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Abstract. We propose a mass-conservative and monotonicity-preserving characteris-
tic finite element method for solving three-dimensional transport and incompressible
Navier-Stokes equations on unstructured grids. The main idea in the proposed algo-
rithm consists of combining a mass-conservative and monotonicity-preserving mod-
ified method of characteristics for the time integration with a mixed finite element
method for the space discretization. This class of computational solvers benefits from
the geometrical flexibility of the finite elements and the strong stability of the modi-
fied method of characteristics to accurately solve convection-dominated flows using
time steps larger than its Eulerian counterparts. In the current study, we implement
three-dimensional limiters to convert the proposed solver to a fully mass-conservative
and essentially monotonicity-preserving method in addition of a low computational
cost. The key idea lies on using quadratic and linear basis functions of the mesh el-
ement where the departure point is localized in the interpolation procedures. The
proposed method is applied to well-established problems for transport and incom-
pressible Navier-Stokes equations in three space dimensions. The numerical results
illustrate the performance of the proposed solver and support its ability to yield ac-
curate and efficient numerical solutions for three-dimensional convection-dominated
flow problems on unstructured tetrahedral meshes.
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1 Introduction

Transport in incompressible flows takes place in many applications in science and engi-
neering. This class of problems occur in a many applications in nature and technology, for
example in the simulation of a heat transport in draining films [45], groundwater flows in
soils [25], and the transport of ferro-fluids under magnetic fields [4] among others. Devel-
oping robust numerical solvers for this set of problems is still challenging in the situation
of convection-dominated flows for which convection terms are manifestly more impor-
tant than the diffusion terms particularly if some nondimensional parameters attend high
values. As example of these parameters we mention the well-known Reynolds number
for the incompressible Navier-Stokes equations and the Peclet number for the convection-
diffusion equations. There exist many numerical techniques in the literature to solve the
transport and incompressible Navier-Stokes equation. In case of convection-dominated
flows, the conventional Eulerian finite element methods use up-stream weighting in their
implementations to stabilize the discretization. For example, the most popular Eulerian
finite element methods are the streamline upwind Petrov-Galerkin methods [3, 5, 11],
the Taylor-Galerkin methods [8, 12, 16] and the Galerkin/least-squares methods [3, 9, 26].
However, truncation errors generated by the time integration in these conventional Eu-
lerian methods are dominant and require Courant-Friedrichs-Lewy (CFL) stability con-
ditions which impose sever restrictions on the time steps used in the numerical com-
putations. Eulerian numerical methods for three-dimensional advection-diffusion prob-
lems have also been investigated in [10, 13, 27, 35, 48] among others. In [13], a simple
comparison between implicit and explicit finite difference methods have been studied
for a class of linear three-dimensional advection-diffusion problems with constant coef-
ficients. However, all results presented were in Cartesian meshes which restrict their ap-
plication to simple regular domains. High-order compact finite difference methods have
also been proposed in [48] for the stationary semi-linear three-dimensional advection-
diffusion equations. Eulerian-based methods for the three-dimensional incompressible
Navier-Stokes equations have also been discussed in [10,14,15,32,33,36,41,43,44] among
others. A dimension split method has been studied in [10] and a multi-stage Rosenbrock
scheme has been applied to the three-dimensional incompressible Navier-Stokes equa-
tions in [14]. However, these methods fail to resolve flow structures at high Reynolds
numbers. In [44], a multigrid adaptive unstructured finite element method has been pro-
posed for the numerical solution of the three-dimensional incompressible Navier-Stokes
equations. However, the adaptation process in this scheme requires assembling matrices
at each time step which increases the computational cost. A compact mixed finite ele-
ment method has been proposed in [43] to reduce the computing time for solving linear
algebraic equations resulted from the discretization of three-dimensional incompressible
Navier-Stokes equations but this study dealt with steady problems only. In [32, 33], a
class of finite difference schemes have been implemented for space discretization of three-
dimensional incompressible Navier-Stokes equations. However, the main drawback of
these methods is that they are not able to resolve complex flow problems in irregular
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geometries. Numerical simulation of three-dimensional incompressible flows in param-
eterized pipes has been performed in [15]. Spectral collocation methods have also been
studied in [41] for three-dimensional incompressible Navier-Stokes equations with vari-
able density. To avoid the instability problems, authors in [36] proposed a high-order
implicit preconditioned finite difference method to solve the three-dimensional incom-
pressible flows using the pseudo-compressibility approach. However, restrictions related
to the solution of nonlinear systems and Cartesian geometry decrease the efficiency of
this method.

Semi-Lagrangian methods employ the modified method of characteristics and have
been widely used in the literature to solve several problems in physical and engineer-
ing applications. Indeed, semi-Lagrangian finite element methods have been used for
example in [24] for two-dimensional convection-diffusion problems, in [22] for two-
dimensional incompressible Navier-Stokes equations, in [21] for tidal flows, and in [19]
for two-dimensional natural and mixed convection flows. The central idea in these semi-
Lagrangian finite element methods lies in reformulating the governing equations using
the Lagrangian coordinates defined by the characteristic curves associated with the con-
sidered problem. The time derivative and the advection term are combined in the total
derivative as a directional derivative along the characteristics which can be viewed as
a characteristic time-stepping algorithm. Therefore, the Lagrangian treatment in these
methods greatly reduces the time truncation errors in the Eulerian methods, see for in-
stance [18,20]. In addition, semi-Lagrangian methods allow for higher time steps exceed-
ing those permitted by the CFL stability condition in its Eulerian finite element coun-
terpart for the convection-dominated flows. A variety of semi-Lagrangian methods has
also been recently studied for three-dimensional problems in [28, 29] among others. Al-
though these methods are unconditionally stable, they suffer from the lack of preserving
the maximum/minimum principles and failure to guarantee the conservation properties.
Many research studies have been carried out in the literature to reconstruct conservative
semi-Lagrangian finite element methods. For instance, remapping the Lagrangian vol-
ume procedure using the cubic-interpolated propagation techniques has been proposed
in [46]. However, the mass in this method is considered as an additional variable and
it is used in a correction step. For solving the Vlasov-Poison system in collision-less
plasma applications, a conservative semi-Lagrangian method has also been introduced
in [6]. The conservation in this method is guaranteed by a dimensional splitting us-
ing the fifth-order finite difference Hermite weighted interpolation accounting for the
WENO limiters to control oscillations. However, this approach may become computa-
tionally very demanding for realistic applications in convection-dominated flows. Using
the adjoint property to reconstruction fully conservative methods has been investigated
in [7] among others. This method uses the concept of support operators proposed in [49]
for which the adjoint property between the continuity and advection equations is used
along with a column-balance property to enforce the conservation property for an arbi-
trary advection method. However, for the case of convection-dominated flow problems
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on unstructured grids, this method may become unstable. In [34] a time-splitting Fourier
spectral method has been proposed for solving the semi-classical Schrödinger equation
in electromagnetic applications. The main focus in this method is on the non-uniform
fast Fourier transform algorithm to interpolate Fourier series in the convection step but
the conservation property is ensured using a high-order interpolation procedure but con-
sidering periodic boundary conditions only.

The aim of the present work is to develop a robust computational method to accu-
rately approximate numerical solutions of the three-dimensional transport and incom-
pressible Navier-Stokes problems on unstructured tetrahedral meshes. The main objec-
tive is to implement a fast and accurate characteristic finite element method that satis-
fies both monotonicity and conservation properties at each time step in the computa-
tional process. The proposed characteristic finite element method can be interpreted as
a fractional-step algorithm where the convection and the diffusion parts in the consid-
ered problems are solved separately. To guarantee the monotonicity and conservation
properties at each time step, we consider limiters by combining the linear and quadratic
finite element interpolations. It should be mentioned that a similar monotone and con-
servative semi-Lagrangian finite element method has been proposed in [2] for solving
two-dimensional transport problems. It should be stressed that the main features of the
semi-Lagrangian finite element method proposed in the current work are on one hand,
the capability to satisfy the monotonicity and conservation properties allowing for nu-
merical solutions free from spurious oscillations, and on the other hand, the achievement
of strong stability and high accuracy for numerical solutions with steep gradients. The
application of this method for solving three-dimensional incompressible Navier-Stokes
equations is also carried out in the current work. The performance of the proposed
characteristic finite element method is demonstrated for several test examples of three-
dimensional transport problems including the benchmark of flow past a circular cylinder.
Numerical results presented in this study show high resolution, full conservation and
monotonicity properties of the proposed characteristic finite element method, and sup-
port the straightforward extension of the method to highly complex, physically based
three-dimensional flow problems.

This is structured as follows. The characteristic finite element method for solving
the three-dimensional transport problems is formulated in Section 2. This section in-
cludes the approximation of the characteristic curves and the implementation for trans-
port equations. Section 3 is devoted to the development of a new mass-conservative
and monotonicity-preserving characteristic finite element method. The implementation
of the proposed method for solving the incompressible Navier-Stokes equations is pre-
sented in Section 4. In Section 5, we demonstrate the numerical performance of the pro-
posed method using different examples of transport and incompressible Navier-Stokes
equations. Our new approach is demonstrated to enjoy the expected conservation and
monotonicity properties. Conclusions are included in Section 6.
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2 Characteristic finite element method

For the formulation of the characteristic finite element method we consider the following
pure transport problem

Du

Dt
:=

∂u

∂t
+v(x,t)·∇u=0, (x,t)∈Ω×(0,T],

u(x,0)=u0(x), x∈Ω,
(2.1)

where Ω is a bounded domain in R
3 with Lipschitz boundary Γ, (0,T] a time interval, x=

(x,y,z)⊤ the position variable, and ∇=
(

∂
∂x , ∂

∂y , ∂
∂z

)⊤
the gradient vector. In (2.1), v(x,t)=

(v1(x,t),v2(x,t),v3(x,t))⊤ is the velocity field and u0(x) is the initial condition. It should
be noted that the total derivative Du

Dt in (2.1) known also by the material derivative is used
to measure change rate of the solution u following the trajectories of the flow particles
defined by the characteristic curves. The central idea of the characteristic finite element
method lies on imposing a regular grid at the new time step and to backtrack the flow
trajectories to the previous time step. At the old time step, the solutions are obtained
using interpolation procedures from their known values on the regular grid. Next, we
discretize the three-dimensional domain Ω into a finite set of conforming elements Tj

(j=1,2,··· ,Ne) with Ne is the total number of elements. Here, the computational domain
Ωh⊆Ω is the combination of all these finite elements. For the solution of the problem
(2.1), the conforming finite element space is defined as

Vh =
{

uh∈C
0(Ω) : uh

∣∣
T j
∈P(Tj), ∀ Tj∈Ωh

}
, (2.2)

where
P(Tj)=

{
p(x) : p(x)= p̂◦F−1

j (x), p̂∈Pm(T̂ )
}

,

with Pm(T̂ ) is the set of polynomials of degree ≤m defined on the reference element T̂
and p̂(x) is a polynomial of degree ≤m defined on the element T̂j. Here, Fj : T̂ −→Tj

is an invertible one-to-one mapping from the physical to the reference elements in the
computational domain. To discrete the time domain, the time interval is divided into
small subintervals [tn,tn+1] with stepsize ∆t= tn+1−tn for n=0,1,··· . We use the notation
un to denote the value of the solution u at time tn. Thus, the finite element approximation
of the solution un(x) is given by

un
h(x)=

M

∑
j=1

Un
j φj(x), (2.3)

where Un
j are the nodal values associated with un

h(x) defined as Un
j =un

h(xj) with {xj}
M
j=1 is

the set of solutions at the grid points in Ωh and M is the number of solution mesh points
in the computational domain Ωh. In (2.3), {φj}

M
j=1 are the global nodal basis functions
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in Vh characterized by the standard property φi(xj)= δij with δij denotes the Kronecker
symbol.

Using the notation introduced above, the characteristic curves Xn
hj = Xh(tn;xj,tn+1)

associated with the advection problem (2.1) are calculated for each mesh point xj, j =
1,··· ,M by solving the following initial-value problem

dXh

(
τ;xj,tn+1

)

dτ
=vh

(
Xh

(
τ;xj,tn+1

)
,τ
)

, ∀τ∈ [tn,tn+1],

Xh

(
tn+1;xj,tn+1

)
= xj,

(2.4)

where Xh

(
τ;xj,tn+1

)
=
(
Xh

(
τ;xj,tn+1

)
,Yh

(
τ;xj,tn+1

)
,Zh

(
τ;xj,tn+1

))⊤
is the departure

point defined at time τ of a particle that will reach the mesh point xj =
(

xj,yj,zj

)⊤
at

time tn+1. Note that an accurate approximation of the departure points Xh

(
tn;xj,tn+1

)
is

a key to the overall accuracy of the characteristic finite element method. A second-order
explicit Runge-Kutta scheme has been used in the literature to approximate the solutions
of (2.4) but this method has proven to be not accurate enough to maintain a particle on
its curved trajectory, see for example [18, 19]. In the present study, we consider a second-
order extrapolation based on the mid-point rule to approximate the solution of (2.4) along
with an iterative procedure, see [18, 29] for more details.

In general, the departure points Xn
hj do not surely coincide with a nodal point in the

computational domain Ωh and therefore, solutions at the departure points Xn
hj must be

evaluated by interpolation using known values at the mesh points of the host element
where the points Xn

hj are localized. In the current work, this interpolation step is achieved
using the finite element basis functions in the host element where the departure points
Xn

hj are allocated. Thus, the finite element method allows for high-order basis functions to
be used for the interpolation step without need for explicit interpolation polynomials as
in the case of finite difference methods, see for instance [38,39]. Hence, the finite element
solution ũn

h =u
(
Xn

hj,tn

)
is defined by

ũn
h =

M

∑
j=1

Ũn
j φj, (2.5)

where Ũn
j are nodal solutions evaluated at the departure points Xn

hj using the finite ele-

ment interpolation of un
h(x). Notice that this procedure requires less computational effort

than the projection method from the background Eulerian grid onto the Lagrangian grid
as discussed in [17, 22, 24] among others.

3 Mass-conservative and monotonicity-preserving procedures

It is well known that most of high-order interpolation procedures do not satisfy desired
numerical properties such as conservation, monotonicity and positivity of the computed
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Figure 1: An illustration of the linear P1 with 4 nodes (left plot) and the quadratic P2 with 10 nodes (right
plot) finite elements used in the present study.

solutions. In this study, a limiting procedure is used for the characteristic finite element
method to overcome these drawbacks and to ensure that the interpolated solution in
a tetrahedral element remains bounded between the maximum and minimum values
in the vertices of this element. Therefore, the original method is converted to a non-
oscillatory characteristic finite element method at minor additional computational effort.
In addition, the reconstructed method highly preserves the shape of the transported fields
in the vicinity of steep gradients and it maintains the order of convergence in regions
where the solution is sufficiently smooth. Similar techniques have been investigated in
[2,20,21] for two-dimensional transport problems. The procedure proposed in the current
work uses a limiter between a low-order and a high-order finite element approximations
within the host element where the departure points reside. Thus, the linear P1 elements
and the quadratic P2 elements depicted in Fig. 1 are used for the low-order and high-order
interpolations, respectively.

Hence, the procedure to evaluate the numerical solution ũn of the transport problem
(2.1) is obtained using the following steps:

1. Compute the departure points Xn
hj by solving the backward differential equations

(2.4).

2. Locate using a search-locate algorithm the element T̃j where the departure point
Xn

hj belongs.

3. Calculate the quadratic P2 finite element approximation

ũn
Hj=

NH

∑
k=1

Ũn
k ϕk

(
Xn

hj

)
, (3.1)

where {ϕ1,··· ,ϕNH
} are the quadratic P2 local basis functions in the host element

T̃j. As stated above, high-order Lagrange interpolations yield numerical solutions
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polluted with non-physical oscillations and do not satisfy the discrete maximum
principle.

4. Calculate the linear P1 finite element approximation

ũn
Lj=

NL

∑
k=1

Ũn
k ψk

(
Xn

hj

)
, (3.2)

where {ψ1,··· ,ψNL
} are the linear P1 local basis functions on the element T̃j. Re-

call that the linear Lagrange interpolation is monotone and the numerical solutions
obtained using the linear P1 interpolation are free of non-physical oscillations and
artificial extrema.

5. Calculate the limited solution ũn
j using a convex combination of the quadratic P2

solution (3.1) and the linear P1 solution (3.2) as

ũn
j = ũn

Lj+αn
j

(
ũn

Hj−ũn
Lj

)
, (3.3)

where αn
j ∈ [0,1] is a limiting function used to adjust the amount of correction in the

linear P1 approximation in order to obtain a non-oscillatory solution. It is evident
that for αn

j = 0, the obtained solution in (3.3) reduces to the linear approximation,

whereas the quadratic P2 approximation is recovered for αn
j =1. In the present work,

the limiting function αn
j is locally chosen such that the approximate finite element

solution (3.3) is monotone i.e. the solution ũn
j in (3.3) remains bounded in [u−j ,u+

j ]

at each time step, where u+
j and u−j are respectively, the maximum and minimum

of the nodal solutions in the host element T̃j defined as

u−j =min
(

Ũn
1 ,··· ,Ũn

NH

)
, u+

j =max
(

Ũn
1 ,··· ,Ũn

NH

)
.

To improve the accuracy and to minimize the numerical dissipation in the linear P1

finite element approximation, we propose a local limiting function αn
j defined using

the slope of the solution as

αn
j =





min

(
1,

u+
j −ũn

Lj

ũn
Lj−ũn

Hj

)
, if ũn

Lj−ũn
Hj>0,

min

(
1,

u−j −ũn
Lj

ũn
Lj−ũn

Hj

)
, if ũn

Lj−ũn
Hj<0,

1, if ũn
Lj−ũn

Hj=0.

(3.4)
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6. In general the above limiting procedure does not conserve the mass i.e.

∫

Ω
ũn(x)d x 6=

∫

Ω
u0(x)dx,

and therefore, the solution ũn
j in (3.3) should be corrected to be fully conservative.

To achieve this property in our characteristic finite element method we correct the
computed solution by the difference between the linear P1 and quadratic P2 solu-
tions multiplied by a suitable coefficient as follows

un+1
j = ũn

j +θmax

(
0,sign(∆M)

(
ũn

Hj−ũn
Lj

)3
)

, (3.5)

where θ and ∆M are computed at each time step tn as

• Calculate the mass difference between the initial solution and the limited so-
lution as

∆M=
∫

Ω
ũn(x)d x−

∫

Ω
u0(x)dx.

• Check if ∆M= 0 then the computed solution satisfies the mass conservation
propriety. If not we compute the correction coefficient ωj as

ωj=max

(
0,sign(∆M)

(
ũn

Hj−ũn
Lj

)3
)

.

• Compute the correction θ as

θ=
∆M∫

Ω
ωh(x)dx

,

where ωh(x)=∑
M
j=1ωjφHj(x).

It is worth remarking that this procedure evaluate the nodal values of the numerical
solution by adding to the monotone linear P1 solution a correction accounting for the
quadratic P2 solution without violating the monotonicity of the linear P1 solution. In fact,
using the limiting approach (3.3)-(3.5), the obtained finite element solution is conserva-
tive and it remains within the largest and the smallest values of the solution in a set of
nodal points surrounding the departure point Xn

hj. As a consequence, the reconstructed
nodal solution (3.3) does not generate any extrema which does not exists in the solutions
at the neighborhood of the departure points. Note that for the mesh elements illustrated
in Fig. 1, the numbers of linear P1 and quadratic P2 local basis functions are NL = 4 and
NH =10, respectively.
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4 Application to incompressible Navier-Stokes equations

In this section, we extend the characteristic finite element method for the incompressible
Navier-Stokes equations reformulated in dimensionless primitive variables as

∇·u=0,

∂u

∂t
+u·∇u+∇p−

1

Re
∆u= f,

(4.1)

where p is the pressure, u=(u,v,w)⊤ the velocity field, with u the velocity in x-direction,
v the velocity in y-direction, w the velocity in z-direction, f the external force, and Re the
Reynolds number. Recall that this non-dimensional number is usually used to control the
relative dominance of the convection compared to the diffusion in (4.1). For a well-posed
mathematical problem, Eq. (4.1) are solved in a three-dimensional bounded domain Ω⊂
R

3 with Lipschitz boundary Γ subject to well-defined boundary and initial conditions.
In general, the characteristic finite element method belongs to fractional step tech-

niques where the transport part in (4.1) is decoupled from the Stokes part in the time
integration. Thus, at each time step the velocity and pressure are updated by solving first
the transport equation

Du

Dt
:=

∂u

∂t
+u·∇u=0, (4.2)

followed by the Stokes equations

∇·u=0,

Du

Dt
+∇p−

1

Re
∆u= f.

(4.3)

In this study, the conforming finite element spaces for the pressure and velocity solutions
are the mixed Taylor-Hood finite elements P1-P2 illustrated in Fig. 1. Here, the linear P1

finite elements are used for the pressure and the quadratic P2 finite elements are used
for the velocity. Notice that for these mixed finite elements, the discrete velocity and
pressure solutions satisfy the well-established inf-sup condition, see for instance [18].
The associated finite element spaces are defined as

Vh =
{

uh∈C0(Ω)×C0(Ω)×C0(Ω) : uh

∣∣
Tk
∈P2(Tk), ∀ Tk∈Ωh

}
,

Qh =
{

ph∈C0(Ω) : ph

∣∣
Tk
∈P1(Tk), ∀ Tk∈Ωh

}
,

where P1(Tj) and P2(Tj) are polynomial spaces defined in the finite element Tk. Hence,
we approximate the finite element solutions to un(x) and pn(x) as

pn
h(x)=

Mp

∑
l=1

Pn
l ψl(x), un

h(x)=
M

∑
j=1

Un
j φj(x), (4.4)
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where Mp and M are respectively, the number of pressure and velocity nodal points in

Ωh. The functions Pn
l and Un

j =
(
Un

j ,Vn
j ,Wn

j

)⊤
are the corresponding nodal values of pn

h(x)

and un
h(x), respectively. These functions satisfy Pn

l = pn
h(yl) and Un

j =un
h(xj), with {yl}

Mp

l=1

and {xj}
M
j=1 are the set of pressure and velocity mesh points in Ωh, respectively, so that

Mp < M and {y1,··· ,yMp
}⊂{x1,··· ,xM}. Here, {ψl}

Mp

l=1 and {φj}
M
j=1 are respectively, the

set of global nodal basis functions of the pressure and the velocity characterized by the
property φi(xj)=δij and ψi(yl)=δil with δ denoting the Kronecker symbol.

To solve the Stokes problem (4.3) in the current work, we implement an efficient
direct-type algorithm, see [18, 23] for similar solvers. The main advantage of this algo-
rithm is the fact that neither projection techniques nor special corrections for the pressure
are required for the solution of the Stokes problem. Unlike the first-order implicit Euler
scheme used for the time integration in [18, 23], we consider the second-order implicit
BDF2 scheme in the present study. Thus, given a tolerance ε and using superscripts in
parenthesis to denote the iteration numbers, the procedure to advance the solution of
(4.3) from the current time tn to the next time tn+1 is carried out using the following
steps:

1. Given p
(0)
h = pn

h , solve for u
(0)
h ∈Vh such that for all vh∈Vh

3

2∆t

∫

Ω
u
(0)
h vh dx+

1

Re

∫

Ω
∇u

(0)
h ·∇vh dx=

∫

Ω
p
(0)
h ∇·vh dx+

∫

Ω
fn+1

h vh dx

+
1

2∆t

∫

Ω

(
4ũn

h−ũn−1
h

)
vh dx. (4.5)

Then, compute

q
(0)
h =∇·u

(0)
h .

2. Solve for ψ
(0)
h ∈Qh such that for all φh∈Qh

∫

Ω
∇ψ

(0)
h ·∇φh dx=

∫

Ω
q
(0)
h φh dx, (4.6)

and set

ζ
(0)
h =

3

2∆t
ψ
(0)
h +

1

Re
q
(0)
h , ξ

(0)
h = ζ

(0)
h .

3. For m = 1,2,··· , assume that p
(m)
h , u

(m)
h , q

(m)
h , ζ

(m)
h , ξ

(m)
h are known, we compute

p
(m+1)
h , u

(m+1)
h , q

(m+1)
h , ζ

(m+1)
h , ξ

(m+1)
h as follows:

(a) Solve for uh∈Vh such that for all vh∈Vh

3

2∆t

∫
u
(m)
h vh dx+

1

Re

∫
∇u

(m)
h ·∇vh dx=

∫
ξ
(m)
h ∇·vh dx, (4.7)

and set
q
(m)
h =∇·u

(m)
h .
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(b) Compute

ηm =

∫
q
(m)
h ζ

(m)
h dx

∫
q
(m)
h ξ

(m)
h dx

.

(c) Set

p
(m+1)
h = p

(m)
h −ηmξ

(m)
h , u

(m+1)
h =u

(m)
h −ηmu

(m)
h , q

(m+1)
h =q

(m)
h −ηmq

(m)
h .

(d) Solve for ψ
(m)
h ∈Qh such that for all φh∈Qh

∫
∇ψ

(m)
h ·∇φh dx=

∫
q
(m)
h φh dx, (4.8)

and set

ζ
(m+1)
h = ζ

(m)
h −ηm

(
3

2∆t
ψ
(m)
h +

1

Re
q
(m)
h

)
.

i. If ∫
q
(m+1)
h ζ

(m+1)
h dx

∫
q
(0)
h ζ

(0)
h dx

≤ ε,

then

pn+1
h = p

(m+1)
h , un+1

h =u
(m+1)
h ,

stop.

ii. Else, compute

χm =

∫
q
(m+1)
h ζ

(m+1)
h dx

∫
q
(m)
h ζ

(m)
h dx

, ξ
(m+1)
h = ζ

(m+1)
h +χmξ

(m)
h ,

change m←−m+1, return to step (a) and repeat.

iii. End if

It is evident that the iterative procedure in the above direct-type algorithm involves so-
lutions of uncoupled elliptic problems such that their finite element discretization yields
well-conditioned linear systems of algebraic equations for which very efficient iterative
solvers can be implemented. In our computations, taking advantage of these properties
we solve these linear systems in the characteristic finite element method using the con-
jugate gradient solver using an incomplete Cholesky factorization. Note that the finite
element discretization of Eqs. (4.5)-(4.8) is trivial and for brevity in the presentation it is
omitted here.
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5 Numerical results

We examine the accuracy of the new conservative and monotone characteristic finite el-
ement method introduced in the above sections using several numerical examples for
convection-dominated problems. For the example with known analytical solution we
compute the total error as

ETot=
∫

Ω
(u−uexact)

2 dx,

where u and uexact are the numerical solution and the exact solution, respectively. We also
evaluate the dissipation error EDiss and the dispersion error EDisp as

EDiss=(σ(u)−σ(uexact))
2+(u−uexact)

2 , EDisp=2(1−ρ)σ(u)σ(uexact), (5.1)

where u and σ(u) are respectively, the mean and standard deviation of the solution u,
and ρ is the correlation coefficient between u and uexact. Note that as shown in [42]

ETot=EDiss+EDisp.

We also define the CFL number as

CFL=max
x,y,z

(√
v2

1+v2
2+v2

3

)
∆t

h
. (5.2)

In our simulations presented in this section, the CFL number is set to a fixed value and
the time stepsize ∆t is adjusted at each time step according to the condition (5.2). To solve
the resulting linear systems of algebraic equations, we use the preconditioned conjugate
gradient algorithm equipped with a tolerance of 10−7 to stop the iterations. Note that to
minimize the computational effort in the proposed characteristic finite element method,
values of the CFL number are selected as large as possible for which the explicit Eulerian-
based finite element methods are noncompetitive for three-dimensional problems. In
this study, we also compare numerical results obtained using the linear P1 elements, the
quadratic P2 elements and the proposed mass-conservative and monotonicity-preserving
procedure. All the simulations reported in this section were performed on a Pentium PC
with Intel R© Core i7-7700HQ of 8 GB of RAM and 8 GHz using serial Fortran compiler.

5.1 Rotating a slotted sphere in circular flow fields

We consider the problem of a slotted sphere in circular flow fields widely used in the
literature to assess the numerical performance of transport methods for problems with
sharp discontinuities. Note that this problem is an extension to three space dimensions
of the well known two-dimensional Zalezak’s slotted disk proposed in [47]. The problem
statement consists on solving Eq. (2.1) in the spatial domain Ω=[−0.5,0.5]×[−0.5,0.5]×
[−0.5,0.5] equipped with the flow field v = (−ωy,ωx,0)⊤, where ω = 4 is the angular
velocity. The solution is a sphere centered at (−0.25,0,0) of radius 0.15 and height of
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Figure 2: Uniform finite element meshes with spatial steps h= 1
32 (left), h= 1

64 (middle) and h= 1
128 (right)

used for transport problems in rotating a slotted sphere in circular flow fields.

P1 elements P2 elements Proposed method Analytical

Figure 3: Iso-surfaces for rotating a slotted sphere in circular flow fields using CFL=10 and h= 1
128 .

1 along with a slot in the xy-plane of width 0.06 and a length of 0.22. In absence of
diffusion in the problem, the slotted sphere is expected to preserve its shape and mass
during the time integration and the total time required for one complete rotation is π

2 . In

our simulations for this example, we consider three uniform meshes with h= 1
32 , h= 1

64

and h= 1
128 as shown in Fig. 2, and three different values for CFL namely CFL=2.5, 5 and

10.

In Fig. 3 we present the plots for iso-surfaces of the computed solutions after one rota-
tion using the mesh with h= 1

128 and CFL=10. We include the analytical solution and the
numerical solutions obtained using the linear P1 elements, the quadratic P2 elements and
the proposed conservative and monotonicity-preserving method. As can be seen from
these results, the proposed method preserves the shape of the numerical solution with
very little numerical diffusion compared to the solutions computed using the P2 elements
and the P1 elements. Compared to the exact solution, the numerical solution obtained us-
ing the linear P1 elements exhibits large numerical diffusion whereas, the non-physical
solutions are very remarkable in the numerical solution obtained using the quadratic P2

elements. For a better visualization, Fig. 4 illustrates contourlines in the xy-plane at z=0
of the exact solution and the numerical solutions obtained using the linear P1 elements,
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CFL=2.5 CFL=5 CFL=10

Figure 4: Contourlines of the solutions at z= 0 for rotating a slotted sphere in circular flow fields after one
revolution (first row) and after two revolutions (second row) using h= 1

64 and different CFL numbers.

the quadratic P2 elements and the proposed conservative and monotonicity-preserving
method after one and two revolutions on the mesh with h= 1

64 and different CFL numbers.
Note that only part of the computational domain is shown in these plots for a better in-
sight. To further compare these results, we show in Fig. 5 and Fig. 6 the one-dimensional
cross-sections along the horizontal line at y= z=0 for the obtained solutions using three
different values of CFL= 2.5, 5 and 10 after one and two rotations. A visual compari-
son of the obtained results demonstrates large numerical dissipation, severe overshoots,
deformation and phase errors in the numerical solutions computed using the linear P1

and quadratic P2 elements. After one rotation, the results obtained using the quadratic P2

elements exhibit non-physical oscillations and greater distortions localized mainly at the
feet and the upper face of the slotted sphere where discontinuities are more sharper than
elsewhere in the computed solutions. After two rotations, the magnitude and frequency
of these non-physical oscillations increase in the computed solutions using the quadratic
P2 elements. Contrarily, numerical dissipation in the results obtained using the linear P1

elements is clearly noticeable and it becomes more pronounced for small values of CFL.
As expected, refining the finite element mesh results in an increase in the accuracy of the
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CFL=2.5 CFL=5 CFL=10

Figure 5: Cross-sections of the solution at y= z= 0 for rotating a slotted sphere in circular flow fields after 1

revolution using different CFL and meshes with h= 1
64 (first row) and h= 1

128 (second row).

computed solutions. For instance, in a mesh with h= 1
64 and after two rotations, the so-

lutions obtained using the linear P1 elements demonstrate substantially large numerical
diffusion at the feet of the slotted sphere where gradients are sharp, compare the results
shown in Fig. 4 and Fig. 6. However, from the same figures we observe a full absence
of these numerical dissipation and non-physical oscillations in the results obtained using
our conservative and monotonicity-preserving method. It should also be stressed that
the numerical accuracy in the proposed characteristic finite element method increases for
large value of CFL numbers, compare the results obtained using the low CFL= 2.5 and
the high CFL=10 in Fig. 4 and Fig. 5. It is also evident that the proposed conservative and
monotonicity-preserving procedure eliminates the non-physical oscillations in the vicin-
ity of feet of the sphere where discontinuities are sharp and the transport is well resolved
without requiring fine meshes or small time steps.

Next we perform quantitative comparisons of the results obtained using the linear P1

elements, the quadratic P2 elements and the proposed conservative and monotonicity-
preserving method. In Table 1 we summarize the obtained results after one and two
rotations using different values of CFL and mesh densities. We report the minimum
(Min) and the maximum (Max) values of the computed solutions, relative mass (Mass),
the errors EDiss, EDisp and ETot and the computational times (CPU) given in seconds.
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CFL=2.5 CFL=5 CFL=10

Figure 6: Same as Fig. 5 but after two rotations.

For the meshes and numbers of revolutions considered, the proposed conservative and
monotonicity-preserving procedure conserves the mass at a minor additional effort refer-
ring to the CPU time. For the considered transport conditions, failure of mass conserva-
tion is clear in the results obtained using the linear P1 and quadratic P2 elements whereas,
the relative mass remains fixed to unity in the proposed conservative characteristic finite
element method. In terms of the considered errors EDiss, EDisp and ETot, the results ob-
tained using the quadratic P2 elements are more accurate than those obtained using the
linear P1 elements for all the considered meshes and CFL numbers. It is also evident that
the proposed conservative and monotonicity-preserving procedure does not deteriorate
the overall accuracy of the characteristic finite element method. In addition, increasing
the CFL number results in a decrease of the total error in all computed solutions. How-
ever, only results obtained using the proposed method yield a reduction of the dispersion
error EDisp as CFL increases. Furthermore, results obtained in Table 1 for the errors EDiss,
EDisp and ETot using the proposed conservative and monotonicity-preserving method
confirm that these results are monotone and free from non-physical oscillations dur-
ing the time integration process. Indeed, the conservative and monotonicity-preserving
method captures the physics well in this three-dimensional transport problem. From the
values of Max and Min listed in Table 1, we observe very low values of Max for the
results obtained using the linear P1 elements and high and negative values for the re-
sults obtained using the quadratic P2 elements which are removed in the results obtained
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using the conservative and monotonicity-preserving procedure. It is also clear that the
CPU times in the characteristic finite element method using the quadratic P2 elements are
higher than the CPU times using the linear P1 elements. For the considered transport con-
ditions, the CPU time of the quadratic P2 elements is about 9 times larger than the CPU
time of the linear P1 elements. However, the difference between the CPU times for the
quadratic P2 elements and conservative and monotonicity-preserving method it minimal
and it is about 15% for all the simulations. It should also be noted that the characteristic
finite element method is commonly designed to solve this class of transport problems
using CFL numbers four to five times larger than its Eulerian counterparts.

5.2 A deformational flow problem

In this example we solve a deformational flow problem widely used in [30, 40] to exam-
ine the performance of high-resolution conservative algorithms for advection problems
using structured meshes. In the present study we solve this problem in a sphere using
unstructured tetrahedral meshes. The flow field is reconstructed in this example by su-
perimposing both deformation in the xy-plane with deformation in the xz-plane. Thus,
we solve the transport equation (2.1) in a sphere centered at (0,0,0)⊤, with radius 0.6
subject to a velocity field defined by

v1(x,y,z,t)=2sin2(πx)sin(πy)sin(πz)cos

(
πt

T

)
,

v2(x,y,z,t)=−sin(πx)sin2(πy)sin(πz)cos

(
πt

T

)
,

v3(x,y,z,t)=−sin(πx)sin(πy)sin2(πz)cos

(
πt

T

)
,

where T is the final time period. As stated in [30, 40], the flow becomes slow and it
changes the direction in such a way that the initial condition is recovered at time T, i.e.
u(x,y,z,0) = u(x,y,z,T). Therefore, this flow problem is very interesting since the an-
alytical solution at the final time T is known even though the flow structure becomes
complicated at this time. In our simulations, the time period T=1.5 and initially

u(x,y,z,0)=





1, if x≤
1

2
,

0, if x>
1

2
.

Note that for this initial condition, the interface at x = 1
2 deforms in a fully three-

dimensional manner and returns to its initial location at the final time t = T. For the
results presented for this example, we use CFL = 10 and three unstructured meshes as
shown in Fig. 7. The corresponding statistics of elements and nodal points for these
meshes are summarized in Table 2.
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Mesh A Mesh B Mesh C

Figure 7: Unstructured finite element meshes with 36844 elements (left), 52943 elements (middle) and 119604
elements (right) used for the deformational flow problem.

Table 2: Numbers of elements and nodes in the meshes used for the deformational flow problem.

Mesh # of elements # of P2 nodes # of P1 nodes

Mesh A 36844 64003 9977

Mesh B 52943 84934 12388

Mesh C 119604 183495 25563

In Fig. 8 we display the results obtained using the quadratic P2 elements and the pro-
posed conservative and monotone method on the three considered meshes at time t= T

2 .
Those results obtained at time t=T are presented in Fig. 9. For better insight, only half
of the sphere is illustrated for the computed solutions in these figures. At time t = T

2 ,
the interface at the sphere center appears disconnected whereas at the final time t = T
the initial interface is recovered subject to a non-preventable smearing generated by the
full three-dimensional deformational flow field. It is also clear from the results in Fig. 8
and Fig. 9 that the results obtained using the quadratic P2 elements exhibit oscillatory
behavior at both times especially at the vicinity of sharp gradients in the computational
domain on coarse meshes Mesh A and Mesh B. Furthermore, non-physical negative val-
ues are clearly detected in results obtained using the quadratic P2 elements. Refining the
mesh results in an improvement in the accuracy for all results. From the same figures, the
results obtained using the proposed conservative method are free from non-physical neg-
ative values and capture the correct interface on the three considered meshes and at both
times t= T

2 and t=T. Note that the results shown here agree well with those presented
in [30, 40] for the cuboid domain. It should be pointed out that the numerical methods
in [30, 40] used a high resolution scheme based on upwind techniques for which direct
or approximate Riemann solvers are needed. In contrast, our characteristic finite element
method does not require any Riemann solver and it produces stable results which are
conservative, monotone and comparable to those obtained by upwinding in [30, 40]. For
comparison reasons, Fig. 10 illustrates the solution cross-sections along the radial line at
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Mesh A Mesh B Mesh C

Figure 8: Numerical results obtained for the deformational flow problem on Mesh A (first column), Mesh B
(second column) and Mesh C (third column) using the P2 elements (first row) and the proposed conservative

and monotonicity-preserving method (second row) at time t= T
2 .

Mesh A Mesh B Mesh C

˜

Figure 9: Same as Fig. 8 but at time t=T.
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Mesh B Mesh C

Figure 10: Cross-sections of the solutions at y= 0.25 and z= 0.5 for the deformational flow problem on Mesh

B (first column) and Mesh C (second column) at time t= T
2 (first row) and t=T (second row).

y = 0.25 and z = 0.5 of the computed results using Mesh B and Mesh C at times t = T
2

and t= T. In this figure wee also include results obtained using the linear P1 elements.
Obviously, the resolution and location of the interface are deteriorated with the large nu-
merical diffusion generated by the linear P1 elements. As expected, the method using
the quadratic P2 elements has managed to eliminate the numerical diffusion, but it yields
non-physical oscillations near regions of large gradients in the computational domain.
On the other hand, comparing the performance of proposed method in Fig. 10, nearly
identical results to those obtained using the quadratic P2 elements in regions with smooth
gradients are achieved and a negligible numerical diffusion is introduced compared to
the one generated by the linear P1 elements. It is also clear that solutions obtained us-
ing the proposed method eliminate the non-physical oscillations near the interface where
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Table 3: Results for the deformational flow at t=T and t= T
2 . The exact maximum and minimum are respectively

Max=1 and Min=0.

P1 Elements

t= T
2 t=T

Mesh Min Max Mass CPU Min Max Mass CPU

Mesh A 0.000 1.000 0.973 0.063 0.000 1.000 0.949 0.117

Mesh B 0.000 1.000 0.989 0.393 0.000 1.000 0.979 0.745

Mesh C 0.000 1.000 0.996 2.794 0.000 1.000 0.992 5.246

P2 Elements

t= T
2 t=T

Mesh Min Max Mass CPU Min Max Mass CPU

Mesh A -0.153 1.663 0.965 0.399 -0.112 1.423 0.942 0.730

Mesh B -0.208 1.664 0.982 2.693 -0.186 1.512 0.965 5.047

Mesh C -0.184 1.664 0.998 20.812 -0.178 1.499 0.994 38.813

Proposed method

t= T
2 t=T

Mesh Min Max Mass CPU Min Max Mass CPU

Mesh A 0.000 1.000 1.000 0.414 0.000 1.000 1.000 0.772

Mesh B 0.000 1.000 1.000 2.865 0.000 1.000 1.000 5.374

Mesh C 0.000 1.000 1.000 22.397 0.000 1.000 1.000 43.693

discontinuities are steep. Thus, for the considered transport conditions, the deforma-
tional flow is accurately resolved without requiring fine meshes or small time steps in
the simulations.

We now turn our attention to a quantitative comparison of the results using the lin-
ear P1 elements, quadratic P2 elements and proposed conservative method for the three
considered meshes at times t= T

2 and t= T. In Table 3 we present the minimum (Min)
and the maximum (Max) values of the computed solutions, the relative mass (Mass) and
the CPU times for each simulation. From the values of Min and Max, we observe large
and negative values for the quadratic P2 elements which are completely avoided in our
conservative and monotone method. Regarding the mass conservation, Table 3 reveals
that on Mesh B, the quadratic P2 elements lost more than 3% of the initial mass at time
t = T, whereas the proposed characteristic finite element method is conservative at the
machine precision. This clearly demonstrates that the proposed limiting procedure does
not deteriorate the accuracy of the characteristic finite element method. Furthermore, a
simple examination of the CPU time in Table 3 confirms that, on coarse meshes, there
is no huge difference between the computational cost required for the quadratic P2 ele-
ments and the proposed method. Again, in all results summarized in Table 3, the CPU
time needed for the proposed conservative characteristic finite element method is about
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17% more than the CPU time needed for the quadratic P2 elements. It is worth remarking
that the extra computational cost used in the proposed conservative and monotone pro-
cedures has been kept to the minimum that the characteristic finite element method is still
effective for this class of convection-dominated flow problems. Taking all these factors
into account, we conclude that, for the considered examples, the proposed characteristic
finite element method exhibits higher monotone and non-oscillatory properties than the
standard linear P1 and quadratic P2 elements. More importantly, a balance between effi-
ciency and accuracy in these methods benefits the conservative and monotone method,
since the additional cost required for the limiting procedure in characteristic finite ele-
ment method is minimal while the results obtained by the method are fully conservative
and more accurate than those obtained by the quadratic P2 elements. Therefore, here-
after we shall focus our attention on numerical simulations carried out using only the
proposed conservative and monotone method.

5.3 Flow past a circular cylinder

To assess the numerical performance of the proposed characteristic finite element method
for solving three-dimensional incompressible Navier-Stokes equations we consider the
benchmark problem of the flow past a circular cylinder. This flow problem has been
widely used in the literature to examine the accuracy of numerical methods for incom-
pressible Navier-Stokes equations, see for example [1, 14, 31, 37]. In our simulations pre-
sented in this section, we use the same flow configuration and the same boundary condi-
tions as those reported in these references. Here, circular cylinder with diameter D=0.1
is immersed in a channel with height H = 0.41 subject to a viscous incompressible flow
entering the channel with a parabolic velocity defined as

u(t,y,z)=u∞y(H−y)z(H−z)H4sin

(
πt

8

)
,

Figure 11: Configuration of the computational domain used for the flow past a circular cylinder.
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Mesh A Mesh B

Figure 12: Computational meshes used in simulations for the flow past a circular cylinder.

where u∞ = 7.2. The Reynolds number for this flow problem is defined as Re=Du∞/ν,
with ν is the kinematic viscosity. At the downstream boundary we impose the pseudo-
stress condition

−pn+ν
∂u

∂n
=0, (5.3)

where n=(nx,ny,nz)⊤ is the outward unit normal on the exit boundary. On the remaining
boundaries of the computational domain we set no-slip conditions u=0. All the compu-
tations for this flow problem are carried out using the mixed tetrahedral finite elements
P1-P2 using two unstructured meshes depicted in Fig. 12 and numerical results are pre-
sented at time t = 8 for two different Reynolds numbers Re = 20 and Re = 100 using a
fixed time step ∆t= 0.1. At these two values of Reynolds number, the flow is expected
to illustrate different flow features and the problem becomes challenging for high values
of Re. Note that most of results reported in the literature considered only the case with
Re=20.

First a mesh convergence study for the proposed characteristic finite element method
is performed for this example. To this end, we consider four unstructured meshes Mesh
A, Mesh B, Mesh C and Mesh D with different node and element densities as summarized
in Table 4. Note that Mesh C and Mesh D are not included in Fig. 12 because of their den-
sities which result in heavily black plots. In Table 4 we also summarize the maximum
and minimum values of the velocity u along with the CPU times obtained using both
the conventional and the proposed methods on the considered meshes for Re= 20 and
Re=100. As can be seen for the last two mesh levels Mesh C and Mesh D, the differences
in the values obtained for maxu and minu are very small. It has also been observed that
the additional computational effort used by the proposed limiting procedure has been
kept to the minimum that our characteristic finite element method is still competitive for
three-dimensional incompressible Navier-Stokes equations. It should be stressed that the
vast amount of the computational work is mainly used for solving the linear systems in
the Stokes stage of the conjugate gradient algorithm. Hence, a substantial reduction in
the CPU time can be achieved in the proposed method by developing more efficient pre-
conditioned iterative solvers for these linear systems. For instance, multigrid techniques
are well known to be the most efficient methods for solving linear systems and can there-
fore be the suitable tools to increase the efficiency of the proposed characteristic finite
element method. To further qualify the computational results for these meshes, Fig. 13
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Table 4: Mesh statistics and results for maximum and minimum of the velocity u and CPU times (in minutes)
for the flow past a circular cylinder at Re=20 and Re=100.

Re=20

Conventional method Proposed method

Mesh # elements maxu minu CPU maxu minu CPU

Mesh A 114446 0.21420 -3.6639E-02 38.9 0.20456 -3.3191E-04 39.4

Mesh B 195930 0.20840 -3.5239E-03 118.4 0.20466 -3.3163E-04 118.9

Mesh C 301436 0.20701 -1.9251E-03 158.8 0.20468 -3.2151E-04 162.7

Mesh D 436327 0.20531 -8.9154E-04 243.3 0.20468 -3.2150E-04 243.5

Re=100

Conventional method Proposed method

Mesh # elements maxu minu CPU maxu minu CPU

Mesh A 114446 0.22327 -4.4228E-02 31.8 0.20523 -2.5217E-03 32.9

Mesh B 195930 0.21299 -1.8903E-03 91.3 0.20625 -1.6123E-04 91.6

Mesh C 301436 0.21012 -5.1163E-04 135.0 0.20635 -1.6113E-04 135.7

Mesh D 436327 0.20497 -2.8145E-04 241.9 0.20635 -1.6113E-04 243.1

Re=20 Re=100

Figure 13: Cross-sections of the velocity u at (x=0.56, z=0.25) obtained on different meshes for the flow past
a circular cylinder at Re=20 (left) and Re=100 (right).

illustrates the cross-sections of the velocity u at the line (x=0.56,z=0.25) obtained using
the considered meshes. It is clear that increasing the density of meshes, the results for the
Mesh C and Mesh D are relatively similar. Results obtained for the velocities v and w, not
reported here for brevity, exhibit the same convergence features. Therefore, Mesh A and
Mesh B are used in all our next computations for this flow problem. Note that the reasons
for choosing these mesh structures lie essentially on the computational cost required for
each mesh configuration and also on the numerical resolution achieved.
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Mesh A Mesh B

Figure 14: Snapshots of the velocity magnitude for the flow past a circular cylinder at Re= 100 obtained on
Mesh A (left) and Mesh B (right).

In Fig. 14 we display the obtained results for the magnitude of the velocity field using
Re=100 on Mesh A and Mesh B. For a better insight, only a part of the computational do-
main is shown in this figure. These plots give a clear view of the overall flow patterns and
the effect of the mesh on the velocity field. The recirculating regions behind the cylinder
are generated and well captured using the proposed method. It is also clear that the per-
formance of the proposed characteristic finite element method is very attractive since the
obtained numerical solutions are stable and monotone even when coarse meshes are used
with no need to nonlinear solvers or complicated techniques to stabilize the finite element
discretization as those used in the projection methods or pressure correction procedures.
Comparisons between results obtained using the proposed method and the conventional
characteristic finite element method have also been carried out in this problem. Fig. 15
depicts cross-sections of the velocity u at the line (x= 0.56, z= 0.25) obtained using the
proposed and conventional methods on three different meshes at Re= 20 and Re= 100.
It is clear that, on Mesh A and Mesh B, the conventional method exhibits substantially
greater oscillations, specially for y∈ [0.25,0.35] in the spatial domain where the velocity u
is large. From the same figure we observe a complete absence of this oscillatory behavior
in the results obtained using the proposed method. Note that the relevance of the mono-
tonicity and non-oscillatory properties for this problem is crucial since these oscillations
are physically unacceptable and having non-monotone solutions may cause a breakdown
in the iterations of the conjugate gradient solver used to solve the linear systems for the
Stokes stage in the conventional algorithm. On the fine mesh Mesh C, results obtained
using both method coincide for Re=20 but for Re=100 the numerical diffusion in the re-
sults obtained the conventional method is clearly visible. On the contrary, computational
results obtained using the proposed method are free from any non-physical oscillations,
and the solutions preserve the monotonicity during the time integration process.

To quantify our results for this flow problem, we compute the well-established lift
and drag coefficients at each time step as [1]

CL=−
2

u2
∞DH

∮

S

(
−pnx+ν

∂(u·t)

∂n
ny

)
dx,

CD =
2

u2
∞DH

∮

S

(
−pny+ν

∂(u·t)

∂n
nx

)
dx,

where S is the surface of the cylinder, n=(nx,ny,0)⊤ and t=(ny,−nx,0)⊤ are respectively
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Mesh A Mesh B Mesh C

Figure 15: Cross-sections of the velocity u at (x= 0.56, z= 0.25) obtained on three different meshes for the
flow past a circular cylinder at Re=20 (first row) and Re=100 (second row).

Table 5: Comparison results for mesh statistics, lift and drag coefficients, average iterations of the conjugate
gradient algorithm and CPU times (in minutes) for the flow past a circular cylinder at Re=20.

Mesh # elements maxCD maxCL minCL AvCG CPU

Mesh A 114446 3.235 0.0271 -1.0131E-02 3.45 39.4

Mesh B 195930 3.301 0.0274 -1.0981E-02 3.21 118.9

Mesh C 301436 3.301 0.0279 -1.0991E-02 3.14 162.7

Mesh D 436327 3.301 0.0280 -1.0992E-02 3.11 243.5

Results from [1] 393216 3.296 0.0280 -1.0992E-02 — —

the normal and tangent unit vectors with respect to the surface of the cylinder. Results
obtained for maxCD, maxCL, minCL, the number of averaged iterations in the conjugate
gradient algorithm (AvCG) and the computational cost (CPU) are summarized in Table
5. We present numerical results obtained for Re= 20 using the four considered meshes
and for comparison purpose, we also include those numerical results reported in [1]. The
numerical results obtained using the proposed method mostly agree with all the model
results reported in [1]. As it is obvious from Table 5, the minor differences to other nu-
merical results can be attributed to the mesh size used in the present study. The efficiency
of the proposed characteristic finite element method is also examined for this problem.
Note that the computational time listed in Table 5 includes all aspects of computational
work including, mesh generation, calculation of characteristics, search-locate of depar-
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Table 6: Percentage of the computational cost used by each stage of the conventional and the proposed
characteristic finite element solvers for the flow past a circular cylinder at Re=20 and Re=100 using Mesh A.
The CPU times are given in minutes.

Re=20

Conventional method Proposed method

Problem Algorithm CPU Percentage CPU Percentage

Departure points 2.83 7.22% 2.86 7.26%

Convection part Search-locate 2.70 6.89% 2.98 7.57%

Interpolation 2.12 5.41% 3.31 8.41%

Total 7.65 19.52% 9.15 23.24%

Stokes part CG solver 31.55 80.48% 30.23 76.76%

Total 38.80 100% 39.38 100%

Re=100

Conventional method Proposed method

Problem Algorithm CPU Percentage CPU Percentage

Departure points 2.17 6.82% 2.02 6.14%

Convection part Search-locate 2.31 7.27% 2.61 7.95%

Interpolation 2.27 7.14% 3.56 10.83%

Total 6.75 21.23% 8.19 24.92%

Stokes part CG solver 25.05 78.77% 24.70 75.08%

Total 31.80 100% 32.89 100%

ture points, limiting process, assembling of finite element matrices, and solution of linear
systems. In our implementation, most of the computational effort was contributed to
the conjugate gradient algorithm used for solving the associated linear systems. For this
flow problem, we have observed that the mean number of iterations in the conjugate
gradient algorithm to converge to a tolerance of 10−7 increases with the values of the
Reynolds number Re. Nevertheless, it should be noted that the proposed characteristic
finite element method can use time steps up to hundred times larger than those required
for the explicit time integration schemes. This would allow for fewer time steps to be
taken for the same length of simulation, thereby reducing the overall computational cost
excessively.

Analysis of computational cost has been carried out in this example. Table 6 sum-
marizes the computational cost of the conventional and the proposed characteristic finite
element methods at Re= 20 and Re= 100 using Mesh A. The computational cost is dis-
tributed in four stages constituting the proposed method: Departure points represents
the percent of CPU time involved in the approximation of departure points. Search-locate
denotes the percent of CPU allocated for the search-locate procedure. Interpolation refers
the percent of CPU time required for the interpolation procedure used in the method. CG
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refers to the percent of CPU time employed in the conjugate gradient algorithm for solv-
ing the Stokes problem. The main features reported in this table are on one hand, the
departure points approximations, interpolation stage, and the search-locate procedure
require very little computational cost compared to the CPU time needed for the Stokes
part where the linear solver is repeatedly required. On the other hand, the difference be-
tween the CPU times spent in the convection part for the conventional and the proposed
monotone and conservative methods is minimal and does not exceed 18% in all consid-
ered cases. As can be seen from Table 6, most of the computational effort goes into the CG
algorithm solving the associated Stokes problems. Therefore, reducing the CPU time in
the proposed characteristic finite element method can be achieved by constructing more
efficient preconditioned iterative solvers for the linear systems. Multigrid techniques are
known to be the most efficient methods for solving linear systems and can therefore be
the suitable tools to increase the efficiency of the proposed characteristic finite element
method. Needless to say that the CPU time in Table 6 can drastically be reduced if parallel
computers are used. A parallel characteristic finite element method can be implemented
using the message passing interface (MPI). The parallel efficiency using the MPI becomes
very high when the departure points lie within the local memory of the same processor
and the operation per processor is kept constant.

6 Concluding remarks

A conservative and monotone characteristic finite element method has been developed
for solving the three-dimensional transport and incompressible Navier-Stokes equations
on unstructured tetrahedral meshes. The proposed method integrates transport part of
the equations using the modified method of characteristics in the framework of a finite
element discretization. To preserve the conservation and monotonicity in the proposed
method a local limiting procedure is implemented using the linear and quadratic finite
elements. The additional computational cost in the proposed characteristic finite element
method is kept minimal compared to its conventional counterparts. Using a mixed fi-
nite element formulation the method is applied for the three-dimensional incompressible
Navier-Stokes equations in primitive variables. We also implemented a direct conjugate-
gradient algorithm for the solution of the three-dimensional Stokes problem. This algo-
rithm avoids projection techniques and special corrections for the pressure widely used
in the literature for Eulerian-based finite element methods. Numerical results were pre-
sented for the problem of rotating a slotted sphere in circular flow fields and the example
of a deformational flow problem. The proposed method has also been verified for the
numerical simulation of the benchmark problem of flow past a circular cylinder. For all
of these examples, the obtained results have demonstrated the ability of the proposed
characteristic finite element method to perform very well in the presence of strong gra-
dients and discontinuities without non-physical oscillations and numerical dissipation
even when coarse meshes and large time steps are used in the simulations. Results ob-
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tained for the problem of flow past a circular cylinder have also shown the capabilities of
the proposed method in simulations of complex incompressible flow problems in three
space dimensions using unstructured tetrahedral meshes. Future work will concentrate
on the extension of the conservative and monotone characteristic finite element method
to coupled problems of turbulent flow and heat transfer in three space dimensions.
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