–43, 47, 54–56, 58, 61, 65],
et cetera. Among the existing works, it is worth mentioning the pioneering work [19],
which addresses the issue of the positivity-preserving property (for 1+φ and 1−φ) when
the implicit Euler scheme is applied and analyzed. Meanwhile, a time step constraint,

∆t ≤ 4ε2

θ2
0

, must be assumed, which comes from the implicit treatment of the expansive

term. An extension to the multi-component Cahn-Hilliard flow has also been reported
in [7].

A more recent work [13] has overcome the time step restriction, making use of the
convex-concave decomposition approach. The positivity-preserving property, unique
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solvability, and unconditional energy stability have been theoretically established for
this convex splitting scheme. In particular, an implicit treatment of the nonlinear and
singular logarithmic term played an essential role in the theoretical analysis, since the
convex and the singular nature of the implicit logarithmic part prevents the numerical
solution from approaching the singular values of −1 and 1. Similar ideas have been
applied to other gradient models singular energy potential, such as the Cahn-Hilliard
model with Flory-Huggins-deGennes energy potential [25–27, 66], the Poisson-Nernst-
Planck system [50, 57], the reaction-diffusion system with detailed balance [49], a liquid
film droplet model [68], et cetera.

Meanwhile, the work regarding second order accurate in time, energy stable schemes
is very limited for the gradient flows with singular energy potentials. In this article,
we propose and analyze a second order accurate scheme for the Cahn-Hilliard equa-
tion (1.2) with logarithmic Flory Huggins energy potential (1.1), based on a modified
Crank-Nicolson temporal discretization, combined with the finite difference spatial ap-
proximation. In more details, a modified Crank-Nicolson (secant-like) approximation is
applied to the logarithmic nonlinear term, which takes the form

F(1±φn+1)−F(1±φn)

φn+1−φn
, with F(x)= xlnx.

Such an approximation is convex in terms of φn+1, though the approximation is not sin-
gular as φn+1ց−1 or φn+1ր1. The expansive term is updated by a second order Adams-
Bashforth explicit extrapolation formula, and an alternate temporal stencil, namely,

3

4
∆hφn+1+

1

4
∆hφn−1,

is used for the surface diffusion (diffuse interface) term. Since the singularity of the non-
linear approximation to the logarithmic term is not available as φn+1 ց−1 or φn+1 ր 1,
we add a nonlinear artificial regularization term, in the form of

∆t(ln(1±φn+1)−ln(1±φn)),

in the numerical scheme. Such a regularization term, we will show, ensures the positivity-
preserving property for both 1+φ and 1−φ at a point-wise level. In particular, the sin-
gular nature of the logarithmic terms around the values of −1 and +1 prevents the nu-
merical solution reaching these singular values. An unconditional energy stability of the
numerical scheme is derived, based on the special form of the logarithmic approximation
term.

An optimal rate convergence analysis for the proposed numerical scheme turns out
to be very challenging. This is due to the fact that a highly nonlinear approximation
to the logarithmic chemical potential is involved with both φn+1 and φn in the modi-
fied Crank-Nicolson temporal discretization. To overcome this difficulty, we perform a
discrete L∞

∆t(0,T;H−1
h )∩L2

∆t(0,T;H1
h) error estimate. The 3

4 and 1
4 coefficient distribution
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for the surface diffusion term makes an additional dissipation available that is able to
control the numerical errors associated with the nonlinear logarithmic and the concave
expansive terms. In addition, the numerical error associated with the highly nonlinear
logarithmic terms is decomposed into two parts, corresponding to the time steps tn and
tn+1, respectively. The numerical error part corresponding to the time step tn+1 is proven
to be non-positive, due to the convex nature of the implicit term. Meanwhile, the numer-
ical error part corresponding to tn could be bounded with the help of linearized stability
analysis, combined with the separation property. All these techniques lead to the optimal
rate error estimate, with O(∆t2+h2) accuracy order.

The rest of the article is organized as follows. In Section 2 we propose the numer-
ical scheme and state the corresponding theoretical results. The detailed proof for the
positivity-preserving property is provided in Section 3, and the modified energy stability
is proved in Section 4. The optimal rate convergence analysis is presented in Section 5.
Subsequently, the preconditioned steepest descent (PSD) iteration solver is outlined in
Section 6. Some numerical results are presented in Section 7. Finally, concluding remarks
are given in Section 8.

2 The numerical scheme and the main theoretical results

2.1 The finite difference spatial discretization

The standard centered finite difference spatial approximation is applied. We present
the numerical approximation on the computational domain Ω = (0,1)3 with a periodic
boundary condition, and ∆x=∆y=∆z= h= 1

N with N ∈N to be the spatial mesh reso-
lution throughout this work. In particular, fi,j,k stands for the numerical value of f at the

cell centered mesh points ((i+ 1
2)h,(j+ 1

2 )h,(k+ 1
2)h), and we denote Cper as

Cper :=
{

f : Z
3→R

∣

∣ fi,j,k = fi+αN,j+βN,k+γN, ∀i, j,k,α,β,γ∈Z
}

,

with the discrete periodic boundary condition imposed. In turn, the discrete average
and difference operators are face-centered functions, evaluated at the east-west faces,
(i+1/2, j,k); north-south faces, (i, j+1/2,k); and up-down faces, (i, j,k+1/2), respectively:

Ax fi+1/2,j,k :=
1

2

(

fi+1,j,k+ fi,j,k

)

, Dx fi+1/2,j,k :=
1

h

(

fi+1,j,k− fi,j,k

)

,

Ay fi,j+1/2,k :=
1

2

(

fi,j+1,k+ fi,j,k

)

, Dy fi,j+1/2,k :=
1

h

(

fi,j+1,k− fi,j,k

)

,

Az fi,j,k+1/2 :=
1

2

(

fi,j,k+1+ fi,j,k

)

, Dz fi,j,k+1/2 :=
1

h

(

fi,j,k+1− fi,j,k

)

.
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Conversely, the corresponding operators at the staggered mesh points are defined as fol-
lows:

ax f x
i,j,k :=

1

2

(

f x
i+1/2,j,k+ f x

i−1/2,j,k

)

, dx f x
i,j,k :=

1

h

(

f x
i+1/2,j,k− f x

i−1/2,j,k

)

,

ay f
y
i,j,k :=

1

2

(

f
y
i,j+1/2,k+ f

y
i,j−1/2,k

)

, dy f
y
i,j,k :=

1

h

(

f
y
i,j+1/2,k− f

y
i,j−1/2,k

)

,

az f z
i,j,k :=

1

2

(

f z
i,j,k+1/2

+ f z
i,j,k−1/2

)

, dz f z
i,j,k :=

1

h

(

f z
i,j,k+1/2

− f z
i,j,k−1/2

)

.

Suppose that g is any scalar function defined at all three faces (east-west, north-south,

and up-down) and ~f =( f x, f y, f z)T a vector function, with f x, f y and f z evaluated at the
east-west face, (i+1/2, j,k); north-south faces, (i, j+1/2,k); and up-down faces, (i, j,k+1/2),
respectively. Then the discrete divergence is defined as

∇h ·
(

g~f
)

i,j,k
=dx (gew f x)i,j,k+dy (gns f y)i,j,k+dz (gud f z)i,j,k . (2.1)

We use the notation ~Eper to denote the set of all face-centered vector grid functions ~f =
( f x, f y, f z)T that are Ω-periodic, that is, N-periodic in each dimension.

In particular, if ~f =∇hφ=(Dxφ,Dyφ,Dzφ)T for certain scalar grid function φ, the cor-
responding divergence becomes

∇h ·
(

g∇hφ
)

i,j,k
=dx (gewDxφ)i,j,k+dy

(

gnsDyφ
)

i,j,k
+dz (gudDzφ)i,j,k , (2.2)

in which the east-west, north-south, and up-down averages have been taken in the eval-
uation of gew, gns and gud, respectively. In the simple case that g≡1, we write

∇h ·
(

1∇hφ
)

i,j,k
=∆hφi,j,k=∇h ·

(

∇hφ
)

i,j,k
=dx (Dxφ)i,j,k+dy

(

Dyφ
)

i,j,k
+dz (Dzφ)i,j,k . (2.3)

For two cell-centered grid functions f and g, the discrete L2
h inner product and the asso-

ciated L2
h norm are defined as

〈 f ,g〉Ω :=h3
N

∑
i,j,k=1

fi,j,kgi,j,k, ‖ f‖2 :=
√

〈 f , f 〉Ω.

The mean zero space is introduced as

C̊per :=

{

f ∈Cper

∣

∣

∣

∣

∣

0= f :=
h3

|Ω|

m

∑
i,j,k=1

fi,j,k

}

.

For any two vector grid functions ~f =( f x, f y, f z)T,~g=(gx,gy,gz)T∈~Eper the corresponding
discrete inner product becomes

[

~f ,~g
]

Ω
:=[ f x,gx]x+[gy,gy]y+[ f z,gz]z ,
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where

[ f x,gx]x := 〈ax( f xgx),1〉Ω , [ f y,gy]y :=
〈

ay( f ygy),1
〉

Ω
, [ f z,gz]z := 〈az( f zgz),1〉Ω .

In addition to the discrete ‖·‖2 norm, the discrete maximum norm is defined as ‖ f‖∞ :=
max1≤i,j,k≤N

∣

∣ fi,j,k

∣

∣. Moreover, the discrete H1
h norm is introduced as

‖∇h f‖2
2 :=[∇h f ,∇h f ]Ω =[Dx f ,Dx f ]x+

[

Dy f ,Dy f
]

y
+[Dz f ,Dz f ]z ,

‖ f‖2
H1

h
:=‖ f‖2

2+‖∇h f‖2
2 .

(2.4)

The following summation by parts formulas are recalled in the following lemma; the
detailed proofs could be found in [37, 60, 62, 63], et cetera.

Lemma 2.1. [37, 60, 62, 63] Suppose that g is an arbitrary Ω-periodic scalar function defined

at all three face centers, and ψ,φ∈Cper, and ~f =( f x, f y, f z)T ∈ ~Eper are arbitrary. The following
summation by parts formulas are valid:

〈

ψ,∇h ·~f
〉

Ω
=−

[

∇hψ,~f
]

Ω
, 〈ψ,∇h ·(g∇hφ)〉Ω=−[∇hψ,g∇hφ]Ω , (2.5)

where
g∇hφ=

(

gewDxφ,gnsDyφ,gudDzφ
)T

∈~Eper.

In addition, a discrete version of the space H−1
per(Ω) is needed to facilitate the analysis

in the later sections. Suppose that g is a point-wise positive Ω-periodic scalar function
defined at all three face centers. For any φ∈Cper, it is clear that there is a unique ψ∈C̊per

to the following discrete elliptic equation

Lg(ψ) :=−∇h ·(g∇hψ)=φ−φ, φ := |Ω|−1〈φ,1〉Ω . (2.6)

In turn, a bilinear form becomes available for this space:

〈φ1,φ2〉L−1
g

:=[g∇hψ1,∇hψ2]Ω , ∀ φ1,φ2∈C̊per,

where
Lg(ψi) :=−∇h ·(g∇hψi)=φi, i=1,2.

In turn, the following summation-by-parts identity is valid; see the proof in [60]:

〈φ1,φ2〉L−1
g
=
〈

φ1,L−1
g (φ2)

〉

Ω
=
〈

L−1
g (φ1),φ2

〉

Ω
. (2.7)

It is obvious that Lg is symmetric positive definite, so that 〈 · , · 〉L−1
g

becomes an inner

product on C̊per.
In the trivial case g ≡ 1, we use the notation L1 =−∆h, and 〈 · , · 〉L−1

g
= 〈 · , · 〉−1,h.

For a more general g, the norm associated to this inner product is defined as ‖φ‖L−1
g

:=
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√

〈φ,φ〉L−1
g

, for any φ∈ C̊per. Again, in the trivial case g≡ 1, the corresponding norm is

denoted as ‖·‖L−1
g
=:‖·‖−1,h.

The following estimate is needed in the later analysis; its proof has been provided in
a recent work [13].

Lemma 2.2. [13] Suppose that φ1, φ2∈Cper, with 〈φ1−φ2,1〉Ω=0, that is, φ1−φ2∈C̊per, and
assume that ‖φ1‖∞ ,‖φ2‖∞<1. Suppose that g is a point-wise positive Ω-periodic scalar function
defined at all three face centers and g≥M0. Then the following estimate is available:

‖L−1
g (φ1−φ2)‖∞ ≤C2 :=C1M

−1
0 h−1/2, (2.8)

where C1>0 depends only upon Ω.

2.2 The numerical scheme and the theoretical result

The following second order accurate, fully discrete scheme is proposed: given φn,φn−1∈
Cper, find φn+1,µn+1/2 ∈Cper, such that

φn+1−φn

∆t
=∇h ·(M̌

n+1/2∇hµn+1/2), (2.9)

µn+1/2 =
F(1+φn+1)−F(1+φn)

φn+1−φn
+

F(1−φn+1)−F(1−φn)

φn+1−φn
−θ0φ̆n+1/2−ε2∆hφ̂n+1/2

+∆t(ln(1+φn+1)−ln(1+φn)−ln(1−φn+1)+ln(1−φn)), (2.10)

φ̆n+1/2 :=
3

2
φn−

1

2
φn−1, φ̂n+1/2 :=

3

4
φn+1+

1

4
φn−1,

where F(x)=: xlnx. Observe that,

F(1±φ(tn+1))−F(1±φ(tn))

φ(tn+1)−φ(tn)
=±ln(1±φ(tn+1/2))±1+O(∆t2).

The face-centered numerical mobility, M̌n+1/2, is defined by the following formulas:

M̌n+1/2

i+1/2,j,k =
(

M2(Axφ̆n+1/2

i+1/2,j,k)+∆t6
)1/2

,

M̌n+1/2

i,j+1/2,k =
(

M2(Ayφ̆n+1/2

i,j+1/2,k)+∆t6
)1/2

,

M̌n+1/2

i,j,k+1/2
=
(

M2(Azφ̆n+1/2

i,j,k+1/2
)+∆t6

)1/2

.

(2.11)

This definition ensures both the second order temporal accuracy and a point-wise posi-
tive lower bound, M̌n+1/2 ≥∆t3, at every face center point.

We will prove in Theorem 3.1 that there exists a unique numerical solution for (2.9) -
(2.10), as well as a point-wise bound for the grid function φn+1, namely, −1<φn+1

i,j,k <1. As



W. Chen et al. / Commun. Comput. Phys., 31 (2022), pp. 60-93 67

a result, the numerical scheme is well-defined. To facilitate the theoretical analyses, the
following three smooth functions are introduced: for any fixed a>0,

G1
a(x) :=

F(x)−F(a)

x−a
, ∀x>0,

G0
a(x) :=

∫ x

a
G1

a(t)dt=
∫ x

a

F(t)−F(a)

t−a
dt, ∀x>0,

G2
a(x) :=(G1

a)
′(x)=

F′(x)(x−a)−(F(x)−F(a))

(x−a)2
=(G0

a)
′′(x), ∀x>0.

(2.12)

The following preliminary estimates will be used in the later analysis. Their proofs are
based on direct calculations, and the details are left to interested readers.

Lemma 2.3. Let a>0 be fixed.

1. G2
a(x)≥0, for any x>0.

2. G0
a(x) is convex, as a function of x, for x>0.

3. (G1
a)

′(x)= 1
2ξ , for some ξ between a and x.

4. G1
a(x) is an increasing function of x, and G1

a(x)≤G1
a(a)= lna+1 for any 0< x≤ a.

Remark 2.1. Since the proposed numerical scheme (2.9)-(2.10) is a three-level algorithm,
a “ghost” point approximation for the phase variable value at t−1 is needed in the initial-
ization process. For the sake of numerical convenience, a simple extrapolation formula
φ−1=φ0 could be taken. Such a choice would simplify the energy stability analysis, and
the overall second order numerical accuracy will also be preserved, due to the denomi-
nator fact ∆t on the left hand side of the Crank-Nicolson method (2.9).

3 The positivity analysis

We will always assume that −1<φ0<1. Thus |φ0|<1. It is observed that the numerical
solution of (2.9) - (2.10) is mass conservative at a discrete level:

φn+1=φn = ···=φ0, ∀n∈N. (3.1)

Theorem 3.1. Given φn,φn−1∈Cper, with −1<φn,φn−1<1, at a point-wise level. There exists

a unique solution φn+1∈Cper to (2.9)-(2.10), with φn+1−φn ∈C̊per and
∥

∥φn+1
∥

∥

∞
<1.

Proof. Since ‖φn‖∞ <1, and there are finite number of grid points, we assume that

−1+δ0≤φn
i,j,k≤1−δ0, ∀1≤ i, j,k≤N, (3.2)



68 W. Chen et al. / Commun. Comput. Phys., 31 (2022), pp. 60-93

for some δ0 that may depend upon tn. The numerical solution of (2.9) is a minimizer of
the following discrete energy functional:

J n(φ) :=
1

2∆t
‖φ−φn‖2

L−1

M̌n+1/2

+∆t(〈1+φ,ln(1+φ)〉Ω+〈1−φ,ln(1−φ)〉Ω)

+
〈

G0
1+φn(1+φ),1

〉

Ω
−
〈

G0
1−φn(1−φ),1

〉

Ω
+

3ε2

8
‖∇hφ‖2

2+〈φ, f n〉Ω , (3.3)

f n :=−θ0φ̆n+1/2−
1

4
ε2∆hφn−1+∆t(−ln(1+φn)+ln(1−φn)), (3.4)

over an admissible set

Ah :=
{

φ∈Cper

∣

∣ ‖φ‖∞≤1,
〈

φ−φ0,1
〉

Ω
=0

}

⊂R
N3

.

It is clear that J n is a strictly convex function over this domain. Meanwhile, we transform
the minimization problem into an equivalent one, to facilitate later analysis:

Fn(ϕ) :=J n(ϕ+φ0)

=
1

2∆t

∥

∥ϕ+φ0−φn
∥

∥

2

L−1

M̌n+1/2

+
3ε2

8
‖∇h ϕ‖2

2

+∆t(
〈

1+ϕ+φ0,ln(1+ϕ+φ0)
〉

Ω
+
〈

1−ϕ−φ0,ln(1−ϕ−φ0)
〉

Ω
)

+
〈

G0
1+φn(1+ϕ+φ0),1

〉

Ω
−
〈

G0
1−φn(1−ϕ−φ0),1

〉

Ω
+
〈

ϕ+φ0, f n
〉

Ω
, (3.5)

defined on the admissible set

Åh :=
{

ϕ∈C̊per

∣

∣

∣
−1−φ0≤ ϕ≤1−φ0

}

⊂R
N3

.

A minimizer ϕ∈ Åh of Fn is equivalent to the minimizer of φ := ϕ+φ0∈Ah for J n. Next,

we aim to prove that there exists a minimizer of Fn over the domain Åh. For a sufficiently
small δ, the following set is introduced

Åh,δ :=
{

ϕ∈C̊per

∣

∣

∣
δ−1−φ0≤ ϕ≤1−δ−φ0

}

⊂R
N3

. (3.6)

Since Åh,δ is a bounded, compact, and convex set in the subspace C̊per, there exists a (not

necessarily unique) minimizer of Fn over Åh,δ. The key point of the positivity analysis is
that such a minimizer could not occur on the boundary of Åh,δ, if δ is sufficiently small.
In fact, the boundary of Åh,δ refers to ψ∈ Åh,δ with

∥

∥ψ+φ0

∥

∥

∞
=1−δ.

We aim to derive a contradiction. Suppose that the minimizer ϕ⋆ of Fn occurs at
a boundary point of Åh,δ. In turn, there is at least one grid point ~α0 = (i0, j0,k0) with
|ϕ⋆

~α0
+φ0|=1−δ. Without loss of generality, it is assumed that ϕ⋆

~α0
+φ0= δ−1, so that the

grid function ϕ⋆ has a global minimum at~α0. We also assume that~α1=(i1, j1,k1) is a grid
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point at which ϕ⋆ achieves its maximum. On the other hand, the identity ϕ⋆=0 implies
that

1−δ≥ ϕ⋆
~α1
+φ0≥φ0.

Meanwhile, since Fn is smooth over Åh,δ, the directional derivative is calculated as

dsF
n(ϕ⋆+sψ)|s=0=∆t

〈

ln(1+ϕ⋆+φ0)−ln(1−ϕ⋆−φ0),ψ
〉

Ω

+
〈

G1
1+φn(1+ϕ+φ0)−G1

1−φn(1−ϕ−φ0),ψ
〉

Ω

+〈 f n−
3

4
ε2∆h ϕ⋆,ψ〉Ω+

1

∆t
〈L−1

M̌n+1/2
(ϕ⋆−φn+φ0),ψ〉Ω.

Let δi,j denote the Kronecker delta function. We choose the direction ψ∈C̊per with ψi,j,k=
δi,i0δj,j0 δk,k0

−δi,i1 δj,j1 δk,k1
. Then the derivative becomes

1

h3
dsF

n(ϕ⋆+sψ)|s=0=∆t(ln(1+ϕ⋆
~α0
+φ0)−ln(1−ϕ⋆

~α0
−φ0)

−ln(1+ϕ⋆
~α1
+φ0)+ln(1−ϕ⋆

~α1
−φ0))

+G1
1+φn(1+ϕ⋆

~α0
+φ0)−G1

1−φn(1−ϕ⋆
~α0
−φ0)

−G1
1+φn(1+ϕ⋆

~α1
+φ0)+G1

1−φn(1−ϕ⋆
~α1
−φ0)

+( f n
~α0
− f n

~α1
)−

3

4
ε2(∆h ϕ⋆

~α0
−∆h ϕ⋆

~α1
)

+
1

∆t
(L−1

M̌n+1/2
(ϕ⋆−φn+φ0)~α0

−L−1

M̌n+1/2
(ϕ⋆−φn+φ0)~α1

). (3.7)

For simplicity, we rewrite φ⋆ := ϕ⋆+φ0. Since φ⋆
~α0

=−1+δ and φ⋆
~α1

≥ φ0, the following
inequality is valid:

ln(1+φ⋆
~α0
)−ln(1−φ⋆

~α0
)−ln(1+φ⋆

~α1
)+ln(1−φ⋆

~α1
)≤ ln

δ

2−δ
−ln

1+φ0

1−φ0

. (3.8)

Similarly, since G1
a(x) is an increasing function in terms of x (for a fixed a> 0), as given

by Lemma 2.3, the following inequalities could be derived:

G1
1+φn(1+φ⋆

~α0
)=G1

1+φn(δ)≤G1
1+φn(1+φn)= ln(1+φn)+1,

G1
1−φn(1−φ⋆

~α0
)=G1

1−φn(2−δ)≥G1
1−φn(1),

G1
1+φn(1+φ⋆

~α1
)≥G1

1+φn(1+φ0),

G1
1−φn(1−φ⋆

~α1
)≤G1

1−φn(1−φ0).

(3.9)

Since φ⋆ takes a minimum at the grid point~α0 and a maximum at the grid point~α1, we
see that φ⋆

~α0
=−1+δ≤φ⋆

i,j,k, and φ⋆
~α1
≥φ⋆

i,j,k, for any (i, j,k). This fact indicates that

∆hφ⋆
~α0
≥0, ∆hφ⋆

~α1
≤0. (3.10)
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For the force term f n at the previous time steps, the condition ‖φn‖∞,‖φn−1‖∞ <1, com-
bined with the refined bound (3.2), indicates that

| f n|≤ θ0|φ̆
n+1/2|+

1

4
ε2|∆hφn−1|+∆t(|ln(1+φn)|+|ln(1−φn)|)

≤2θ0+
1

4
ε2 ·

12

h2
+2∆t|lnδ0|

=2θ0+3ε2h−2+2∆t|lnδ0|, (3.11)

at a point-wise level. This in turn implies that

−4θ0−6ε2h−2−4∆t|lnδ0|≤ f n
~α0
− f n

~α1
≤4θ0+6ε2h−2+4∆t|lnδ0|. (3.12)

For the last two terms appearing in (3.7), we apply Lemma 2.2 to obtain (keeping in mind
that φ∗= ϕ∗+φ̄0)

−2C2≤L−1

M̌n+1/2
(φ⋆−φn)~α0

−L−1

M̌n+1/2
(φ⋆−φn)~α1

≤2C2. (3.13)

Notice that C2 has a singular dependence on ∆t and h, due to the representation for-
mula (2.8) and the fact that M0 =∆t3. As a consequence, a substitution of (3.8) – (3.13)
into (3.7) yields the following bound on the directional derivative:

1

h3
dsF

n(ϕ⋆+sψ)|s=0≤∆t
(

ln
δ

2−δ
−ln

1+φ0

1−φ0

)

+4θ0+6ε2h−2+4∆t|lnδ0|+2C2∆t−1

+ln(1+φn)+1−G1
1−φn(1)−G1

1+φn(1+φ0)+G1
1−φn(1−φ0). (3.14)

In turn, we define

D0 :=4θ0+6ε2h−2+4∆t|lnδ0|+2C2∆t−1+ln(1+φn)+1

−G1
1−φn(1)−G1

1+φn(1+φ0)+G1
1−φn(1−φ0),

a constant that will, in general, depend upon ∆t, h, δ0 and φ0. The parameter δ can be
chosen sufficiently small so that

∆t
(

ln
δ

2−δ
−ln

1+φ0

1−φ0

)

+D0<0. (3.15)

Therefore, the following inequality becomes available

1

h3
dsF

n(ϕ⋆+sψ)|s=0<0, (3.16)

provided that δ satisfies (3.15). This inequality clearly contradicts the assumption that
Fn has a minimum at ϕ⋆, due to the fact that the directional derivative is negative in a
direction pointing into the interior of Åh,δ.
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Using analogous estimates, we can also prove that, similarly, the global minimum of
Fn over Åh,δ could not occur at a boundary point ϕ⋆ such that ϕ⋆

~α0
+φ0 =1−δ, for some

~α0. The analysis could be derived in a similar fashion and the details are left to interested
readers.

A combination of these two facts reveals that, the global minimum of Fn over Åh,δ

could only possibly occur at interior point ϕ∈ (Åh,δ)
o⊂ (Åh)

o. As a result, there must be
a solution φ=ϕ+φ0∈Ah that minimizes J n over Ah, which is equivalent to the numerical
solution of (2.9), (2.10). The existence of the numerical solution is confirmed.

Furthermore, because of the strict convexity of J n over Ah, the uniqueness analysis
for this numerical solution is straightforward. This completes the proof of Theorem 3.1.

Remark 3.1. The modified Crank-Nicolson approximation to the nonlinear logarithmic
terms, namely G1

1+φn(1+φn+1)−G1
1−φn(1−φn+1), makes its inner product with φn+1−φn

exactly the difference of the logarithmic energies between two consecutive time steps.
This fact will greatly facilitate the energy stability analysis, as we will see in the next
section. Meanwhile, it is observed that, the proposed nonlinear approximation terms,
G1

1+φn(1+φn+1) and −G1
1−φn(1−φn+1), do not indicate a singularity as φn+1 →−1 or

1, respectively. Such a feature leads to a difficulty of a theoretical justification for the
positivity-preserving property. To overcome this difficulty, a nonlinear regularization
term, in the form of ∆t(ln(1±φn+1)−ln(1±φn)), is added in the numerical scheme. Al-
though this artificial regularization term is of order O(∆t2), a singularity becomes avail-
able as φn+1→−1 or 1. This singularity plays and important role in the theoretical justi-
fication of the positivity-preserving property for the proposed numerical scheme (2.9).

Remark 3.2. It is observed that, a point-wise positivity of the numerical mobility func-
tion, namely, M̌n+1/2 >0, is needed to ensure the elliptic operator nature of L−1

M̌n+1/2
(φ⋆−

φn), so that the estimate (3.13) becomes valid. If a zero value is reached for the numeri-
cal value of M̌n+1/2 at a numerical grid point, the theoretical analysis would face certain
difficulty. On the other hand, there are some physical examples with a possible degen-
erate mobility function, such as M(φ)=γ(1+φ)(1−φ). In fact, this difficulty could be
overcome in the numerical design, such as the positivity-regularization formula (2.11),
in which both the second order numerical accuracy and a point-wise positivity of the
mobility function have been preserved, even if the mobility function may be degenerate.

4 Energy stability estimate and uniform in time H1
h bound

The discrete energy is defined as follows: for any φ∈Cper, −1≤φ≤1,

Eh(φ) := 〈1+φ,ln(1+φ)〉Ω+〈1−φ,ln(1−φ)〉Ω+
ε2

2
‖∇hφ‖2

2−
θ0

2
‖φ‖2

2 . (4.1)
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We also defined a modified energy via

Ẽh(φ,ψ) :=Eh(φ)+
1

4
‖φ−ψ‖2

2+
ε2

8
‖∇h(φ−ψ)‖2

2, (4.2)

for any φ∈Cper, with −1≤φ,≤1 and any ψ∈Cper. A modified energy stability is stated in
the following theorem.

Theorem 4.1. For the unique numerical solution of (2.9)-(2.10), the following dissipation prop-
erty is valid:

Ẽh(φ
n+1,φn)≤ Ẽh(φ

n,φn−1). (4.3)

Thus, for any m≥0,

Eh(φ
m)≤ Ẽh(φ

m,φm−1)≤···≤ Ẽh(φ
1,φ0)≤ Ẽh(φ

0,φ−1)=Eh(φ
0)≤C3,

where C3>0 is independent of h, if we take φ−1=φ0. In addition, since

−
θ0

2
|Ω|+

ε2

2
‖∇hφm‖2

2≤Eh(φ
m),

it follows that

‖∇hφm‖2≤

√

2C3+θ0|Ω|

ε
=: C4, ∀m∈N. (4.4)

Proof. Taking a discrete inner product of (2.9) with µn+1/2 leads to

〈φn+1−φn,µn+1/2〉Ω+
[

M̌n+1/2∇hµn+1/2,∇hµn+1/2

]

Ω
=0. (4.5)

In the expansion of 〈φn+1−φn,µn+1/2〉Ω, the following equalities and inequalities are avail-
able for the inner products associated with the nonlinear logarithmic terms:

I1 :=
〈

φn+1−φn,
F(1+φn+1)−F(1+φn)

φn+1−φn

〉

Ω

=
〈

1+φn+1,ln(1+φn+1)
〉

Ω
−〈1+φn,ln(1+φn)〉Ω , (4.6)

I2 :=
〈

φn+1−φn,
F(1−φn+1)−F(1−φn)

φn+1−φn

〉

Ω

=
〈

1−φn+1,ln(1−φn+1)
〉

Ω
−〈1−φn,ln(1−φn)〉Ω , (4.7)

I3 :=〈φn+1−φn,ln(1+φn+1)−ln(1+φn)〉Ω≥0, (4.8)

I4 :=〈φn+1−φn,−ln(1−φn+1)+ln(1−φn)〉Ω≥0. (4.9)
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For the surface diffusion and expansive terms, the following estimates could be derived:

I5 :=
〈

φn+1−φn,−∆h

(3

4
φn+1+

1

4
φn−1

)〉

Ω

=
〈

∇h(φ
n+1−φn),∇h

(3

4
φn+1+

1

4
φn−1

)〉

Ω

=
1

2
〈∇h(φ

n+1−φn),∇h(φ
n+1+φn)〉Ω+

1

4
〈∇h(φ

n+1−φn),∇h(φ
n+1−2φn+φn−1)〉Ω

≥
1

2
(‖∇hφn+1‖2

2−‖∇hφn‖2
2)+

1

8
(‖∇h(φ

n+1−φn)‖2
2−‖∇h(φ

n−φn−1)‖2
2), (4.10)

I6 :=
〈

φn+1−φn,−
3

2
φn+

1

2
φn−1

〉

Ω

=〈φn+1−φn,−φn〉Ω−
1

2
〈φn+1−φn,φn−φn−1〉Ω

≥−
1

2
(‖φn+1‖2

2−‖φn‖2
2)+

1

4
(‖φn+1−φn‖2

2−‖φn−φn−1‖2
2). (4.11)

Finally, a substitution of (4.6)-(4.11) into (4.5) yields (4.3), so that the modified energy
stability is proved.

The discrete H1 estimate (4.4) comes from a direct energy inequality, − θ0
2 |Ω|+

ε2

2 ‖∇hφm‖2
2≤Eh(φ

m), for any m≥0. The proof of Theorem 4.1 is complete.

Remark 4.1. There have been very recent works that utilize explicit numerical approxi-
mations for the singular parts. In [45], a first order accurate numerical scheme is consid-
ered, with fully explicit approximation for the logarithmic terms. The energy stability of
such a numerical scheme relies on a separation property of the numerical solution for the
2-D Cahn-Hilliard flow with Flory-Huggins energy (1.1), i.e., a uniform distance between
the solution and the singular limit values of 1 and -1. In fact, such a separation property
has been theoretically derived for the PDE solution [1, 4, 18, 28, 33, 34, 52].

The analysis in [45] turns out to be more involved than the present work. A time
step constraint is needed to ensure the energy stability and the positivity property of the
phase variables for this linear numerical scheme, and such a constraint depends on ε, θ0,
as well as the uniform distance between the PDE solution away from the singular limit
values. For most practically interesting problems, such a uniform distance is quite small,
which may lead to a severe time step constraint. In comparison, although the proposed
numerical scheme (2.9), (2.10) is highly nonlinear, the positivity-preserving property and
energy stability holds for any time-step size. Moreover, an efficient iteration solver will
be introduced in the later sections, in which the computational cost is comparable to a
few standard Poisson solvers, as demonstrated by extensive numerical experiments. As
a result, both the theoretical properties and the efficiency/accuracy have been validated
for the proposed second order scheme (2.9), (2.10) in this article.

Remark 4.2. The modified Crank-Nicolson approximation to the logarithmic nonlinear
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term,
F(1±φn+1)−F(1±φn)

φn+1−φn
,

plays an essential role in the energy stability analysis. Such a modified Crank-Nicolson
approximation has been successfully applied to various gradient flows, such as the poly-
nomial approximation of the Cahn-Hilliard equation [10,17,21,22,37,38], phase field crys-
tal [5,6,24,40], epitaxial thin film growth [12,59], nonlinear model [35,36], et cetera. Mean-
while, all these existing works have been focused on an energy potential well-defined
over the whole space, while the proposed scheme (2.9) is the first work to theoretically
justify the energy stability of a modified Crank-Nicolson method to a gradient flow with
singular logarithmic energy potential.

Remark 4.3. Besides the Crank-Nicolson approach employed here, there have been a few
recent works of the second order BDF schemes for certain gradient flow models, such as
polynomial version of Cahn-Hilliard [14, 15, 48, 64], epitaxial thin film equation [32, 39,
46, 51], square phase field crystal [16], in which the energy stability was theoretically
established. A successful extension to the Cahn-Hilliard equation with Flory-Huggins
energy has also been reported in [13, 27].

Meanwhile, most of these BDF-type schemes are applied to constant-mobility gradi-
ent flows, while a theoretical justification of energy stability for the non-constant mobility
case will face serious difficulty, due to the long-stencil temporal discretization involved.
Some other high-order accurate and energy stable numerical approaches, such as the
variational extrapolation method [67], have been primarily focused on the case of con-
stant mobility and L2 gradient flow structure, while an extension to an H−1 gradient flow
with nonlinear mobility function is always a more challenging issue. In comparison, for
the proposed scheme (2.9), both the positivity-preserving property and the energy sta-
bility could be theoretically justified, which comes from the modified Crank-Nicolson
framework

5 Optimal rate convergence analysis

For simplicity of presentation, we assume a constant mobility, M≡1, in this section. The
convergence analysis for the non-constant mobility flow is more complicated. But, it can
be handled, with more technical detail, using the techniques developed for the Poisson-
Nernst-Planck system [50].

Denote by Φ the exact solution for the Cahn-Hilliard flow (1.2)-(1.3). With sufficiently
regular initial data, it is assumed that the exact solution has regularity of class R:

Φ∈R :=H3
(

0,T;Cper(Ω)
)

∩H2
(

0,T;C2
per(Ω)

)

∩L∞
(

0,T;C6
per(Ω)

)

. (5.1)

In addition, we assume that the following separation property is valid for the exact solu-
tion:

1+Φ≥ǫ0, 1−Φ≥ǫ0, at the point-wise level, for some ǫ0 >0. (5.2)
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Subsequently, we introduce ΦN(·,t) :=PN Φ(·,t), the Fourier projection of the exact solu-
tion into BK, the space of trigonometric polynomials of degree to and including K. The
following projection approximation is standard: for any Φ∈ L∞(0,T;Hℓ

per(Ω)), there is a
constant, C>0, independent of N,

‖ΦN−Φ‖L∞(0,T;Hk)≤Chℓ−k‖Φ‖L∞(0,T;Hℓ) , ∀ 0≤ k≤ ℓ. (5.3)

In fact, this Fourier projection estimate does not preserve the positivity of the variables.
However, we could take h sufficiently small (that is, N sufficiently large) so that

1+ΦN , 1−ΦN ≥
1

2
ǫ0. (5.4)

By Φm
N , Φm we denote ΦN(·,tm) and Φ(·,tm), respectively, with tm =m·∆t. In turn, the

mass conservative property is available at the discrete level, since ΦN ∈BK:

Φm
N =

1

|Ω|

∫

Ω
ΦN(·,tm)dx=

1

|Ω|

∫

Ω
ΦN(·,tm−1)dx=Φm−1

N , ∀ m∈N. (5.5)

On the other hand, we notice that the numerical solution of (2.9), (2.10) is also mass
conservative at a discrete level, as given by (3.1). For the initial data, we use

φ−1
i,j,k=φ0

i,j,k :=ΦN(pi,pj,pk,t=0). (5.6)

Since we use the Fourier projection, it follows that, for any k∈N,

〈

φk,1
〉

Ω
= ···=

〈

φ0,1
〉

Ω
=(ΦN(·,0),1)=(Φ(·,0),1)= ···=(Φ(·,tk),1).

The error grid function is defined as

φ̃m :=Φm
N−φm, ∀ m≥0. (5.7)

As a result, it follows that φ̃m =0, for any m≥0, so that the discrete norm ‖·‖−1,h is well
defined for the error grid function.

In fact, although the initialization (5.6) is only first order accurate for the phase vari-
able at a “ghost” temporal instant t−1, this approximation does not affect the overall sec-
ond order accuracy in time. Since the Crank-Nicolson temporal stencil is only involved
with φn+1 and φn, we see that φ−1 does not enter into the temporal stencil in the first time
step. Instead, it only enters into the numerical scheme as a right hand side force term. In
turn, because of the ∆t term on the denominator in the temporal stencil, the initial time
step algorithm still gives an O(∆t2) approximation to φ1. Furthermore, since φ1 is an
O(∆t2) approximation to Φ1, the numerical scheme at the rest time steps corresponds to
second order temporal truncation errors.
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Theorem 5.1. Given initial data Φ(·,t = 0) ∈ C6
per(Ω), suppose the exact solution for Cahn-

Hilliard equation (1.2)-(1.3) is of regularity class R. Suppose that ∆t and h are sufficiently small
and satisfy the linear refinement condition C5h≤∆t≤C6h, for some 0<C5≤C6. Then

‖φ̃n‖−1,h+
(

ε2∆t
n

∑
m=1

‖∇hφ̃m‖2
2

)1/2
≤C(∆t2+h2), (5.8)

for some constant C>0 that is independent of n, ∆t, and h.

Proof. A careful consistency analysis reveals the following truncation error estimate:

Φn+1
N −Φn

N

∆t
=∆h

{

F(1+Φn+1
N )−F(1+Φn

N)

Φn+1
N −Φn

N

+
F(1−Φn+1

N )−F(1−Φn
N)

Φn+1
N −Φn

N

+∆t(ln(1+Φn+1
N )−ln(1+Φn

N)−ln(1−Φn+1
N )+ln(1−Φn

N))

−θ0

(

3

2
Φn

N−
1

2
Φn−1

N

)

−ε2∆h

(

3

4
Φn+1

N +
1

4
Φn−1

N

)

}

+τn, (5.9)

with ‖τn‖−1,h≤C(∆t2+h2). Subtracting the numerical scheme (2.9) from (5.9) results in

φ̃n+1−φ̃n

∆t
=∆h

{

(N n
1 +N n

2 +∆t(N n
3 +N n

4 +N n
5 +N n

6 )

−θ0

(

3

2
φ̃n−

1

2
φ̃n−1

)

−ε2∆h

(

3

4
φ̃n+1+

1

4
φ̃n−1

)

}

+τn, (5.10)

where

N n
1 :=

F(1+Φn+1
N )−F(1+Φn

N)

Φn+1
N −Φn

N

−
F(1+φn+1)−F(1+φn)

φn+1−φn
,

N n
2 :=

F(1−Φn+1
N )−F(1−Φn

N)

Φn+1
N −Φn

N

−
F(1−φn+1)−F(1−φn)

φn+1−φn
,

N n
3 := ln(1+Φn+1

N )−ln(1+φn+1),

N n
4 :=−ln(1+Φn

N)+ln(1+φn),

N n
5 :=−ln(1−Φn+1

N )+ln(1−φn+1),

N n
6 := ln(1−Φn

N)−ln(1−φn).

To proceed with the nonlinear analysis, we make the following a-priori assumption at
the previous time step:

‖φ̃n‖2 ≤∆t
13
8 +h

13
8 . (5.11)
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Such an a-priori assumption will be recovered by the optimal rate convergence analysis
at the next time step, as will be demonstrated later. In turn, a discrete ‖·‖∞ bound is
available for the numerical error function at the previous time step, with the help of
inverse inequality:

‖φ̃n‖∞ ≤
C‖φ̃n‖2

h
3
2

≤
C(∆t

13
8 +h

13
8 )

h
3
2

≤C(∆t
1
8 +h

1
8 )≤

ǫ0

4
, (5.12)

provided that ∆t and h are sufficiently small. Also notice that the linear refinement con-
straint C5h≤∆t≤C6h has been used. In turn, the separation property is also valid for the
numerical solution at the previous time step:

1+φn ≥1+Φn
N−‖φ̃n‖∞ ≥

ǫ0

4
, 1−φn ≥1−Φn

N−‖φ̃n‖∞ ≥
ǫ0

4
, (5.13)

where the separation estimate (5.4) has been utilized.

First, (−∆h)
−1φ̃m is well-defined for any m≥0, since φ̃m has zero-mean. In turn, taking

a discrete inner product with (5.10) by 2(−∆h)
−1φ̃n+1 gives

1

∆t

(

‖φ̃n+1‖2
−1,h−‖φ̃n‖2

−1,h+‖φ̃n+1−φ̃n‖2
−1,h

)

+ε2

〈

∇hφ̃n+1,∇h

(

3

2
φ̃n+1+

1

2
φ̃n−1

)〉

Ω

+2
2

∑
j=1

〈N n
j ,φ̃n+1〉Ω+2∆t

6

∑
j=3

〈N n
j ,φ̃n+1〉Ω

=θ0〈3φ̃n−φ̃n−1,φ̃n+1〉Ω+2〈τn,φ̃n+1〉−1,h. (5.14)

The estimate for the term associated with the surface diffusion could be carried out as
follows:

〈

∇hφ̃n+1,∇h

(

3

2
φ̃n+1+

1

2
φ̃n−1

)〉

Ω

=
3

2
‖∇hφ̃n+1‖2

2+
1

2
〈∇hφ̃n+1,∇hφ̃n−1〉Ω

≥
3

2
‖∇hφ̃n+1‖2

2−
1

4
(‖∇hφ̃n+1‖2

2+‖∇hφ̃n−1‖2
2)

=
5

4
‖∇hφ̃n+1‖2

2−
1

4
‖∇hφ̃n−1‖2

2. (5.15)

For the inner product associated with the expansive part, the following inequality is
available:

θ0〈3φ̃n−φ̃n−1,φ̃n+1〉Ω≤ θ0‖3φ̃n−φ̃n−1‖−1,h‖∇hφ̃n+1‖2

≤ θ2
0ε−2‖3φ̃n−φ̃n−1‖2

−1,h+
ε2

4
‖∇hφ̃n+1‖2

2

≤ θ2
0ε−2(12‖φ̃n‖2

−1,h+4‖φ̃n−1‖2
−1,h)+

ε2

4
‖∇hφ̃n+1‖2

2. (5.16)
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The term associated with the truncation error can be controlled in a standard way:

2〈τn,φ̃n+1〉−1,h≤2‖τn‖−1,h‖φ̃n+1‖−1,h≤‖τn‖2
−1,h+‖φ̃n+1‖2

−1,h. (5.17)

The rest work will be focused on the nonlinear error estimates. For the error term N n
1 ,

we begin with the following observation: we can write N n
1 =N n

11+N n
12, where

N n
11=G1

1+φn(1+Φn+1
N )−G1

1+φn(1+φn+1),

N n
12=G1

1+Φn+1
N

(1+Φn
N)−G1

1+Φn+1
N

(1+φn),
(5.18)

and G1
a(x) is as defined in (2.12). Since G1

a(x) is a monotonically increasing function of
x>0 (Lemma 2.3), we see that

〈N n
11,φ̃n+1〉Ω= 〈G1

1+φn(1+Φn+1
N )−G1

1+φn(1+φn+1),Φn+1
N −φn+1〉Ω≥0. (5.19)

For the N n
12 error term, we apply the intermediate value theorem to obtain

N n
12=G1

1+Φn+1
N

(1+Φn
N)−G1

1+Φn+1
N

(1+φn)

=(G1
1+Φn+1

N
)′(η)(Φn

N−φn), (5.20)

for some η that is between 1+Φn
N and 1+φn. Meanwhile, by property (3) in Lemma 2.3,

we conclude that

(G1
1+Φn+1

N
)′(η)=

1

2ξ1
, (5.21)

for some ξ1 that is between 1+Φn+1
N and η. Now, since ξ1 is between 1+Φn+1

N and η, and
since η is between 1+Φn

N and 1+φn, the following bound is available

∣

∣

∣

∣
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∣
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∣
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,
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1+φn

}

≤
4

ǫ0
, (5.22)

where the separation properties (5.4) and (5.13) have been recalled. Then we arrive at

|N n
12|=

∣

∣

∣
(G1

1+Φn+1
N

)′(η)
∣

∣

∣
·|φ̃n|=

∣

∣

∣

∣

1

2ξ1

∣

∣

∣

∣

·|φ̃n|≤
2

ǫ0
|φ̃n|. (5.23)

Based on this point-wise bound, the following inequality is available

〈N n
12,φ̃n+1〉Ω≥−

2

ǫ0
|〈φ̃n,φ̃n+1〉Ω|≥−

1

ǫ0
(‖φ̃n‖2

2+‖φ̃n+1‖2
2). (5.24)

Subsequently, a combination of (5.19) and (5.24) yields

〈N n
1 ,φ̃n+1〉Ω≥−

1

ǫ0
(‖φ̃n‖2

2+‖φ̃n+1‖2
2). (5.25)
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The estimate for the N2 term could be similarly derived; the technical details are left to
interested readers:

〈N n
2 ,φ̃n+1〉Ω≥−

1

ǫ0
(‖φ̃n‖2

2+‖φ̃n+1‖2
2). (5.26)

For the nonlinear inner product associated with the artificial regularization, the fact that
−1<φn+1<1, −1<Φn+1

N <1 (at a point-wise level) yields the following results:

〈N n
3 ,φ̃n+1〉Ω= 〈ln(1+Φn+1

N )−ln(1+φn+1),φ̃n+1〉Ω≥0, (5.27)

〈N n
5 ,φ̃n+1〉Ω=−〈ln(1−Φn+1

N )−ln(1−φn+1),φ̃n+1〉Ω≥0, (5.28)

due to the fact that the natural logarithm is a monotonically increasing function. The
estimate for the N n

4 term is similar to that of N n
12:

N n
4 =−ln(1+Φn

N)+ln(1+φn)=−
1

ξ2
φ̃n, (5.29)

for some ξ2 between 1+Φn
N and 1+φn. But
∣

∣
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. (5.30)

Thus,

|N n
4 |=

∣

∣

∣

∣

1

ξ2

∣
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∣

∣

·|φ̃n|≤
4

ǫ0
|φ̃n|. (5.31)

We conclude that

〈N n
4 ,φ̃n+1〉Ω≥−

4

ǫ0
|〈φ̃n,φ̃n+1〉Ω|≥−

2

ǫ0
(‖φ̃n‖2

2+‖φ̃n+1‖2
2). (5.32)

The lower bound for 〈N n
6 ,φ̃n+1〉Ω could be derived in the same fashion:

〈N n
6 ,φ̃n+1〉Ω≥−

2

ǫ0
(‖φ̃n‖2

2+‖φ̃n+1‖2
2). (5.33)

Using estimates (5.15)-(5.17), (5.25)-(5.28), and (5.32) and (5.33) in (5.14) yields

1
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−1,h,

(5.34)

provided that ∆t ≤ 1
4 . Moreover, for the two error terms ‖φ̃n‖2

2, ‖φ̃n+1‖2
2, the following

bounds are available:

3

ǫ0
‖φ̃k‖2

2≤
3

ǫ0
‖φ̃k‖−1,h‖∇hφ̃n‖2≤9ǫ−2

0 ε−2‖φ̃k‖2
−1,h+

ε2

4
‖∇hφ̃k‖2

2, k=n,n+1. (5.35)
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The combination of the last estimate with (5.34) leads to

1

∆t
(‖φ̃n+1‖2

−1,h−‖φ̃n‖2
−1,h)+ε2

(1

2
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4
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≤(ε−2(12θ2
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0 )+1)(‖φ̃n+1‖2
−1,h+‖φ̃n‖2

−1,h+‖φ̃n−1‖2
−1,h)+‖τn‖2

−1,h. (5.36)

As a result, an application of a discrete Gronwall inequality results in the desired conver-
gence estimate:

‖φ̃n+1‖−1,h+
(

ε2∆t
n+1

∑
k=0

‖∇hφ̃m‖2
2

)1/2
≤C(∆t2+h2), (5.37)

where C>0 is independent of ∆t, h, and n, due to the fact that ‖τn‖−1,h≤C(∆t2+h2).
Finally, we can recover the a-priori assumption (5.11) using the error estimate (5.37).

Specifically, since

‖φ̃n+1‖−1,h ≤C(∆t2+h2),

‖∇hφ̃n+1‖2≤
C(∆t2+h2)

∆t
1
2

≤C(∆t
3
2 +h

3
2 ),

it follows that

‖φ̃n+1‖2≤‖φ̃n+1‖
1
2

−1,h‖∇hφ̃n+1‖
1
2
2 ≤C(∆t

7
4 +h

7
4 )≤∆t

13
8 +h

13
8 , (5.38)

provided that ∆t and h are sufficiently small and the linear refinement constraint, C5h≤
∆t ≤ C6h holds. Therefore, an induction analysis could be applied. This completes the
proof of Theorem 5.1.

6 Numerical solver: Preconditioned steepest descent iteration

A preconditioned steepest descent (PSD) iteration algorithm is used to implement the
proposed numerical scheme (2.9), (2.10), following the practical and theoretical frame-
work in [31]. As proved in the positivity-preserving analysis, the numerical solution
of (2.9) can be recast as a minimization of the discrete convex energy functional (3.3),
which becomes the discrete variation of (3.3) set equal to zero: Nh[φ]= f n , where

Nh[φ] :=∆t(ln(1+φ)−ln(1−φ))+G1
1+φn(1+φ)−G1

1−φn(1−φ)

+ f n−
3

4
ε2∆hφ+

1

∆t
L−1

M̌n+1/2
(φ−φn). (6.1)

The essential idea of the PSD solver is to use a linearized version of the nonlinear operator
as a pre-conditioner. Specifically, the preconditioner, Lh : C̊per→C̊per, is defined as

Lh[ψ] :=
1

∆t
(−∆h)

−1ψ+2ψ−
3

4
ε2∆hψ,
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and is a positive, symmetric operator. Specifically, this “metric” is used to find an ap-
propriate search direction for the steepest descent solver [31]. Given the current iterate
φn∈Cper, we define the following search direction problem: find dn ∈Cper such that

Lh[dn]= rn−rn, rn := f n−Nh[φn],

where rn is the nonlinear residual of the nth iterate φn. Of course, this equation can be
efficiently solved using the Fast Fourier Transform (FFT). Subsequently, the next iterate
is obtained as

φn+1 :=φn+αndn, (6.2)

where αn ∈R is the unique solution to the steepest descent line minimization problem

αn :=argmin
α∈R

J [φn+αdn]=argzero
α∈R

〈Nh[φn+αdn]− f n,dn〉Ω . (6.3)

Following similar techniques reported in [31], a theoretical analysis ensures a geometric
convergence of the iteration sequence. Also see [11, 16, 30, 32] for the applications of the
PSD solver to various gradient flow models. In fact, although J is only defined over grid
functions with point-wise positive values for 1+φ and 1−φ, we notice its convexity in
terms of φ, as well as the singular nature of the logarithmic function as 1+φ or 1−φ ap-
proaches the limiting value of 0. These features imply that the minimization problem (6.3)
has a unique solution for α based on a similar argument as in the proof of Theorem 3.1.

7 Numerical results

7.1 Convergence tests for the numerical scheme

In this subsection we perform a numerical accuracy check for the proposed numerical
scheme (2.9)-(2.10). The computational domain is chosen as Ω = (0,1)2, and the exact
profile for the phase variable is set to be

Φ(x,y,t)=
1

π
sin(2πx)cos(2πy)cos(t). (7.1)

In particular, we see that the 1+Φ and 1−Φ stay positive at a point-wise level, so that
the computation will not cause any singularity issue. To make Φ satisfy the original PDE
(1.2)-(1.3), we have to add an artificial, time-dependent forcing term. Then the proposed
scheme (2.9)-(2.10) can be implemented to solve for (1.2). In addition, we have tested
both the constant mobility flow, (a) M(φ)≡1, and (b) the flow with the mobility function
given by

M(φ)=
(1

2
+

1

2
(1+φ)(1−φ)

)−1
. (7.2)

Notice that this mobility function has a uniform lower bound M(φ)≥1, for −1<φ<1.
In the practical computations, a more singular lower bound could also be taken, such as
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Figure 1: The discrete L2
h and L∞

h numerical errors vs. spatial resolution N for N = 48 : 16 : 192, and the

time step size is set as ∆t= 1
2 h. The numerical results are obtained by the computation using the numerical

scheme (2.9)-(2.10), and the surface diffusion parameter is taken to be ε=0.5. (a) The results with a constant
mobility M(φ)≡1. (b) The results with the mobility function given by (7.2). In both cases, the data lie roughly

on curves CN−2, for appropriate choices of C, confirming the full second-order accuracy of the scheme, in both
time and space.

M(φ) = γ(1+φ)(1−φ), while more PSD iteration steps are needed to ensure a perfect
iteration convergence at each time step.

In the accuracy test for the numerical scheme, we set the time size as ∆t = 1
2 h, with

h = 1
N , so that the second order accuracy in both time and space could be confirmed.

The final time set as by T = 1, the surface diffusion parameter is given by ε= 0.5, while
the expansive parameter is set as θ0 = 2. A sequence of spatial resolutions are taken as
N = 48 : 16 : 192. The expected temporal numerical accuracy assumption e=C(∆t2+h2)
indicates that ln|e|=lnC−2lnN, so that we plot ln|e| vs. lnN to demonstrate the temporal
convergence order. The numerical errors for both the constant mobility flow and variable
mobility case (7.2) are displayed in the two plots in Fig. 1. In both cases, the fitted line
shows an approximate slope of −1.9980, which verifies the second order accuracy, in both
time and space.

7.2 Numerical simulation of coarsening processes

The logarithmic nonlinear term associated with the Flory-Huggins potential gives pref-
erence to many small structures. In this subsection, we perform a two-dimensional nu-
merical simulation showing the coarsening process. The computational domain is set as
Ω=(0,1)2, the expansive parameter is given by θ0=3, and the interface width parameter
is taken as ε=0.005. The initial data are given by

φ0
i,j=0.1+0.05·(2ri,j−1), ri,j are uniformly distributed random numbers in [0,1]. (7.3)



W. Chen et al. / Commun. Comput. Phys., 31 (2022), pp. 60-93 83

(a) t=0.05, 0.1 (b) t=0.2, 0.5

(c) t=1, 2 (d) t=3, 15

Figure 2: (Color online.) Snapshots of the phase variable φ at the indicated time instants over the domain

Ω=(0,1)2, ε=0.005, θ0=3, with a constant mobility M≡1. Finally, there is a single structure at t=15.

The proposed numerical scheme (2.9)-(2.10) is implemented for this simulation. For the
temporal step size ∆t, we use increasing values of ∆t in the time evolution: ∆t=5×10−5

on the time interval [0,1], ∆t= 10−4 on the time interval [1,3], ∆t= 2×10−4 on the time
interval [3,7] and ∆t=5×10−4 on the time interval [7,15]. Whenever a new time step size
is applied, we initiate the two-step numerical scheme by taking φ−1=φ0, with the initial
data φ0 given by the final time output of the last time period. The time snapshots of the
evolution by using ε=0.005 are presented in Fig. 2, with significant coarsening observed
in the system. At early times many small structures are present. At the final time, t=15,
a single structure emerges, and further coarsening is not possible.

To illustrate the phase separation property for the two-dimensional Cahn-Hilliard
flow, we display the maximum and minimum values of the phase variable at such a time
sequence in Table 1. Although these maximum and minimum values are close to the
singular limit values of 1 and −1, a safe distance, with an order of O(10−1), is clearly
observed in the numerical simulation. This numerical result also agrees with the phase
separation estimate established in the existing theoretical analysis [2, 20, 28, 53].

Moreover, the long time characteristics of the solution, especially the energy decay
rate, are of interest to material scientists. For the epitaxial thin film growth and polynomial-
approximation Cahn-Hilliard gradient models, certain theoretical analysis [44] has pro-
vided an upper bound of the energy decay rate as t−1/3, and some numerical experiments
have also demonstrated such a scaling law [15, 17]. However, for the Cahn-Hilliard flow
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Table 1: The maximum and minimum values of the phase variable φ at the indicated time instants over the

domain Ω=(0,1)2, ε=0.005, θ0 =3, with a constant mobility M≡1.

Time instants the maximum value the minimum value

t1=0.05 0.8644627 -0.8799553

t2=0.1 0.8607157 -0.8805562

t3=0.2 0.8616231 -0.8661328

t4=0.5 0.8554958 -0.8637321

t5=1 0.856433 -0.8630059

t6=2 0.8566435 -0.8661082

t7=3 0.8564997 -0.8619818

t8=15 0.8572049 -0.8599514

10 -2 10 -1 100 101

10 -2

10 -1

Figure 3: Log-log plot of the temporal evolution the energy Eh for ε= 0.005, θ0 = 3, with a constant mobility

M≡1. The energy decreases like aetbe until saturation. The red lines represent the energy plot obtained by the
simulations, while the straight lines are obtained by least squares approximations to the energy data. The least
squares fit is only taken for the linear part of the calculated data, only up to about time t=100. The fitted line
has the form aetbe , with ae =0.01474, be =−0.3460.

with Flory-Huggins logarithmic energy potential, such a theoretical justification has not
been available yet. In this article, we provide some numerical evidences on this issue.
Fig. 3 presents the log-log plot for the energy versus time, with the given physical pa-
rameters, in which the discrete Eh is defined as (4.1). The detailed scaling “exponent” is
obtained using least squares fits of the computed data up to time t=100. A clear obser-
vation of the aet

be scaling law can be made, with ae =0.01474, be =−0.3460. It is amazing
to obtain an energy dissipation scaling index for the Flory-Huggins Cahn-Hilliard flow
in the long time numerical simulation, which is close to the t−1/3 scaling observed in the
polynomial approximation model.
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(a) t=0.05, 0.1 (b) t=0.2, 0.5

(c) t=1, 2 (d) t=3, 7

Figure 4: (Color online.) Snapshots of the phase variable φ at the indicated time instants over the domain

Ω=(0,1)2, ε= 0.005, θ0 = 3, with the solution-dependent mobility (7.2). Finally, there is a single structure at
t=7.

To demonstrate the robustness of the proposed numerical scheme (2.9)-(2.10) , we
have also performed a numerical simulation with a solution-dependent mobility func-
tion (7.2), using the same random initial data (7.3) and the physical parameters: Ω =
(0,1)2, ε=0.005, and θ0=3. For the solution-dependent mobility simulation, we use simi-
lar increasing values of the temporal time step ∆t: ∆t=5×10−5 on the time interval [0,1],
∆t = 10−4 on the time interval [1,7]. The time snapshots of the evolution by using are
presented in Fig. 4, with significant coarsening observed in the system. At early times
many small structures are present. More importantly, with the solution-dependent mo-
bility function, it seems that the coarsening process is faster than the constant mobility
case. At the final time, t=7, a single structure emerges, in comparison with the final time
t=15 in the constant mobility case.

Similarly, the maximum and minimum values of the phase variable at such a time se-
quence is displayed in Table 2. Again, a safe distance, with an order of O(10−1), is clearly
observed between the numerical solution and the singular limit values, and this numer-
ical result agrees with the existing theoretical analysis of the phase separation estimate
for the two-dimensional Cahn-Hilliard flow.

Fig. 5 presents the log-log plot for the energy versus time, with the given physical
parameters, using the solution-dependent mobility function (7.2). The coarsening process
is similar to the constant-mobility case, while the time scale to reach the steady state
is little shorter. A scaling law of aetbe scaling law is also available, with ae = 0.01406,
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Table 2: The maximum and minimum values of the phase variable φ at the indicated time instants over the

domain Ω=(0,1)2, ε=0.005, θ0 =3, with the solution-dependent mobility (7.2).

Time instants the maximum value the minimum value

t1=0.05 0.8619546 -0.8801955

t2=0.1 0.8627765 -0.87967

t3=0.2 0.8564543 -0.8648476

t4=0.5 0.8552953 -0.8646686

t5=1 0.8564688 -0.8692348

t6=2 0.8567849 -0.8664668

t7=3 0.8569047 -0.8611875

t8=7 0.8572687 -0.8600034
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Figure 5: Log-log plot of the temporal evolution the energy Eh for ε=0.005, θ0=3, with the solution-dependent

mobility (7.2). The energy decreases like aetbe until saturation. The red lines represent the energy plot obtained
by the simulations, while the straight lines are obtained by least squares approximations to the energy data.
The least squares fit is only taken for the linear part of the calculated data, only up to about time t=100. The
fitted line has the form aetbe , with ae =0.01406, be =−0.3503.

be=−0.3502. Such a scaling law is very close to the constant-mobility case, at least for the
coarsening process up to t=100.

Moreover, to explore the dependence of phase separation property of the numerical
solution on the expansive parameter θ0, we perform a numerical simulation with a larger
value, θ0=3.5, using the proposed numerical scheme (2.9)-(2.10). For simplicity, we take a
constant mobility M(φ)≡1, while a solution-dependent mobility flow could be similarly
computed. Due to the larger value of θ0, the gradient flow becomes more challenging
to compute, and we have to take smaller values of temporal step size ∆t to make the
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(a) t=0.05, 0.1 (b) t=0.2, 0.5

(c) t=1, 2 (d) t=3, 15

Figure 6: (Color online.) Snapshots of the phase variable φ at the indicated time instants over the domain

Ω=(0,1)2, ε=0.005, θ0=3.5, with a constant mobility M≡1. Finally, there is a single structure at t=15.

numerical solution stable: ∆t= 2×10−5 on the time interval [0,0.5], ∆t= 5×10−5 on the
time interval [0.5,1], ∆t=10−4 on the time interval [1,3], ∆t=2×10−4 on the time interval
[3,7] and ∆t = 5×10−4 on the time interval [7,15]. The time snapshots of the evolution
by using ε=0.005 are presented in Fig. 6, with more complicated structures observed in
the system. Similarly, at the final time, t = 15, a single structure emerges, and further
coarsening is not possible.

The maximum and minimum values of the phase variable, with a larger expansive
parameter θ0 = 3.5, is displayed in Table 3. Due to the larger value of the expansive pa-
rameter, we see that the maximum and minimum values are much close to the singular
limit values of 1 and -1; more precisely, the numerical solutions stays in the range of
approximately [−0.95,0.95]. On the other hand, the numerical stability and positivity-
preserving property has been well preserved in the numerical solution, although the gra-
dient flow becomes more singular. This numerical simulation provides another evidence
of the robustness of the proposed second order scheme.

Fig. 7 presents the log-log plot for the energy versus time, with ε = 0.005, θ0 = 3.5
and M(φ)≡ 1. A scaling law of aet

be scaling law is also available, with ae = 0.03306,
be =−0.2738.

With increasing values of expansive parameter θ0, we have to take smaller tempo-
ral step size is needed in the numerical solution, and a closer distance to the singular
limit values of 1 and −1 is expected. Meanwhile, the existing numerical evidence has
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Table 3: The maximum and minimum values of the phase variable φ at the indicated time instants over the

domain Ω=(0,1)2, ε=0.005, θ0 =3.5, with a constant mobility M≡1.

Time instants the maximum value the minimum value

t1=0.05 0.9259174 -0.9355966

t2=0.1 0.9213976 -0.9409601

t3=0.2 0.9216448 -0.9318636

t4=0.5 0.9222424 -0.9326683

t5=1 0.9225917 -0.9288619

t6=2 0.9229 -0.9277333

t7=3 0.9230522 -0.9274924

t8=15 0.9233391 -0.9251632

10 -2 10 -1 100 101

time

10 -2

10 -1

Figure 7: Log-log plot of the temporal evolution the energy Eh for ε=0.005, θ0 =3.5, and M≡1. The energy

decreases like aetbe until saturation. The red lines represent the energy plot obtained by the simulations, while
the straight lines are obtained by least squares approximations to the energy data. The least squares fit is only
taken for the linear part of the calculated data, only up to about time t= 100. The fitted line has the form
aetbe , with ae =0.03306, be =−0.2738.

demonstrated the efficiency of the proposed numerical scheme to preserve the positivity
property.

8 Concluding remarks

In this paper we have presented and analyzed a second order accurate, positivity pre-
serving, energy stable finite difference scheme for the Cahn-Hilliard model with a log-
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arithmic Flory Huggins energy potential. A modified Crank-Nicolson approximation,

in the form of
F(1±φn+1)−F(1±φn)

φn+1−φn is applied to the logarithmic nonlinear term, while the

expansive term is updated by a second order Adams-Bashforth explicit extrapolation
formula, and an alternate temporal stencil, with coefficient distribution of 3

4 and 1
4 at

tn+1 and tn−1, is used for the surface diffusion term. A nonlinear artificial regularization
term, in the form of ∆t(ln(1±φn+1)−ln(1±φn)), is added in the numerical scheme. Such
a regularization term ensures the positivity-preserving property for the logarithmic ar-
guments, i.e., the phase variable is always between −1 and 1, at a point-wise level. In
particular, the singular nature of the logarithmic term around the values of −1 and +1
prevents the numerical solution reaching these singular values. A modified energy sta-
bility has been theoretically justified, as a result of careful estimate. In comparison with
the BDF2 approach, the proposed Crank-Nicolson-type discretization has an advantage
to deal with the non-constant mobility case while preserving an energy stability. In ad-
dition, an optimal rate convergence in the L∞

∆t(0,T;H−1
h )∩L2

∆t(0,T;H1
h) norm has been

established, with the help of a linearized stability analysis. Some numerical results are
presented, which demonstrate the robustness and efficiency of the numerical solver. A
successful numerical simulation of the solution-dependent mobility flow makes a more
significant contribution.
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