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Abstract. This paper concerns a kinetic model of the thermostated Boltzmann
equation with a linear deformation force described by a constant matrix. The
collision kernel under consideration includes both the Maxwell molecule and
general hard potentials with angular cutoff. We construct the smooth steady
solutions via a perturbation approach when the deformation strength is suffi-
ciently small. The steady solution is a spatially homogeneous non Maxwellian
state and may have the polynomial tail at large velocities. Moreover, we also
establish the long time asymptotics toward steady states for the Cauchy prob-
lem on the corresponding spatially inhomogeneous equation in torus, which in
turn gives the non-negativity of steady solutions.
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1 Introduction

The homoenergetic solutions to the Boltzmann equation were first introduced
by Galkin [19] and Truesdell [28] independently at almost the same time. These
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prototypical solutions not only indicate the existence of invariant manifolds of
molecular dynamics but also give a new insight into the relation between atomic
forces and nonequilibrium behavior of the gas. Recently, James et al. [25-27] and
Bobylev et al. [10] provided the systematic mathematical study of the subject. Mo-
tivated by those works, the authors of this paper also considered the smoothness
and asymptotic stability of self-similar solutions to the Boltzmann equation for
the uniform shear flow in case of the Maxwell molecule [14]. In the non Maxwell
molecule case, for instance, for the hard potentials, the problem is more subtle to
treat and still remains largely open, because the temperature of system increases
only in a polynomial rate depending on the collision kernel and the shear rate in
the rescaled equation is no longer a constant but a time-dependent function, see
the conjecture in [25] for details.

On the other hand, instead of studying the uniform shear flow as a time-
dependent state due to the viscous heating, it is also usual to introduce non-
conservative external forces to compensate exactly for the viscous increase of
temperature and achieve a steady state. This kind of force is referred to as ther-
mostats and a typical choice of the thermostat force is the friction —pv with a con-
stant B € R, see [20, Chapter 3.4]. Inspired by this, we are concerned in this paper
with the spatially homogeneous steady problem on the thermostated Boltzmann
equation with a deformation force

—BVo- (vGst) —aVy- (AvGst) = Q(Gst, Gst ). (1.1)

Here, the unknown Gy = G4 (v) denotes the non-negative velocity distribution
function of particles with velocity v € R®. The matrix A= (4;j) € M3x3(IR) induces
a deformation force —x Av with the strength given by the parameter « >0 and the
constant B € R is a parameter standing for the strength of the thermostated force.
The nonlinear term Q(-,-) is the collision operator defined as

Q(F,F):= /]R 3 /S B(w,0-0.) [R(0))B(0) ~F (0.)E(0)] dodo,  (12)

where we have denoted v/ = v+[(v. —v) - w]w and v, = v, —[(v.—0)-w]w with
w€S? in terms of the conservation laws v, +v=0v,+0v" and |v.|?+|v|?= v} |?+ |0 |2.
Throughout this paper, we let

B(w,v—v,)=|v—0v.|"By(cosb), cos@zw-%, weS?, (1.3)
— Ux

0<y<1, 0<By(0)<C|cosb|. (1.4)

This includes the cases of the Maxwell molecule =0 and general hard potentials
0 <y <1 under the Grad’s angular cutoff assumption.
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To consider (1.1), we supplement it with the restriction condition
[, ool Ga(0)do=[1,0,3] (15)
R3

The steady problem (1.1) is solvable only if its left hand term is microscopic,
namely,

/]R3 [1,v,|v|2} { =BV (vGst) —aVy- (AvGst) }dv=0.
This together with (1.5) implies that

/R3v-(Av)Gs,gdv N

B=—u =—— [ v-(Av)Ggdo. (1.6)
/ [0>Ggdo 3 /re
R3
Plugging this back to (1.1) gives
1 1
5 /]R3v' (Av)Gstdva N (vcst) - v-u : (Avcst) — EQ(GSthSt)' (1.7)

From (1.7), the deformation strength « > 0 plays the same role as the Knudsen
number, and we then expect to adopt the perturbation approach as in [14] to
construct smooth solutions for any small a > 0.

To present the main results of this paper, we first introduce some notations.
To this end, associated with the condition (1.5), we define the reference global
Maxwellian yu by

_3 I
p=(2m)"2e” 7, (1.8)
and use the velocity weight function
l
wy=w;(v):= (14 |v]?) (1.9)

with an integer [ >0. Let { = ({1,02,{3) and ¢ = (¢1,8,,93) be multi-indices with
length |{| and |8|, respectively, and write

oy =05 =0510520%, 97=0d=0aylaRal, of=0a5ay,

for simplicity. We define {’ < if each component of {’ is not greater than the one
of ¢, and write {’ < in case of { < and |'| <|Z|. We also let Cgl be the usual
binomial coefficient for two multi-indices © and ¢ with ¢’ <9¥.

The first result in the paper is to establish the existence of smooth solutions to
the steady problem (1.1) and (1.5) for the steady state G5 with  given by (1.6) .
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Theorem 1.1. Assume (1.3) and (1.4) for the collision kernel. Let A= (a;;) € M3x3(R)
be a non scalar matrix and

3
_ 1 1
Gi=— Z ai]-L 1{ <ZJZ'ZJ]'—§51']'|7J|2)]/I7-}, (1.10)
ij=1

where L is the linearized collision operator as in (2.1). Then, there is an integer Ip >0
such that for any integer | > Iy, there is ag=wag(l) > 0 depending on | such that for any

a € (0,;p), the steady problem (1.1) and (1.6) under the condition (1.5) admits a unique
non-negative smooth solution Gg; = Gst(v) € C*(IR3) of the form

Gst:y—kzxu%Gl—kzxzéR, (1.11)
such that N
/ [1,0,]0]*] Grdv=0
R3
and for any integer m >0,

Y- [[widgGrl[ o <Cins (1.12)

7| <m

where C,,; >0 is a constant depending only on m and | but not on « and wy is given
in (1.9).

Similar to [14], we point out that the obtained steady solution is a non Maxwel-
lian state and may have the polynomial tail at large velocities, which is the main
feature of the problem. In order to justify the non-negativity of the steady so-
lution Gg; constructed in Theorem 1.1, we introduce a spatially inhomogeneous
model in torus T2 = [0,27]°

9:G+v-VG—BVy- (vG)—aV,- (AvG)
=Q(G,G), t>0, xe€T° veR? (1.13)
G(0,x,0)=Go(x,v), x€T?, veR3. (1.14)
It turns out that the steady solution Gs; can be used to describe the large time

asymptotics of the unsteady problem (1.13) and (1.14). We state this result as
follows.

Theorem 1.2. Let Gs(v) be the steady profile obtained in Theorem 1.1 and the constant
B be defined in (1.6). Assume further that 14« A is invertible. Then, there are constants
A>0and C >0 independent of a such that if it holds that Go(x,v) >0,

/T3/]R3[Go(x,v)—Gst]dvdx:0, /T3/]R30G0(x,v)dvdx:0, (1.15)
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and
Z leag [Go(x,0) — Gst(v)] HLOQ <a?, (1.16)
Cl+[8]<m
for an integer m > 1, then the Cauchy problem (1.13)-(1.14) admits a unique global solu-
tion G(t,x,v) >0 such that

Y |widl[G(tx,0) — Get(0)]|| . < Cae 1, (1.17)
|| +[¢]|<m

for any t >0, where B1 >0 is a positive constant given by

,Blz—1 v-(Av){y%Gl-l—océR}dv. (1.18)
3 JRr3

In what follows we mention some existing works that are most related to
the background and motivations of the current topic; readers may refer to [14]
for a more detailed review. Based on the Fourier transform method in [4, 5],
Bobylev and Cercignani [7-9] discussed the self-similar asymptotics for the spa-
tially homogeneous Boltzmann equation. As in the original work by Galkin
[19] and Truesdell [28], by solving the ODE system consisting of velocity mo-
ments, particularly the second order moments, Cercignani [13] investigated the
shear flow problem on a granular flow between parallel plates which is mod-
eled by the Boltzmann equation, and Bobylev and Cercignani [6] later obtained
the well-posedness and large time behavior of the granular system described
by Boltzmann-like equations. We also mention that Cercignani [12] proved the
global existence of homoenergetic affine flows for the Boltzmann equation in
the case of simple shear for a large class of interaction potentials which include
hard potentials, and these solutions in general may not be self-similar. It seems
that [12] is the first mathematical result on the homoenergetic solution of the
Boltzmann equation for the non Maxwell molecule.

Recently, in a significant progress by James et al. [25], the existence of homoen-
ergetic mild solutions as non-negative Radon measures was studied in a system-
atic way for a large class of initial data, and the problem on the asymptotics of ho-
moenergetic solutions in the case of non Maxwell molecules was also proposed.
In the meantime, it is discussed in [26,27] that there is a balance between the
hyperbolic term and collision term for the Boltzmann equation describing homo-
genergetic flow and the corresponding long time asymptotic behavior depends
on which term is dominated in large time. By combining the Fourier transform
method and moments argument, a more recent progress has been achieved by
Bobylev et al. [10], where the authors proved the self-similar asymptotics of solu-
tions in large time for the Boltzmann equation with a general deformation force
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under a smallness condition on the matrix A, and they also showed that the self-
similar profile can have the finite polynomial moments of higher order as long
as the norm of A is getting smaller. To the best of our knowledge, [10] seems
the only known result on the large time asymptotics to the self-similar profile in
weak topology, see also [3] for a further study to provide explicit estimates of the
smallness of the matrix A. Following [10, 25], in the case of Maxwell molecule,
the authors of this paper [14] constructed smooth self-similar profiles for the shear
flow problem on the Boltzmann equation and proved the dynamical stability of
the stationary solution via a perturbation approach.

As mentioned at the beginning, different from the uniform shear flow where
the temperature increases in time and the self-similar asymptotic has to be in-
volved, we expect the extra thermostated term to compensate the viscous heat-
ing energy and drive the system to converge to the steady state. We remark that
a similar situation may occur to the bounded domain case with diffuse bound-
aries that also can absorb the shearing energy such that the system tends asymp-
totically to the steady motion instead of the self-similar solution. In particular,
a boundary value problem on the Boltzmann equation for the plane Couette flow
was studied in [15], where they established the existence of spatially inhomoge-
neous non-equilibrium stationary solutions to the steady problem for small shear
rate and proved dynamical stability of the stationary solution.

Compared to our previous work [14] about the self-similar steady problem in
case of the simple shear force and Maxwell molecules, we treat in this paper the
more general deformation force described by the matrix A and also include the
case of hard potentials 0 <y <1 for the molecular interaction. In what follows
we outline the key strategies in the proof of main results and point out the main
differences with [14]. First of all, for the steady problem (1. 1) or (1. 7) we look for
solutions by setting the perturbation Gst =p+a,/HGy +a? GR with GR VHGr as
in (1.11). Here, G; as in (1.10) is introduced to remove the zero-order inhomo-
geneous term in terms of (2.13) and Gg is the remainder satisfying (2.14). Note
that G; involves the general deformation matrix A and it is non-zero for any non
scalar matrix A. The usual energy approach fails to be used to treat (2.14) due to
the second order velocity growth of the term 5v- (AZJ)GR since the linearized col-
lision operator only provides the dissipation term [v(v)|Gr[*dv with v(v) ~ |0]
(0<<1) for large velocities. Asin [14], we employ the Caflisch’s decomposition

(cf. [11]) )
Gr=+/UGr=GRr1++/1GRr2,

where Ggr 1 and Gg satisfy the coupled system

- IXZ‘B1 VU' (ZJGR,l) - IXVU' (AUGR,l ) +1/GR,1
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1 o _
=xmKGr1— 501 [o]* /iGra— 50+ (Av) /iGra+ -+, (1.19)
and
—IXZ‘B1 V- (ZJGR,z) —aVy- (A”UGR,Q) + LGR’z = ]l_% (1 —)(M)}CGRJ, (1.20)

respectively. The benefit of this splitting is that the term 5v-(Av),/fGR is no
longer a trouble since it contains /i which can absorb any order polynomial
velocity growth. The price to pay is that one cannot make a direct energy estimate
on Gg 1 because x/KGg 1 may not be small in the L? setting. However, this can
be resolved in terms of the L2-L® interplay since the smallness for x 1/ Gr 1 can
be recovered via the velocity weighted L® norm. Indeed, in the case of Maxwell
molecule, the following decay mechanism of K has been found in [14]:

C
sup w|d(Kf)| <7 L llwdgfllee,
[o|>M(1) 0<7'<Z

where C is independent of I and M(I) — co as | — co. Thus, the smallness in L*®
holds whenever [ is suitably large. Note that the above estimate seems hard to be
true for the non Maxwell molecule case. To treat this difficulty, motivated by [1],
in case of hard potentials 0 <y <1, we instead make use of the following estimate:

| iu}g(l)(uym)—mlvqysc{(1+M(l))_z+g(l)}szfHLoo

for C independent of I, where it holds that M(I) — o0 and ¢(I/) —0 as [ —oc. Then,
the smallness in L™ still holds when [ is chosen to be large enough. Therefore, in
both cases Y =0 and 0 <y <1, the L® estimates combined with the L? estimates
can be closed.

In addition, the coupled equations (1.19) and (1.20) will be solved by an ite-
ration method in which the conservation laws (Gg 1+ .M%GR,ZI [1,0;,]0|?]) =0 (i=
1,2,3) play a crucial role. To ensure that the macroscopic moments of the iteration
system are conserved, we design the following delicate approximation equations:

n
eGRi = B" Vo (0Gi ) —aVy- (AvGRT) +vGRY - XM/CnglJr%Wy%Gggl

1 1
500 (AU)V%G?{?_ < ?+1_§<G1/LG1>) Vo (vp)

n
(GLLG Vo (o) + Vo (03 Ga ) + Vo (Avy i)+ Q (#HCuii G

QW[ =
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+a{Q (WG HIG1)+Q (3G, Gy ) }+a2Q (WEGH M3GE), (1.21a)
eGpb! —B"Vo- (vGR5!) —aVy- (AvGRE! ) + LGRS
- (1—XM)V‘%7CG§’J11 =0, (1.21b)

where two penalty terms with the parameter € >0 have been added and

B :—%trAJrazﬁ*;

with

1 o _
‘3?:g/H{3G1LG1dv—§/]R3P1{v-(Av)\/y}Gﬁdv,
WG =G} + 2GRy

System (1.21) provides us the following cancellations:
1 1 1 1
=3 (GULG) ) Vo (o), 5[0 ) —5a (0 (A0)uzGR' ool
3 2 2 S
1 1
—oc<Vv-(AvGﬁjl),§]v|2>—zx<Vv.(AlegEl),§|U]2\/ﬁ>:O,
1 1 1
§<(G1,LG1>VU-(vy),§|vlz>—|—<vv-(AU\/ﬁGl),§|U]2>:0,

which indeed give the energy conservation <G17€,+11 +y%Gﬁj§1, |v|?) =0. Moreover,
as in [16] for treating the nonlocal collision term, we introduce a o-parameterized
procedure to ensure the construction of solutions to the linear inhomogeneous
system with 0 <o <1; see Lemmas 2.1 and 2.2 for details. However, this induces
the loss of conservation laws for the system with 0 <¢ <1 in the hard potential
case 0 <y <1, which is quite different from the situation treated in [14].

The second point is concerned with the non-negativity of the steady pro-
tiles. For the purpose, we introduce a spatially inhomogeneous model (1.13)
and prove the asymptotic stability of the stationary solution under small per-
turbation. We remark that although it is a spatially inhomogeneous problem, the
proof with slight modifications can still be carried over to treat the spatially ho-
mogeneous case. One difficulty part is to obtain the macroscopic dissipation in
a more delicate way than that in the steady case. In particular, we re-design the
Caflisch’s decomposition /7if = f1 4+ /jif> with f; and f; satisfying (3.3) and (3.5),
respectively. The key point is to add a microscopic fourth-order moment function
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xAv- (Vo /1) (Jo]* =3)cy, to the left-hand of (3.5) in order to cancel such trouble
term coming from —aV,-(Avf,). Correspondingly, (3.3) has been modified with
wAv- (Vo /1) (|0|* —3) /Hic f, added to the right-hand side. Under such decompo-
sition, the macroscopic energy [|c||? and the microscopic energy ||P1g2[|? can be
combined for estimates, see the result (3.38). Thus, the corresponding energy dis-
sipation rates a?||c||> and ||P1¢2||? are obtained. This L? estimate (3.38) is crucial
for obtaining the macroscopic dissipation and further deducing the exponential
decay rate with the size proportional to 2. This size is the same as that in [14] for
simple shear flow where tr(A) =0 and the lowest order of § is a?. In the current
case for a general deformation matrix A, the lowest order of B is a if tr(A) #0.
We remark that it is unclear for us whether the degenerate order a? for the size of
decay rate is optimal. Moreover, similar to [2] for the study at the fluid level, it
would be interesting to further consider possible enhanced decay rates with re-
spect to any small a by using the deformation effect in case of the hard potentials
0 <7 <1 and we will explore this issue in the future.

The third point is related to an application of the Guo’s L* — L? method [24].
The key idea of this approach in the L™ estimate is to convert an integration with
respect to v variable along characteristics into an integration with respect to x
variable. In the process, one need obtain a proper control for the Jacobian

X (s")
00,

_ ’(,Bl—l—zxA)_l e~ (=) (Bl+ad) _ ] ’

along the following characteristic line:

V(s")=V(s';5,X(s),0s) _ o (=) (BIaA)y,
X(s") =X (s';5,X(s),0.) = X(s) — (BI+aA) ! [e~ =9 BIHaA) _[]q,.

For this, as described in Lemma 4.8, we prove a lower bound of the determinant
of a matrix exponential, and moreover, we also give an upper bound of the region
of the integration after the change of variable X(s') —y.

The rest of this paper is arranged as follows. The existence of the steady profile
Gst(v) for (1.1) is established in Section 2. Section 3 is devoted to the unsteady
problem (1.13) and (1.14). In Section 4 as an appendix, we give the basic estimates
on the linearized operator L as well as the nonlinear operators I' and Q, further
present a key estimate for the operator K in the case of hard potentials, and finally
derive a lower bound for a matrix exponential.

Notations. We give more notations to be used throughout the paper. Let C de-
note some generic positive (generally large) constant and A denote some generic
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positive (generally small) constants, where C and A may take different values in
different places. Let 15 be the characteristic function on the set S. For simplicity,
we use ||-|| to denote the norms of either L2(TS xR3) or L?(T3) or L?(IR3). We
also use || - ||z~ to denote the norms of either L®(T3 x R3) or L*(IR3). Moreover,
(-,-) denotes the inner product of L?(T$ xR3) and (-) denotes the inner product
of L2(IR3).

2 Steady problem

This section is devoted to the existence of the non-equilibrium smooth steady
solution of (1.1). We begin with some usual notations in the framework of per-
turbations around the global Maxwellian y in (1.8). First of all, we introduce the
linearized collision operator L and the nonlinear collision operator I', defined by

Lg=—p"{Qu/Hg) + Qg 1) }, (2.1)

and

=1 2Q(VH f VHS)
_/]R3/‘52 w00, )2 (0.) [f(0)g(2) ~ f(0.)8(0)] dwdo., 2.2)
respectively. Note that
Lf=vf—Kf

Kf:]/l_% {Q (y%f,y) +anin (,u/,u%f> }/

where Qgain denotes the positive part of Q in (1.2). Moreover, it holds that

(2.3)

Kfz/R3k(v,v*)f(v*)dv*=/R3(k2—k1)(v,v*)f(v*)dv*

with o
0<ki(v,05) <& |v—v,|Te allel o)
(2.4)

0<ky(v,04) <G|v—v,| > e B
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where both ¢ and ¢, are positive constants. Note that in the case of y =1, (2.4)
has been derived in [21, pp.45-46], and the remaining cases that y € [0,1) can be
treated similarly. The upper bound in (2.4) may not be optimal.

The kernel of L, denoted as kerL, is a five-dimensional space spanned by

{1Lo,[v* =3} /i:={g:}7_,.

We further define a projection from L? to ker(L) by

Pog= {ag—i—bg.v—l— (|U]2—3)cg}\/ﬁ

for ¢ € L2, and correspondingly denote the operator Py by P1¢ = ¢—Pog, which
is orthogonal to Py in L2. Traditionally, Pog is also called the macroscopic part,
while P; ¢ stands for the microscopic component.

It is also convenient to define

Lf=—{Q(f,m+Q(unf)}=vf-Kf
with
f

KF =Q(f, 1)+ Qgain (1, f) = y/iIK (ﬁ) | 25)

2.1 Hilbert expansion and Caflisch’s decomposition

As derived before, we will study the steady problem

_ﬁvy . (UGst) — [XVU' (AUGSt) = Q(Gst/Gst) (26)
with
B= —% [ 0 (40)Gado. 2.7)

Our goal is to look for a unique smooth solution Gy (v) satisfying

/ Gordo=1, / 0,Gerdo=0, i=1,2,3, / 0[2Gydo=3.  (2.8)
R3 R3 R3

Note that through the paper we have omitted the dependence of Gy on the pa-
rameter a. It can be expected that Gs; — u if « — 0. As such, we set

Gst =p+a/p{G1+aGr} (2.9)
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with PgGy =PyGr =0 such that (2.8) is valid, and hence we impose that

/]R3G1\/ﬁdv:/]RBGR\/ﬁdv=O,
/]R Grory/fido= /IR Gron/fido=0, i=123, (2.10)
/]RgG1|U]2\/ﬁdv:/RgGR|U]2\/ﬁdU:O,

where G is the first order correction and Gr denotes the higher order remainder.
Plugging (2.9) into (2.7), we get

o

p=—73 [0 (A0) [+ ay/i{Gi+aGr}|do=apot+a’py  (211)
with 1 1
fo=—3tA, i=—3 [ o-(A0)[VR{G+aGrl]do.  (212)

Furthermore, substituting (2.9) and (2.11) into (2.6) and comparing the coeffi-
cients in front of the different orders of «, one has

—Bopt ™2V (0pt) — "2V (Avp) + LGy =0, (2.13)
— B~ 1V (05/iGR) —ap "2V (Av\/HGR) +LGr
=1 Vo (o) + Ep A0 (0 G 4 V- (A0yG)
+a{T(G1,Gr)+T(Gg,G1) } +a*T(GR,GR). (2.14)
In light of expression for B¢ in (2.12), one gets from (2.13) that
3 1 1
Glz—ijzlaijL_l{ <vivj—§5ij|z;]2) yf}, (2.15)

which in turn gives

ﬁl%/wl’l{v-(Av)ﬁ}L-l{Pl (U-Aw%)}dv

-3 R3P1{U-(A0)ﬁ}GRdU

1 o _
:5/ﬂ{3G1LG1dU—§/]R3P1{v-(Av)\/y}GRdv.
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Note that one has 81 >0 provided that A is not a scalar matrix and « is suitably
small.

The remainder Gy is determined by (2.14). There is a severe growth term 5v-
(Av)Gg caused by the deformation force. To overcome this difficulty, as [14, 15],
we resort to the following Caflisch’s decomposition:

VHIGR=GRr1++/1GRr2,
where Gr 1 and Gg satisfy
—BVy-(vGr1)—aVy- (AvGr1)+vGr
=xMKGRr1— g [0 /HGr2— %U' (Av)\/UGr2+p1 Vo (vp)
+B9, (oG 4 Vo (Ao y G +QUV G VEG)
+e{Q(VHG1, VIiGR) +Q(VHGR/HG1) } +0*Q(VHGR,/HGR),  (2.16)

and

—,va . (UGR,z) —och . (AUGR,z) +LGR,2 = ‘lxl_

Nl—

(1_XM),CGR,1/ (217)

respectively. Here, x(v) is a non-negative smooth cutoff function defined by

oy [ lelzME,
M=V 0, Jo|<M

with M > 0 sufficiently large.
We will prove the unique existence of (2.16) and (2.17) in the Banach space

xmz{gz[gl,gz] | Y (V5G| ot [0,V | } < oo, kmeZ,
k<m

<g1/ []-/Ui/|0’2:| > + <g2/ [1/?)1'/ ’U|2] ,u%> :0/ i= 1/2/3}
associated with the norm

161,92l = X {95 G ]| o[ V52 | -

k<m

To do so, we design the following iteration equations:

ec;gjl —B"Vy- (vcgjl) —aV,- (Avc;;gjl) +ucgjl - XM/CG}Q#
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" 1 1 1 1
+ Bt apst oo (Ao)ub gt (B - S(G1 LG ) Vo)

= —(G1,LG1) V- (o) + %vv- (vy%cl) +V,- (A0 /TG )

+Q(uiGLuGr) +a{ Q1 G2 C1) +Q(n2GCru2GCR) | 218)
+a2Q (WIGh HIGE),

Gt — B Vo (0GI5) —aVy- (AvGEEN) + LGRS — (1— xa)u 2KGRH =0

W=

Here the parameter € > 0 is introduced such that all the conservation laws for
GIVQH as in (2.10) can be satisfied. Moreover, we have denoted

HEGE= Gr1 +P‘%GE,2I n=0,

and
B" =aPo+a’p] (2.19)
with
,Bﬁl=%/RBG1LG1CIU—%/]R3P1{U'(AU)\/ﬁ}GEdU, n>0,
as well as

|GR1/GRa| =[0,0].

Note that the approximation solutions are constructed to satisfy (2.18), by which
the following identities hold true:

1 1 1 1 1
< ( ;’H—g(Gl,LGl)) A\ (vy),§|vyz> —Etx<v- (AU)V2G§21,§’U|2>
1 1
(Vo (406 5 ) (Vo (0GR o) =0
1 1 1
5<<G1,LG1>sz(UV)/§|U|2>+<VU' (AU\/ﬁGl),§|U|2> =0,

so that one can show the conservation laws (2.10) for G}’{H.

The proof of Theorem 1.1 consists of three steps. First, we show the well-
posedness of the system (2.18) for given [Gj ;,Gg ,] and €>0. Second, we establish
the limit process 1 — +-oco for any fixed parameter € >0. Third, we pass the limits
€ — 07 to obtain the unique smooth solution of the system (2.16) and (2.17).
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2.2 A uniform L* estimate with respect to the parameter ¢

Since both K and K are nonlocal and do not possess the property of smallness, it
is convenient to introduce the following linear vector operator parameterized by
o €[0,1] (cf. [14]):

gﬂ[gllg2] - [ga!/g(g} [g1/g2]/

Z}G1,G2] =€G1 — BV (0G1) —aVy- (AvGy ) +vG1 —ox MK Gy

+%/|U|2\/ﬁgz+0év' (;‘W) VG2 —B"(G) Vo (op),

Z2(G1,G2) =€Go— B'V - (vG2) —aVy- (AvGy) +1Gy — 0K Go
—o(1—xm)n2KG,

where B’ is a given constant of order «, and

bt
B'(G)=—3 P {v-(A0) }(G1 +/HGa) do. (2.20)
We then consider the solvability of the general coupled linear system
{Z} G1,G2] =71, (2.21a)
L2(G1,G) =P, (2.21b)

where [F7,F] is given.

Remark 2.1. Note that in the case of 0 <y <1 (hard potentials) and ¢ # 1, the
approximation system (2.21) does not imply [G1,G>] € Xy, even if [F, F2] € Xy, be-
cause the structural damage of the linear operators £ and L violates the following
laws of conservation:

<g1, [1,0;,|0%] > n <gz, 1,0;,|0]%] y%> —0, i=1,23.

Due to the above remark, different from [14] in the pure Maxwell molecule
case, a convenient functional space to be considered is the following;:

X ={ 6 =161 T {0141 ot [r0rVAG| o } < 45, kimez+ |
k<m
equipped with the norm
11G1,92]|x, :k; { |w V5G| o+ lev’;,gzum}.

The main idea showing the well-posedness of (2.21) is to adopt the bootstrap
argument based on the following a priori L estimates.
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Lemma 2.1 (A Priory Estimate). Assume that ' #0 is of order a.. Let [G1,Ga] € Xy, with
m >0 be a solution to (2.21) with € >0 and suitably small, o € [0,1) and [F1,F2] € Xp.
There is lo> 0 such that for any 1 > Iy arbitrarily large, there are xy=wo(l) >0 and large
M= M(l) >0 such that for any 0 < « < xy with Ca <1—0 for a generic large constant
C >0, the solution [Gy,G>] of the system (2.21) satisfies the following estimate:

61,Gal, =14 171 P2,
<Cy Y {lev’;fl}}LwJFlev’;fz}}w}, (2.22)

0<k<m

where the constant C ¢ >0 depends on € but not on o and .
Proof. The proof is divided into two steps.

Step 1. L* estimates. Taking 0 <k<m and [ >0, we set Hy \ :wIijgl and Hp =
w;VEG,. Then, Hy = [H x, H, 1] satisfies the following equations:

o]

GHlk ﬁvz} (UHlk)—f‘leB 1+| |2Hlk DCVU (AUHlk (223)
+2lu (1|%|2H1k+1/H1k (TXMZU[/C( ) ( )vkvv (ou)

T (ST ) et (905 461

——wlZC Vk/(|v]2 )Vk klgz——Zwle Vk( (A )y%)vlf,_klgz

K<k k’<k
~Towy Y. CEVEVWWEFRG 4100 Y CEwpVE (oK) VER G, VER,
0<k'<k 0<k'<k
2
v
€H2,k—ﬁ/vU'(UH2,k)+ZZIB 1_||_|| |2H2k DCVU (AUHz,k) (224)
Av H
+210€U (| ’2H2k+1/H2k U'ZUIK< ufk)
l

=Ty, Cf Vor (VE0VE™ 0o ) + 1uyaCl wy Vo (V5 (40) V¥ 6

~Tqwy Y. CEVEVWEKR Gt gow; Y CFVERVEKG,
0<k <k 0<k <k
/ / _1 1/
+0 Z CIIE wlvlé ((1—)(]\/[)‘11 2/C> Vg k g1 +le’§,]-“2,
K<k
where
Hy:=[Hy,Ha] = [H1,0,H2 0] =w;[G1,G2].
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Notice that (2.23) and (2.24) are linear PDEs of first order, it is convenient to apply
the method of characteristics to obtain L* estimate (cf. [17,18]). To do this, we first
introduce a uniform parameter f € R, and regard H; ;(v) = H; x(f,v)(i=1,2), then
define the characteristic line [s,V (s;t,v)] for Egs. (2.23) and (2.24) going through

(t,v) such that

C;_‘; — BV (s;t,0)— AV (5;t,0),

V(t;t,v)=0,

(2.25)

which is equivalent to
V(s)=V(s;t,0) o (s=)(B'I+ad),,

Since B’ #0, it is natural to expect that |V (s)| — +o0 as s - —o0 and Gg(v) — 0
as |v| = +o00. Due to this, integrating along the backward trajectory (2.25) with
respect to s € (—o9o,t], one can write the solutions of (2.23) and (2.24) as the mild

form of
6

Hy(o(t) =) _Z;

i=1

with
[t A(r V(1)) Hy
Il :0’/_006 s ’ XMZUZIC Tl' (V(S))ds,
t .
T,— / e—fstAe(TrV(T))dT{wlﬁ”(%) v@vv.(vy)} (V(s))ds,
— o0 I

t e / / /
T= [ el <nv<T>>df{1k,_1wl BCf Vo (VEoVE¥a))
+1p—1aCf w0, Vo (V5 (A40) VG ) }(V(s)) ds,

‘ — [T Ae(T,V (1))dT v) B K (112,35 vwk—FK
I4:—/ e Js ’ ch jwlvv (|v| ;ﬂ)VU Go

- kK <k
s (oAt 7146 b (v19)

t : € / / /
Ti=tpgo [ e ATV 3 C,’j{—wlvlgvvlé_k 6

—® 0<k'<k

+w,VE (xmK)VEF Gy } (V(s))ds,
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t .
.- /_ e_jStAe(r,V(T))dT (wlvﬁ}“l) (V(s)) ds,

and
11
Hy =Y T,
i=7
with
t
Ty=g [ e FAVNT [w K(%k)} (V(s))ds,
—00 1

t € / ! /
Ty= /_ o= i A <TfV<T>>dT{1k,_1wl/3’c,’§ Vs (v’; ovk=k gz)
—I—lk/:lth]z:/lev. (V};}/(AU)Vg—k/g2> } (V(S)) dS,
t
Ty=0lpg [ e FA @@
e {—wlv’;’vvi‘,—k’gz+wlv§’1<v’;,—k’gz} (V(s))ds,

0<k'<k
t
Tio=0 / o J AT @Y ()T
—00

t
7 — /_ e_fstAe(T,V(T))dT (wlv’é}“z) (V(s))ds,

where
A (T, V(7))
=v(V(7)) —I—e—3/3’—|—21[3’1J|FVH(/T()T|§’2 +210¢V(12"§/1?‘T/)(’§)) —atrA
> u(V(©),

169

provided that € >0, « >0, la and |atrA| are suitably small. Note that v(V (7)) is
independent of V(7) in the Maxwell molecule case. Here and in the sequel, the
velocity derivatives VX acting on the nonlocal operators such as K, K, etc. are

understood in the way as (4.2).
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In what follows, we will compute Z; (1 <i<11), separately. The estimates for
7, is divided into two cases. If y =0 i.e. the Maxwell molecule case, we apply
(4.11) in Lemma 4.4 to obtain that

C B vy C
L < Il [ 30 ds < S | H(0) i,
where
1/0:/]Rs/szBo(cosO)y(v*)dde* > 0.

If 0 <y <1, Lemma 4.6 leads us to
Hy

nis [ e O (s) p(ve)] ™ i (22} (v(s)) s

t t C
S/_ooe_fs"(v(f))dTV(V(S)) <m+€> | Hyx(0) || L~ ds

: <ﬁ+g> [ Hyx(0)[| L,

where the following estimate has been used:

t
/ e_fstV(V(T))dTV(V(s))ds <1
By virtue of (2.20), one has
T < Ca|[Hypl| o+ Car[| Hp 0 [ -
It is straightforward to see that

I3<Ca ) |Hypllie, ZaZg<Ca)_ |[Hpp|lre.
K<k kK <k

For Z5, we first rewrite VK (x,1K) (VK G) as
V8 (k) (V59 61)

Z Ck//vk/ k// VIZ{}NIC (Vg_k/g1>
K'<Kk

= Y v Vi {Q(mVE G ) +Q(VEFGuLn) |-

k//<k/
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Then it follows that

511 <C Y [[Hy | o,
kK <k

according to Lemma 4.7. And likewise, we also have

T1<CY [[Hypl L
K<k

Next, Lemma 4.2 leads us to have

Iglk21 S C Z HHZ,k’ ||Loo.
kK <k

For 7 and 741, one directly has

I6§CHw1V’§,}“1 InﬁClev]éfz

{1 [

Finally, for the delicate term Z;, we divide our computations into the following
three cases.

Case 1. |V|> M with M suitably large. From Lemma 4.1, it follows that

C C
«)dv, < < —.
/kw(V,v )do STTVISM™

Applying this, one has

C
1;< sup kw(V/U*)dU*HHz,kHLw§M||H2,k||L°°- (2.26)

—co<s<t/IR3

Case 2. |V| <M and |v.|>2M. In this situation, we have |V —v,| > M, then

eM?2 S‘V*Z}*‘Z

kw(V,v*)§Ce_ ¥ kw(V/U*)e 8

e|V—u04 |2

Using Lemma 4.1, one sees that f ky(V,vi)e” 8 do, isstill bounded. Therefore,
by a similar argument as for obtaining (2.26), it follows that

_eM?
I7§C€ 8 ||H2,k||L°°-

To complete our estimates for Z;, we are now in a position to handle the last case.
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Case 3. |V| <M and |v.| <2M. In this case, the key point is to convert the bound
in L®-norm to the one in L2-norm which will be established later on. To do so,
for any large M >0, we choose a number p=p(M) to define

Ke,p(V,04) = ko (V,04), (2.27)

Lyv—o.>1 joul<p

such that

1

One then has

1
p<Coup [ deup(V,02)|[ViGa(00) |do 5 el

S

1
<C(p)sup||VEG| M [ Fz

L,
according to Holder’s inequality and the fact that
. k%ulp(V,v*)dv* < o0.

Therefore, it follows that for any large M >0,
_em? 1 k
Lr<Clem s 437 ) [ Hagllie+C|[VeGal|

Combing all the estimates above together, we now arrive at

Lo +C0£||H1/0

C
%+€+—+C“> | Hx Lo

C
(a+myi I
+Ca ) [ Hpporl o+ 1>1C Y ||H1,k’||L°°+Clevlz§leLw,
K <k K<k (228)
e e Ay | LAUBSE ) S LA
<

+CY | ||H1,k/\|L°°+CHvléng+CHw1VI§7:2HLm-
K<k

[ Hy kL < <1o<7<1

It should be pointed out that the constant C in (2.28) is independent of ¢ and e.
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Step 2. L? estimates. To close our estimates, we now turn to deduce the H* es-
timate on G,. To do this, we start from the basic L? estimate of G,. By the inner
product ((2.21b),G,), one has

€(G2,G2) —B' (Vo (vG2),G2) — (V- (AvG,),Gr)
+(1=0)(vG2,G2) +0(LG2,G2) —U<(1 —XM)V_%/C91,92> =(F2,G2), (229

where we have used the identity
vf—oKf=(1—-0o)vf+oLf.

Applying Lemma 4.3 and Cauchy-Schwarz’s inequality, we get from (2.29) that
for [ >3

e|lGal*+(1—0) |G|l 4600 | P1 G2 |
€ C C
< Ctxllgz||2+1 ||92||2+g ||wzg1||%oo+g w0, ||,

which further implies

€ C C
§\|g2\|2+(1—a) 1G2 54600 || P1Ga |7 < < llwiGr ||7ioo+g\|wlfz\|%w, (2.30)

provided that 0 <a <1—0c with0<o <1.

In order to derive the L? estimates of the higher order for Gy, one gets from
(VE(2.21b), VEP,G,) that for k>1

e(V5(P1Ga+ PuG2), ViP1Go ) — ' ViV, (0P1Ga), VP16
B (VYo (0P0G2), VEP1Gs )~ ( VAV, (A0P1Gs), VAP s )
(VYo (A0P)Ga), VEP1Ga )+ (1-0) (VVEP1Go, V5P1G, )
+(1-0) Y CE(VEvVERP G, VEPGy)

1<k'<k
+(1-0) Y CE(VEvVER PGy, VEPGy)
K<k
+0(VE(LG2), VEP1Ga) ~ (V5 | (1—xa)u 2K G1 |, VEP1G2 )

= (ViR VEPIG,),
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from which, by using Lemma 4.3 and Cauchy-Schwarz’s inequality again, we
further obtain

eHV];PﬁzHZ—I—(1—0)HV];Plngi-i—éltfHV]éPﬁzHi—C||P1g2||2
<Cltn) TG €, T [VEPGal+C - e il
Kok =k
+Clw V|| +ClIPoGa 2, 2.31)

where 7 >0 is suitably small.

As a consequence, a linear combination of (2.30) and (2.31) with k=1,...,m
yields

e ¥ VARG P +elPoGal? 4+ X || VERLG |

1<k<m k<m
<C(e) Y |wiVEG|[}w+Cle) ¥ |, VAR 2... (232)
k<m k<m

Finally, taking the linear combination of (2.28) and (2.32) for 0 <k <m and adjust-
ing constants, we get

Y. {lIHixlle=+HokllL=} <Cle) Y szvlé[]:lffz]um'

0<k<m 0<k<m

This shows the desired estimate (2.22) and ends the proof of Lemma 2.1. ]

2.3 Existence for the linear problem with fixed € >0

With Lemma 2.1 in hand, we now turn to prove the existence of solutions to (2.21)
with fixed € >0 in L* framework by the contraction mapping method.

Lemma 2.2. Let all the assumptions of Lemma 2.1 be satisfied. There is ly >0 such that
for any 1> ly arbitrarily large, there are ag = ao(l) > 0 and large M = M(I) > 0 such
that for any 0 < a < g, there exists a unique solution [G1,G] € Xy to (2.21) with o =1

satisfying
R A P
0<k<m

<C Y {loViA| ot oA} (2.33)

0<k<m
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Proof. Our proof relies on the a priori estimate (2.22) established in Lemma 2.1
and the bootstrap argument, cf. [14-16].

Step 1. Existence for c=0. If =0, then (2.21) becomes

egl—ﬁ’vv-(v%)—ﬂcvv (Avg1)+vg1+ |U’ \/_g

(A
+w¥ﬁ%—ﬁ"<g>vv-<w>=ﬂ,
€Gy—B' Vo (vG2) —aVy- (AvGy) +vGy = F.

Then, in this simple case of ¢ =0, since there is no trouble term involving K and
IC, the existence of L*-solutions can be easily proved by the characteristic method
and the contraction mapping theorem. That is, it follows immediately that

B Ql,gz]me §C$H[}—1/}—2]me' (2.34)

Step 2. Existence for 0 €[0,0,] for some 0, >0. Letting o€ (0,1), we now consider

€gl_ﬁlvv'(vgl)_“vv (Avg1)+vg1+ |U| \/_g2

+“U'(;w) —B"(9)Vo-(vp)
=0xmKG1+F1, (2.35)
€Gr— B’V (vG2) —aVy- (AvGy) +1v Gy
= 0KGy+0(1— xm)p 2KGi + T, (2.36)

To verity the well-posedness of the above system, we further design the following
approximation equations:

n+1 ‘B V,- ( n+1) —aVy- (A,Ugn-i-l) +Vgn+1

B oy Tart a0 gt grgr )9, o
- UXMngl +F=FY, (2.37)
Gl BV, (0G1FY) —a V- (A0GIHL) +vGIH]
=0KGI +0(1—xp)p 2KGP + Fpi=FiV (2.39)

with [GY,GY] =(0,0]. Our next goal is to prove
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(i) [G],GY1 is uniformly bounded in X,

(ii) [G},G3]5., is a Cauchy sequence in X,,.

Thanks to (2.34), it follows

[lora ), <c< =",
<CroCilllet GElx, +Cr X (e VER | ot [0y VER ] b (239)
- )

where C; >01is independent of ¢ and n. Choosing 0 < ¢ <1 such that

|
CeoCi=7, (2.40)

and moreover there exists a positive integer N such that
No, =1. (2.41)
Then we get from (2.39) that
1161.93] (g, <2Mo, (2.42)

for all n> 0. Furthermore, by (2.37), (2.38) and (2.40) and using (2.34) once more,
one has

H (g1 G3t —[61,65] (2.43)

Xim

<CyoCy| (61,08~ 16057 %

e ]

As a consequence, (2.43) and (2.42) imply that the system (2.35) and (2.36) admits
a unique solution [G1,G] € Xy, for all o € [0,0,]. Moreover, utilizing Lemma 2.1,
for such a solution, we actually have the following uniform estimate:

l1602l g, <Co X {0 VA | ot fr VR )

0<k<m

which is also equivalent to

Hfail[fl,fz] me <Ce| 7,7l (2.44)
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Step 3. Existence for o € [0,20%] for some o > 0. By using (2.44) and performing
the similar calculations as for obtaining (2.42) and (2.43), for ¢’ € [0,0.], one can
see that there exists a unique solution [Gy,G,] € X,, to the lifting system

€G1—B'Vy-(vG1) —aVy- (Avg1)+ygl+ ’v| G+ (A)\/ﬁgz
_:B//(g)vv'(v]/l)—U*XM]Cgl

:UIXM}Cgl+f1,

€Gy—B'Vo: (0G2) —a V- (A0Gy) +vGr — 0. KGo = (1= X))~ 2K Gy

=0'KGa+0" (1= xm)u 2K G+ Fa.

In other words, we have proved the existence of .,2” _on X, and (2.22) holds true
for o =20,.

Step 4. Existence for o =1. In this final step, we shall show how to extend the
existence of .,%2(_7*1 to the one of .#; ! by the above procedure. As a matter of fact,

using (2.41) and repeating Step 3 (N —2) times, we can prove that (,2”(1_\]1 is

—1)0%

well-defined. With this, we then consider the following lifting system:

€G1—B'Vy- (vG1) —aVy- (Avgl)—i—vgl—l— |U| VHG2

+aZ 20 G, p(0) (o) — (N~ 1) x0iKC G
=0 xmKG1+ 71, (2.45)
€G2— 'V (vG2) —aVy- (AvGy) +vGy — (N —1)0.KGy
—(N=1)on(1—xm) 2KG
=0'KGy+0' (1= xa)i 2K G+ P, (2.46)

where ¢’ € [0,0.]. Notice that we still have (N —1)c, <1 in the above system and
as in (2.30) we may let 0 <a <1 — (N —1)c,. Then as Step 2, we can further verify
that (2.45) and (2.46) possess a unique solution [G1,G,] € X, for ¢’ =0,. Thus Zl_l
is also well-defined. We emphasize that the solution we constructed here satisfies

€G1—B' V- (vG1) —aVy- (Avgl)—l—vgl—i— ]v| \/_gz—l—oc (Av)

—B"(G)Vo-(op) — xmKG1=Fi,
€Go—B'Vo- (vG2) —a Vo (AvGs) +1Gs—KGo— (1— xat )~ 2K Gr = F,

VG2
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which actually implies [G1,G,] € Xy, if [F1,F2] € Xy Therefore, by performing the
similar calculation as in the next subsection, we can still show the uniform bound
as (2.33). This ends the proof of Lemma 2.2. O

24 The remainder
We are ready to complete the

Proof of Theorem 1.1. Since G is given explicitly as (2.15), to complete the proof
of Theorem 1.1, it suffices now to determine Gr by proving the existence of the
coupled system (2.16) and (2.17) under the constraint

<GR,1, [1,0;,]0%] > 4 <GR,2, [1,03,]0[?] ‘u%> —0, i=1223. (2.47)

To do this, let us first go back to the approximation system (2.18). By applying
Lemma 2.2, for fixed € >0, we see that [Gﬁ#,(}l’ézl] is well defined once [G} ;,Gg ,]
is given and belongs to X,, for any m > 0. Furthermore, if [Gl’éll,Gl’élz] satisfies
(2.47), so does [Gﬁjl,Glréj;_l]. We now verify that {G |,Gi,};, is a Cauchy
sequence in X,,_; with m > 1, hence it is convergent and the limit denoted by
(G} 1,GR 5| is the unique solution of the following system:

€Ggr1—B Vo (0GR ) —aVy- (AvGR ) +vG
€ Q N €
= XK Gy~ B 0P GR 2~ S0-(40) VGRo+ BV (0/5C1)
+B5Vo (vp) + Vo (Avy/HG1) +Q(/HG1,/HG1)
+a{Q(VAG1 VG) +Q(VAGk V/HG1) } +0*Q(V/HGh, /IIGR) =N,
€Gfo— B Vo (0GR 1) —aVy (AvG ) + LG, =12 (1-xm)KGR 1,

where

1 3
B =apo+epi, Bi=3 [ GiLGido—% [ Pi{o-(40)y/ji}GCdo,

and

VHIGR=Gr1+HGR .
The key point here is that we can prove that the convergence of the sequence
{Gf’{,l,Gl’élz};’f:O is independent of €. To see this, we first show the following uni-

form bound:
I[Gk1, G2l lly <2Co, (2.48)
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where Cp>0is independent of €, n and a. We give the proof by induction on n>0.
Notice that [G% 1,G% ,] =10,0], if n=0 the system (2.18) reads

€Gr1—PB'Vo (vGi1) —aVy (AvGy 1) +vGy

_XMICGR 1 +ﬁ

(ﬁl <G1,LG1>) Vo (op)

|U’2V2GR2+ 50 (AU)P‘ZGRLZ

(G116 Vo (o) + B, (optc

+Vo (Avy/uGi) +Q (WGW%Gl), (2.49a)
€Gro—p Vo (vGr,) —aVo- (AvGy,) +LGg

—(1=xm)u 2KGk =0, (2.49b)

where B° and B are defined as (2.19). Performing the similar calculation as for
obtaining (2.28), one has

¥ [oViChll e <Cx ¥ [wiViGhal.+C, 250)
0<k<m 0<k<m
Y 0V5Ghall<C ¥ [ViGka+C ¥ fwviGhil. @5

0<k<m 0<k<m 0<k<m

where the constant C >0 is independent of €.

We now turn to deduce the H estimate on Gzlz,z- To obtain the desired estimate
which is independent of €, the conservation law (2.47) plays a crucial role. As
a matter of fact, by the iteration scheme (2.49), it is not difficulty to check that

(Ghas [Loslol] ) +(Gha [Lou o] ut) =0, i=1,2,3 (2.52)

for € > 0. We emphasize that (2.52) may not be true in the framework of (2.21)
with0<y<1land c#1.
Next, we denote for n>1

POGlgIZ: (ag+bg.v+cg(yv|2—3)) N
Here and in the sequel, we use the notation

n n n n .
b; :[ i1/9i 2/ 1',3}/ i=12

1

(2.53)
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From (2.52), one has
al+a3=0, bl+bi=0, ci+ci=0.

Consequently, it follows

PG| S y [az, Z,CZ] ] < y [al,bl,cl] ]N |Gk (2.54)

for I > 2. On the other hand, for the microscopic component of GR,Z' we get from
the inner product (VX(2.49),, VEP, G}<,2> with k>0 that

€ <V]§, (P1GR2+PoGRy), VAP G112,2> —p° <V]z§vv (vP1GRa), ViPs G11<,2>
— B ( ViV, (0P0Gh o), VEP1 G ) —a (VEV - (A0P1Gh 1), VEPIGh )
~a( VAV, (A0PoGh,), VEP1Gh 2 )+ VELP1G 5, VEPIGE 5 )
- <Vlz(; [(1 —XM)V_%KG}LJ V5P, G}<,2> =0.
Using Lemma 4.3 and Cauchy-Schwarz’s inequality as well as (2.54), one gets

(€+5O)HV§P1G}<,2H2

<Cle+a)||w,Gh 1|7 +C Y w0, VE Gh [ +Cliso||P1GRo |- (255)
K<k

Taking a linear combination of (2.55) with respect to k=0,1,...,m and applying
(2.54), we arrive at

[PGhal*+ T [V5RiGho P <C T il 256
k<m k<m
Therefore, by plugging this into (2.51) and using (2.50), we finally obtain
2 |fwerVeGrallet+ 3 [[wiVeGh

0<k<m 0<k<m

1o <Co,

for some suitably large Cy > 0. This implies that (2.48) is true for n=1.

We now assume that (2.48) is valid for n= N and then prove that (2.48) holds
for n=N+1. In fact, applying the estimates (2.28) to the system (2.18) with n=N,
one has

L [wveGri -

0<k<m
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<Ca ¥ [ovi6Ns et C L ViVl @57
0<k<m 0<k<m
2 e veGrs I,
0<k<m
<C Y IViGRFY+C Y (e VEGRTH e (2.58)
0<k<m 0<k<m
where
N_ 1 N 1 1 1
SN =2 (G LG Vo (0p)+ ==V (002G ) + Vo (A0 /G1) +Q (12 GGy )

1 1 1 1 1 1
—HX{Q (yZGﬁl,yzGl) +Q (yZGl,yZGIIy) }—HXZQ (yZG}y,yZ Gﬁf) .
Recall (2.15). By employing Lemma 4.7 and the induction hypothesis, one has
Yo |l VESN|| o < C+CaCy+Ca*Cy. (2.59)

0<k<m

On the other hand, since [Gﬁf 1/GIZ¥, 2] € Xy, from (2.18), it also follows

(GRTL[Loslol] )+ (GRS [Log ol u2 ) =0, =123
for € >0. Based on this, as the estimate (2.56), one has

[PoGR "+ X I VERIGRS [P <C Y [ VEGRT [ (2:60)

k<m k<m

Substituting (2.59) and (2.60) into (2.57) and (2.58), we get
Y |l VeGRT et 3 e VeGRE

0<k<m 0<k<m

< Co+CaCy+Ca®C3 < 2C. (2.61)

Hence (2.48) is valid for all n > 0.

Having disposed of the above preliminary step, we now turn to prove that
[GR 1,GRoll5= is @ Cauchy sequence in the larger function space X;,—1. For this
purpose, we first denote

[G?{,pé?{,ﬂ = [G?{,l - Gﬁl_llfG?{,z - G?z,_zl} , B'=p"-p" !, n>1,
then by (2.18), we see that the triple [Gﬁll,éﬁ’z, B"] satisfies

G”+1—/3 Vo (v G;fll)—avv-(Avégjl)wégjl—m/cégjl
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+ B ot G+ S (Av)pd G — B Vi (op)
BV (0Ghy) ~ B oPut G+ B0 (en 1)
"""{Q (V%GEIV%GO +Q (V%GLV%G?{) }-I—oczQ (ﬁéﬁ,ﬁéﬁ)
+02Q (it G p? Gl ) +02Q (1 G * Gl
€G! — BV (vCihY) —aVy - (AvCES ) + LGRS — (1) 2K Gyt
=p"Vo: (0GRo)-
Note that from (2.19) one actually has f" = a?f} = a?(p}—p4 ). Since both

(G 1,GR o] and [Gﬁjl,G?{El] satisfy (2.47), so does their difference [G}lﬁl,é?{gl]
With this, we can proceed analogously to the deduction of (2.61) to obtain that

IR A Ter vl I v eyl
k<m—1
<Calpi|+Ca Y {|[wiChill e+ [|wiChka

k<m-—1

+Ca Y {|[wC,

k<m—1

)

ot Gl

which is equivalent to
| [eritcast] |, - <Caf| [GRa.GRall, (2.62)

Therefore [Gj |, Gy ,| converges strongly to some function pair [Gf, , G 5] € X1
Moreover, from (2.48), it also follows

|[GR1-GRol llx, <2Co. (2.63)

We shall have established the theorem if we prove that [G}, 1, G, 5| —[Gr,1,Gr2] as
e—07. For this, we choose a positive sequence {€, }°°_; such that |e, 11 —€,|<27",
then €, — 07 as n— +oc0. We consider the following approximation equations:

enG;’jl v (UGIE&) —aV,- (AvGIe{’jl) ‘H/Gleilfl
€n €n e o — e, €n
:XMICGRJ_T’UP\/ﬁGR,Z_EU'(Av)\/P‘GR,z"‘%Vv'(U\/ﬁGl)
+B5" Vo (0p) + Vo (Avy/HG1) +Q(y/HG1,\/HG1 )



R.-J. Duan and S.-Q. Liu / Commun. Math. Anal. Appl., 1 (2022), pp. 152-212 183

_HX{Q(\/ﬁGl'\/ﬁG%)+Q(\/ﬁG;{n’\/ﬁG1)}‘HXZQ(\/ﬁG;”,\/ﬁG;"),
enGyly— B Vo (vGE,) —aVy- (AvGY,) + LG, =2 (1— xm)KGY,.

Since each pair [Gf{’fl,Gf&] is well-defined and satisfies (2.63), we have as the es-
timate (2.62) that

€n €n—1 ~€n €n—1
H [GR,l_GR,l ’GR,Z_GR,2 ] X

<Cley,—e€n-1|, n>1.
m—1
Thus [Gf{jl,GIe{fz] — [Gr1,GRr2] as €, —07. Moreover it holds that [Gr1,Gr 2] € X
satisfies the same estimate as (2.63). This proves (1.12). The non-negativity of the
steady solution Gg = pi+a,/7i(G1+aGR) constructed here is a direct subsequence
of the dynamical stability of Gs(v) verified in Theorem 1.2. This ends the proof
of Theorem 1.1. O

3 Unsteady problem

In this section, we turn to the time-dependent case. Our goal is to prove that the
large time behavior of the Cauchy problem (1.13) and (1.14) can be governed by
the steady problem (1.1) which has been solved in Section 2. The proof is based
on the local-in-time existence and the a priori estimate as well as the continuum
argument.

The local-in-time existence of the Cauchy problem (1.13) and (1.14) will be
established by an iteration method and Duhamel’s principle. Set G = Ggt+/Jif,
then we see that f satisfies

Auf+0-Vuf =B 2V (0 /) —ap ™1V, (Av\/Hf)+Lf
=T(f,f)+a{T(G1+aGg,f)+T(f,Gi+aGg)}, t>0, x€T?, veR’> (3.1)

with
VIF(0,%,0) = fo(x,0) =Go(x,0) - Ggt(v), x€T®, veR>. (3.2)

As it is pointed out in Section 2, to eliminate the severe velocity growth in the left
hand side of (3.1), it is necessary to use the following Caflisch’s decomposition:

VIf=hA+if,

where fi and f; satisfy
dtf1+0-Vifi—BVy-(vf1) —aVy- (Avfr) +vfi
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=xmKf _§|U|2\/ﬁf2_%v' (Av)\/lif2+aAv- (Vo /1) (Jo* =3) /icy,
+Q(f1, A1) +QUf1,Vif2) + Q(VHf2 f1)

+a{Q(\/i(G1+aGr),/iif ) + Q(VHf,/1#(Gi+aGr)) },
t>0, xe€T? oveR3, (3.3)

£1(0,x,0) = fo(x,0) =Go(x,0) —Gst(v), x€T?, vERS, (3.4)
dtfo+v-Vifo—BVy-(vfa) —aVy-(Avfr)
+aAv- (Vo /1) ([0]*=3)cs, +Lfa
= (1—xm)u 2KAi+T(ffr),  t>0, xeT? veR? (3.5)
and
£2(0,x,0)=0, x€T3 veR?, (3.6)

respectively. Here, ¢y, is defined as

Pofo= {afz(t,x)+bf2(t,x) vtcp, (4,%) ([0 —3)}\/@

To determine f, we instead turn to solve f; and f, through the above system.
We shall look for solutions of (3.3)-(3.6) in the following function space:

Y%,Tz{@,gz) sup - {[|widf G ()] o+ o[ 0dfGa (1) | < o0

7
0<t<T|z|+|9|<N }

associated with the norm

161Gl = sup 3= {[[wd2G (8)]] o+ wrdfG2 (D)) }

VT 0SIST|g[8|<N

We then have the following result on local-in-time existence. For brevity, we omit
its proof, cf. [14].

Theorem 3.1 (Local existence). Under the conditions stated in Theorem 1.2, there exits
T, >0 which may depend on « such that the coupling problem (3.3)-(3.6) admits a unique
local in time solution [f1(t,x,v), f2(t,x,v)] satisfying

| [f1,f2]]

< Coa?
YN, — 0

for a constant Cy >0 independent of «.
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In what follows we focus on deducing the a priori WN™ estimates on the
solution constructed in Theorem 3.1. Namely, we assume that [f1, f2] is a classical
solution to the initial value problem (3.3)-(3.6). The purpose is to prove

sup ) M [widl fi(s)]]
0<s<t|g|[9]<N

+a sup Z e)‘OSlea HLOO
0<s<tig|Jal<N

<c ¥ Jwdlhl,. 7
C]+[8[<N

for any ¢ >0 and some constant C >0, under the a priori assumption that
sup ), & widgfi(s)]
O=s<f|Z]+]8|<N
+asup Y A sza () o <@ o, (3.8)
Oss<HZ|+[9]<N

where Ag > 0 is independent of a to be determined later. Note that the initial
condition (1.16) is the consequence of (3.8). The a priori estimate together with the
local existence established in Theorem 3.1 and the continuum argument enables
us to construct the global existence for the Cauchy problem (3.1) and (3.2). Thus
we are ready to complete the

Proof of Theorem 1.2. We first verify that (3.8) holds true under the a priori as-
sumption (3.7). The proof is divided into two steps.

Step 1. W** estimates. Denoting

[81,82] (1) =™ [f1, 2] (1),

and defining

Pogo={aa(t,%) +ba(t,x) -0+ ca(tx) ([0 ~3) } Vi,

one has by (3.3)-(3.6) that

o]

9t [w0381] +0- Vi [w,9lg1] — po- Vv[wlaggl]—l—zlﬁ o |2w18§g1 3wl g

—aAv-V, [wlaggl] —i—ZZoc wlaggl octrAwlaggl — /\Owlaggl —i—vwlaggl

v- Av
+[of?
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=0 1 Crwidpo-Vad] pg1+Plgs0 Y, Cewidpo Vedl o

+aligso Y Cg wdg(Av)- V22
17'|=1

_1|§‘>0w1 Z C wlag g/l/ag g’gl_l—wlag( M}Cglo)—éwlaﬁ(hﬂ \/—gz)
0<7'<C

—szag (U- (Av)fgz) +ocwlal9 (AU' (vv\/_) (|U’2_3) \/ﬁcz)

+eM' w0 {Q(f1, 1)+ Qi) +Q(Vitf f1) }
+awe™'9f { Q(i(G1+aGR), /iif) +Q(v/Af,/H(G1+aGR)) }, (3.9)

alggl (lelv) = ang(x/’U)/

3t (w03 82] +v- V. [wdfg2] — po- Vo [wdf 2] —21B ”| |2wla€gz 3Bw;0Y g

v-Av
—aAv- Vv[wlaggz]—l—zm T ’2w18§g2 zxtrAwlaggz—Aowlaggz—kvwlaggz
:_1|§>0|€Z Cg wla§/v~vx8g_g/gz+,31§|>og|2 Cg wzag/U'Vvag_g/gz
=1 =1
+alsso ) Cg wlagf(Av)-Vvag_g,gz—zxwlag(Av-(VU\/ﬁ)(|v|z—3)cz)
¢']=1

/ _1
~Tgs0 ), C§wzag/vag_g/gz+wzal§(ng,o)+sz>§((1—XM)V 2’Cgﬁ)
0<'<¢

+eM'w,fT (f2, f2), (3.10)

and

aggz(O,x,v) =0.

As in (2.25), we recall that the characteristic line of the above system can be de-
termined by

dX

o =V(s;t,x,0),
Z—Z =—BV(s;t,x,v) —aAV(s;t,x,0), 3.11)

X(tt,x,0)=x, V(tt,x,0)=0,
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which gives
V(s)=V(s;t,x,0) =e~ —DBITad)y,
X(S) :X(s;t,x,v) =Xx— (ﬁI—FDCA)_l [e_(S—f)(ﬁH—zxA) _I} y

Along the characteristic line (3.11), we write the solution of (3.9) and (3.10) as the
following mild form:

(3.12)

9

wlaggl(t,x,v) =Y Hi (3.13)
i=1
with

1= h A Obg50 £,(X(0),V(0),
=—T1iz150 ) Cg/e JfAM T dT wlag/v-vxag_g,gl}(s,X(s),V(s))ds,

=1

H3=PBlign0 Y. Cg/ JtANT) df{wlag,v Vool C,gl}( X(s),V(s))ds,
¢'=1

Ha=al|z|~0 ) Cg/e JEAMT) df{wlagl (Av)-V ag g/gl}(s,X(s),V(s))ds,
=1

Hs=—1720 Y g/e SN df{wlag,uag g,gl}(s X(s),V(s))ds,
0<7'<¢

H6:/Ote_fsA 7) T{wlag(XMngl)}(s,X(s),V(s))ds,
7_[7:_/Otef:AA(T)dT{gwlag(|v|2\/ﬁgz)"‘%wlag(v'(‘%)\/ﬁ@)
—ocwlag(Av-(VU\/ﬁ)(lv|2—3)\/ﬁcz)}(s,X(s),V(s))ds,
Ha= [ e 2O L02 (O(r,fi) + QUi VER) +QRf )}
 (5,X(s), V(s))ds,
7—[9:0(/0 e fA T)dT )\os{ lag{Q(\/ﬁ(Gl_l_aGR)l\/ﬁf)
Q(Vif/H(G1+4Gr)) } | (5,X(s),V (5))ds,

and

wlaggz (t,x,0) ;07-[ (3.14)
i
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with
7‘[10——1‘€|>0 Z C@/ fA)\ dT{wlagm \Y% ag g/gz} (S X( ) V( ))ds,
'[=1
Hi=1~0 Y CC / o JLAMT dT{‘BwlagllJ \Y ag 82 +aw 9 (Av)- vvag 82
']=1
— w92 (Av- (Vo /1) (0] —3)c2) } (,X(s),V(s))ds,
Hiz= 1m0 ), c/e FAmE fwppnaf_g g2 (X () V()ds,
0<01<C

s = /Oe JEAN dT{leaggz}( 5,X(s),V(s))ds,

7'[14:1|g\>00 e C; / e AN dT{wl(ag’K)(ag g/82)}(5 X(s),V(s))ds,

7-[15:/(Jte—fs ANz dT{wlag ((1—)(M)y_%l€g1> } (s,X(s),V(s))ds,

Hro= [ e A OIS gl ()} (5.X(5), V() s

Here, as before we have denoted

2 .
AN, V(7)) =v(V(1)) —3,3—!—21,3% —I-ZszV(l? !g?‘r/)(!?) —atrA—Ag

2 .
= (V) -3+ 2 T o

and moreover, as long as la >0, |IB| and A( are suitably small, one sees that
AN,V (7)) > 3v(V(7)) > C) for some Cy >0, for which we also have

t t
/ e_fs”(V(T))dTv(V(s))ds<oo. (3.15)
0

We now turn to estimate H; (1<i<16) individually. We still start with the nonlo-
cal terms Hg, Hg, Ho, H13, H14, H1s and Hqe, which turn out to be more intricate
and be different from the corresponding estimates in the proof of Theorem 3.1,
because the estimates we want to obtain here must be uniform in time ¢ € (0,00).

For Hg, if y =0, one gets from Lemma 4.4 that

|7-[6|§_/ e — Juvie) des sup Z leag/gl )HLW

0<s<trr<g
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C
SM sup Z leag/gl(s)HLm.

Ossstgr<g
If 0< v <1, by (3.15) and using (4.13) in Lemma 4.6, we have

|He| SC/Ote_fstv(Vz(T))dTv(V(s))ds sup H{V‘lwlag()(Mngl)} (s,X(s),V(s)) H

0<s<t L

C
< <17>0m+g) sup Y [[widg1(5)]] o

0<s<H=g

Next, thanks to Lemma 4.7 and the a priori assumption (3.7) as well as (3.15), it
follows

t v T
|Hs] SC/ e S ))dTV(V(S))dS sup
0

0<s<t

e)‘os{v_lwlag{Q(fol)+Q(flr\/ﬁf2)

FQWARA) }}sX(0), V()

LOQ
<Csup ¥ {leag,/gl(s)}}Lw]]wlag//—ﬁ’gl(s)HLOQ

0<s<tgl4g<g
/<o

w21 g2 0] - |

< Ca? sup Z {leag//gl(S)HLoo“‘leag'/gZ(S)HLw}'

0<s<trr<r,0/<6

and similarly, in view of (3.15) and Theorem 1.1 and by Lemma 4.7, one has

|Hg| < Ca sup He)‘os {v‘lwlagQ(\/ﬁf,\/ﬁ(Q +aGR)) } (s,X(s),V(s)) H

0<s<t E
+Caos<1§5tHers {v wRtQ( V(G +aGr) V) } (5 X(5) V() |

<Casup ) leag/ [glrg2](S)HL°°'

0<s<tygg

[ H14| <17-0C sup Hers{V—lwl{ag [Q(VHf2 1) + Qgain (1, v/1f2) ]

0<s<t
- [ o) + Quan (vt )] } } (5 (9)) |

<1750C sup 3 [[,0082(5)]| o
0§S§t§/<§

Loo
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15| <C sup e {v 0 {(1—x0)~ 2 [QUA )+ Quainit 0]} } (5,V(5)) |

0<s<t

<Csup ) leag,gl 5)]| -

0<S<l’€/<g

LOO

For H14, in light of Lemma 4.2 and the a priori assumption (3.8), it follows
Mgl <Csup 3 [wiodga(s)]| o [lwi0d * g2(5) |
0<s<tg/4+7"<f,0'<®

<Casup ) leag/gz )| oo
OSs<H/<,0/<9

For the delicate nonlocal term H13, we first rewrite

t t
7—[13:/0 e Js A/\(T)dT/]R3kw (V(s),v*) (wlaggz) (S,X(S),U*)dv*ds. (3.16)

As in Section 2, the computation for H;3 is then divided into the following three
cases.

Case 1. |V (s)|> M. In this case, we get from Lemma 4.1 that
Hasl < < sup [|widlgs(s)]] o
MOSSSt

Case 2. |V(s)| <M and |v.| >2M. At this stage, one has |V (s) —v.| > M, thus it
follows
eM? e|V—04|?
ky(V,0,)<Ce™ 8 ky(V,v.)e 8
which gives
_em?
|H13| <Ce™ "8 sup leaggz(s)HLm,
0<s<t

according to Lemma 4.1.

Case 3. |V(s)| <M and |v,| <2M. The key point in this case is to make use of the
boundedness of the operator K on the complement of a singular set, so that (3.16)
can be controlled by the L! norm of g, which further can be converted to the L2
norm. To see this, for any large M >0, we choose a number p(M) to introduce
Ke,p(V,04) as (2.27), and then write

t
’H13=/ e—f:AA(T)dT/3[kw—kw,P+kw1P] (V(s),v*) (wlaggz) (S,X(S),U*)dv*dS,
0 R



R.-J. Duan and S.-Q. Liu / Commun. Math. Anal. Appl., 1 (2022), pp. 152-212 191
which further gives the bound

C
Hisl =47 Sup szaggz(s) (3.17)

=

—i—/e fAA 1|V J<M kuw,p(V(5),0+) ds.

|| <2M

(w1782) (s, X(5),0-)

J

Putting the above estimate for H;3 together, we thus have

em? 1
’H13’§C(€_%+M) sup [|w;0fg2(s)| - +73.
0<s<t

Up to now, one cannot deduce the desired estimate for J, which in fact will be
handled by iteration argument once all the other terms in the right hand side of
(3.14) have been properly controlled.

Let us now turn to compute the other terms in the right hand side of (3.13)
and (3.14). It is straightforward to see

[Hal <[|wid fol| o
[Ha|, |Hs| <1750C sup Z leag//gl(s)HLw,
0<s<t  ¢I<¢
+90'=0+0
| Hiol, [H12| <1z5oCsup ) leag//gz(S)HLw-
0<s<t  g/<¢
I +0'=0+9

From (2.11), it follows || < Ca. We then have

| Hal+|Hal+Hu| < Ca sup [[w0f[81,82](5)]| s
0<s<t

and
[Hrl<Ca sup 3 [widpga(s)]]
0<s<t§/<€
Consequently, by plugging all the above estimates for H; (1 <i<16) into (3.13)
and (3.14), respectively, one gets

]wza§g1(tx v ]<sza foHLm—i—1§>0C05upt Z leag,gl )HLOo
= §/+§9’<€§+19
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1 1 :
+C< +—+1ys0——rs+ ) Y. a7, .
MO T osgiztg/w&éw‘}wz es1l,

+Casup ) leag,lgz(s)HLm, (3.18)
O<s<tg/48'<{+9

‘wlaggz(t x,0)]|

2815)]| et 1=0Csup Y- widfiga(s)]
0<s<tr/<g 0<s<t ¢«
| +[8"|=5+9

+C<oc+e_€1\g2+$> sup Z leaglgz HLw—i—J (3.19)

O<s<t§/<€

To continue, we have by substituting (3.19) into J defined in (3.17) that

b
j<c/ o= [ AN DTy K (V(s),0 3.20
=C VEIM |y Ko (V(),0:) (3:20)
{ sup Z leag’gl )HLOO"i_1C>0 sup Z leag/gz(T)HLw}dv*ds
0<t<sg/<g 0<t<s  7<¢
¢! +0'|=¢+8
S S 40
+/e e 1|V )I<M *<2Mkw,P(V(S)IU*)/O e (T)dTl\v(s’)\ém

/|,<2Mkw,p(V( §'),0 )1X( ")eT? ds'ds,

where we have denoted

(wlaggz) (s, X(s"),0%)

V(s') =V (s35,X(s),0, ) =e~ (=) (BlHad)y,
X(s") =X (55, X(5),02) = X(s) = (BI+aA) 7 e~ IR —]o,

according to (3.12). As a consequence, (3.20) further implies

J<C sup Z leag/g1 )HLOO-FC1§>0 sup Z lealg’/@(ﬂHL°°_H5
0<t<trr<g 0<t<t 7/'<f
' +8'=7+0

with § denoting the second term in the right hand side of (3.20). To compute ),
we then split it into the following two integrals:

JiAM @)y Ky, (V *{S_%s}
H= /e VEOISM ] <om wp(V(s),2:) /0 +/s—170
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x e~ o At (D) Tjysn|< M/UHSZMkW,p(V(s’),v;)lx(s,)eT3
x| (widlg2) (s X(5'),0%)

where 79 >0 is suitably small. It is straightforward to see that

ds'ds =: 91+,

532<C770 Sup leaggz )| -

For $)1, since s —s’ > 1o in this integral, the Jacobian

- ’8352') |: ’ ‘(‘BI—HXA)_l [e—(s’—s)(ﬁI+DcA)_I] ‘ | > (5—85’)3 N %8,
according to Lemma 4.8. Moreover, if we denote
0, ={y|ly—X(s)| <|(BI+ana) [ C-IBA 1]y, |,
then, by applying (4.15) of Lemma 4.8, we have
Q| <C(s—5)eCx=),
With these, one gets by a change of variable X(s") — y that
2 \2
2= C/ B/ P [vl|<2M </|v*<2M ‘ (aggz) ( X(s )'U;) dv*) o, ds'ds
1
< C/O B/O " o (/Qyj *|(8882) (5 y,01) 2dy) " dol.ds'ds
1
<Cy, * / B/ |Qy|2 +1>/|v’*<2M< - (0982) (s'y,0L) 2aly) Zdvidslds

s 2 2
(9782) (s,y,0) ’ dydv) ,

3
<Cn, ? su (/ /
’70 Ogszt R3 /T3

where B=B(t,s)=e %(=5) and D=D(s,s') = 0~%) Thus, it follows

J<C sup Z szaglgl )HLoo—i-Clg>o sup Z leagng HLOO
0<s<tg'<g 0<s<t ¢«
o+ =0+0
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+C170 sup leaggz 5)|| [+ Cyq sUp Haggz(s)H.
0<s<t
This together with (3.19) further gives

’wlaggz (t,x,0)| <C sup Y. szag/g1 )|~ +1z>0C sup Y lea§’g2 M
<s<trr<g 0<s<t (/<
I+ =7 +0

1
_|_C<1x—i—e L +170) sup ) [|wi9g,g2(s)]]
0<s<trr<g

+Cﬁoos<1:}zt}}agg2(s) IE (3.21)

Finally, taking a linear combination of (3.18) and (3.21) with |{| =0,1,...,N and
|Z|+]8] <N, respectively, and adjusting constants, we conclude

sup Y [|w9fg1(s)| e
0<s<tg|+]8|<N

< Z leafoHLw—l—Ctxsup Z leaggz )HL‘X” (3.22)
CI+[8]<N Oss<tg|+|9[<N

sup Y [|w9lg2(s)| e
0<s<t|g|4[9]<N

<Csup ) leaggl 5)||,«+Csup ) Haggz(s)H. (3.23)
Oss<HZ|+[9I<N Oss<HZ|+[9I<N

Actually, from the proof presented above, we have the following refined esti-
mates concerning the L® norm of g1 and g» without velocity derivatives.

Lemma 3.1. Under the hypothesis (3.8), it holds that

sup [[w;g1(s)]|Lo < Cllwy fol|L=+Ca sup [|wiga(s)]|r=, (3.24a)
0<s<t 0<s<t

sup ||w;ga(s)| <C sup [[wig1(s)||L=+C sup [[g2(s)], (3.24b)
0<s<t 0<s<t 0<s<t

and
sup Y [Jwid’gi(s)]|,
O<s<t1<|9|<N

<C Y |wd’fol|w+Casup Y |wid®g2(s)| w (3.25a)
1<|8|<N 0<s<t1<|8|<N
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sup ), [[wid’ga(s)]]

0<s<t1<|8|<N

<Csup )_ leaﬁgl(s)HLm—l—Csup Yo 19%g2(s)]|- (3.25b)

0<s<t1<|9|<N 0<s<t1<|9|<N

Step 2. 12 estimates. To close our final estimate, it remains then to deduce the
HY, estimate of "' f,(t,0) in (3.23). The computation is divided into the follow-
ing three sub-steps.

Step 2.1. The estimates for c. In this sub-step, we consider the basic 12 esti-
mate for ¢, which is difficult to be obtained due to the exponential growth of the

heat flux, cf. [25]. Recall [g1,85](t,0) =e™![f1,£](t,0) and \/fig = g1+ /Hig2. 1t is

straightforward to see that g satisfies

91g+0-Vig— B 2 V- (03/ig) —apt ™ 2 Vo (Av\/ig) — Aog +1Lg

:{Aotl’(g,g) +a{T(G1+aGg,g)+T(g,G1+aGg) }, (3.26)
R
with
V18(0,x,0) = fo(x,0). (3.27)

Similar to (2.53), we define
Pog= {a(t,x) +b(t,x)-v+c(t,x)(|o* —3) } VI
Pogi = { a1 () b1 (t,3)-v+er () (Jo ~3) |1,
and recall the definition

Pogs = {az(t,x)—l—bz(t,x) o+ (t x) (|v[2—3)}\/ﬁ.

Then it follows
a(t,x)=aq(t,x)+ax(t,x),

b(t,x):b1 (t,x)+b2(t,x), (3.28)
c(t,x)=cq(t,x)+ca(t,x)

forany t>0and x € T3. In addition, (3.26) together with (1.15) and (3.27) implies

/Tsa(t,x)dx:O, /T3bi(t,x)dx:0, i=1,2,3, (3.29)
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where we have denoted b= (by,b,,b3). Next, taking the moments

(Jo*=3)H, i=12,3

N =

\/ﬁ/ 0j \/ﬁ/
for Eq. (3.26), one has

ata+Vx'b:O

Otbi+0i(a+2c)+)_ ((B—Ao)[+aA), b+Za i, P1g) =0, (3.30)
] ]

atc+—Vx-b+,Bloc2(2c+a) —A0c+gvx- < (]v|2—5)v\/_,P1g>

+= Zaw i, P1g) = (3.31)

where
Sij | 1 .
"%l]: UZ'U]'—§|U’ \/7/ 11]21/2/3

with ¢;; being the Kronecker delta, and the identity o+ 1trA=0 was used while
deriving (3.31).

Furthermore, taking the higher order moments .«7; and

o 1 .
%d—f—(|v|2—5)vl\/ﬁ, ,j=1,2,3

for Eq. (3.26), respectively, we obtain

04 (., P1g) +0;bj+0;b; — Vx-bé‘iﬁ( i1,0-ViP1g)
—ﬁ<u‘fvv-(v\/ﬁg),%>
—“<P‘_%VU'(Avx/ﬁg)rﬂfij>—/\o<1’181£fij>

=(~Lg+%,o7), (3.32)
at(,@i,Plg>+8'c+<@i,v~VxP1g)—,B<y_%vv~(v\/ﬁg),,@i>

—a( AV, (Avy/fig), B ) — Ao (P13, %)
=(—Lg+N,%). (3.33)
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Choosing Ao = B1a?, we get from the inner product ((3.31),c) that
Zdt || ||2+.81‘X2|| ||2+ Zal] 1]/P1g1 +3 Zal] Cl/ 1]/P1g2>)
+§Zai]‘(C2/ ij, P1g2)) — (b/vxc)+,310£ (a,c)
i

_% (1P —5)0\/7i P1g), Ve ) =0. (334)

Note that the delicate term 3Y; ;a;i(c2, (7, P1g2)) will be cancelled later on.

We now derive the L2 estimate on P, g2. Recall that g, satisfies
0t82+0- Vg — BV (v82) —aVy- (Avgs)
+aAv- (Vo /1) (0> —3) ca— Aog2 +Lga
= (1= xam)n " 2Kg1+e T (g2,82), (3.35)
and
22(0,x,0)=0.

Taking the inner product of (3.35) and P1g, over (x,v) € T xR® and applying
Cauchy-Schwarz’s inequality, one has

2dt||P1g2||2—oc(Av Vo{la2+b2-0]\/1i},P182)
—Za(AU-v\/ﬁcz,Plgz)—l—AHPngHV

2
<C||Vxla2,ba,co]||”+Ca?|lwigo||Fo +Cllwign || 2
2
<C||Vlab,c]||"+Ca*[wiga|fe +Cllwigs |12, (3.36)

according to (3.28), (3.29) and the following estimate:
|(T'(82,82),P182)] (3.37)
14
<11|[P1g2 I3 +Cy /1r3 [v2g2|| 2dx <1[P1ga ||} +Cya? ||wigal |7

in the case of [ > 2.

Notice that
(AU-Z)\/ﬁCZ,Plgz) = E ﬂij(Cz, 1]1P1g2>)
]
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we now get from the summation of (3.34) and %(3.36) that

1
2
ZdtH | +12dt|

<Cy sup || Vxla,b,c](s)]|*+(Ca? +1) w2 [+ +C sup [[wiga(s)[%,  (3.38)
0<s<t

0<s<t

[P1g2 ]|+ A% [e|>+ Al Prga1F

where we have used the relations

g1l < IPog2(s)[[+IP1g2(s)ll,  IPoga(s)l| < Cl|[a,b,c]|| +Ilwiga(s) ]l

for [ > % according to (3.28). Further, (3.38) gives

sup o?[[2(s)[2 < C sup || Vila,b,c](s)||*+ (Ca?+1) sup [[wiga(s)|F

0<s<t 0<s<t 0<s<t

+C sup ||wg1(s)||%. (3.39)
0<s<t

Next, substituting (3.39) into (3.24b), one has

 sup [|wiga(s) || < C (a+(+4)?) sup [wiga(s)]|u

0<s<t 0<s<t

+C sup || V«a,b,c](s)]|. (3.40)

0<s<t

Finally, we get from (3.24a) and (3.40) that

sup [[w;g1(s)||L=+a sup [lw;g2(s)l|L

0<s<t 0<s<t

< CllwifollL=+C sup || V[a,b,c](s)]- (3.41)

0<s<t

Step 2.2. Higher order estimates for [a,b,c|. We are now in a position to de-
duce the higher order L? estimates on [a,b,c]. To do this, we first get from (3.32)
that

Y 010 (7, P1g) 4010, P1g) + Ab; +3 a Vb=% (3.42)
L]
with

= Z 0; { 1]10 VxP1g>+,3<}4_%Vv(U\/ﬁg),«%>
L]
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AV (Ao g, ) + o(Prg, o)+ (~Lg-+ )
+9; { (j,0- VxP1g>+ﬁ<V‘%Vv-(v\/ﬁg),%>
<# 2V (Av\/Hg), z]>+Ao<P1g, ij)+ <—Lg+9%,%>}'

Letting N—1> |9 > 1, one has from ¥;(0%(3.42),0%;), ¥:(9(3.33),0%;c) and
Y-:(9%(3.30),0%0;a) that
d

- 1
S| V.9 P+ 5909 b 2

—2(23319 4, P1g) +aa (), P1g),
[ NLiFE]

0° (9(a+2c) +Z (B—Ao)[+aA), b+Za l],P1g>) ~ Y (2°%,0%,)
j

(+0?) Y Jwd” ;.
1<|0/|<N

+Cy ) {Haﬂll’lngerszaﬁlngim}, (3.43)
1<[9']<N

<(n+w)||0°[a,b,

2 e V.|

:_Zi;(al’(@i,o-vxm@—ﬁ<y‘5vv-(v\/ﬁg),%’i>
—a(p IV, (Av\/ig), B ) — Ao(P1g, Bi) — <Lg+%%’i>),a”aw)
+lz<aial9<%i,P1g>,al9(,Blocz(ZC-l—a)—)\oC-l—%Vx'<(|U|2—5)UIP18>
e
(f+a%) Y Jwd” gl

1<|¢/|<N

+C Y {Haﬂ'l’lngz+ s [ }. (344
1<[0']<N

<(7+a)d%ab,
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%gmﬂ}vxa%uz

= —Z (9%9;b;,0°V - b) —22 (9%9;¢,0%0;a)

_Z<[al9 (B—Ao)I+aA) l]b +Za 1]/P18>},aﬂaiﬂ)
ij

<(n+a)|[ )|[[9%a,V0%a] H —|—CHVX8'9 b,c] ]

+C ¥ {197 Paga ]+ i 51}
1<|¢/|<N

respectively, where we have set

grt=—y" (at’( Y 0i (<, P1g)+9;( ;;,P1g>),aﬂbj)r

j i
5éntzz(aﬁ<%ilplg>’aﬂaic> , (345)

i
EM=Y"(3%9;b;,0%9;a),

i
and in addition, for [ >4, the following estimates of the type:
[o7(Lg 20
<Cllv'T(8%P1g, /)| +C|lv T (y,0°Prg) ||
< Cl[P13°g2 " +Cllwid”ga

Lool
(8T (s.9),2:) |
<cy / [ QU g 0" g) i
Y <o

<CY w10 " gll[ln<Ce Y [wi0?81,0" gl ;-
9'<9 1<|8| <8

have been used.

Consequently, letting x; >0 be suitably small, we get from the summation of
(3.43), (3.44) and x; x (3.44) that

d
dt

‘ 2

A E - EL - EM] | Vila,

Y. Hvxaﬁ[a,b,c]
1<|8]<N
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< Y [wd'slio+C Y {lo%Pig] H[wdg]i.f,  (346)
1<|8]<N 1<|8]<N

where the Poincaré’s inequality || Vy[a,b,c]|| < C||V2[a,b,c]| has been also used.

Step 2.3. Higher order estimates for P;g,. With the above estimates in our
hands, we then turn to obtain the higher order L? estimates on P g». For this,
letting 1 < |8 < N, we take the inner product of 9%(3.35) with 9%¢, and apply
Lemma 4.3 so as to obtain

d
Y %+ Y [0%Pigll;
1<[9]<N 1<[9]<N
<(Cal4p+do) Y [P0l +Ca? Y [fwid?galf}w
1<[9|<N 1<[8|<N
2

0o’

+Cy Y ||wd’s| (3.47)

1<|9|<N

where according to Lemma 4.2 and the a priori assumption 3.8, the following
estimate has been used:

| (9°T(g2,92),9%¢2) |=| (aﬁr(gz,gz),aﬂlﬁgz) |

2 1.9 2
<nllPigalli+y [ vi” sl
<5][0*Prga|[; +Cy | wid? o[} 1" 2]

<p)0®Prga|i+Cpe® Y [[wid%salf7
1<[9|<N

o

with [ >2 required.
On the other hand, from (3.28) and (3.29), it follows

l[a2/b2, e < |

for [ > % In addition, by (3.45), we have for [¢| <N —1

[a,b,c]||+Cl[wig1]|
(3.48)
[a,b]|| < C||V[a,b]|| < C||Vigall+Cllw; Vg1 |o,

‘Kl(c/';nt+gént+gént‘
<[|V29%[a,bc] || *+C[| Vad’ga|*+C [0, V23|
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Let k2 >0 be suitably small, then we define

2

7

En(t) =12 (0 EF +EM+EM) + 10%¢>
1<|9|<N

and hence there exist positive constants C; and G, such that
Y %) -G L ([wd’sl,
1<|8|<N 1<|8|<N

<& Yy 0% +C Y [lwd’all
1<|9]<N 1<|9[<N

By this, (3.46) and (3.47) lead us to

d
a51”V(t)+A5k,(t)

<c® Y |wd’slintC Y [lwd”sl];w
1<[9]<N 1<[9]<N

which further gives

wup oo el sup 3 [9"a(o)|

0<s<t 0<s<t1<|8|<N

<Ca’sup Y. leaﬂngiw—l—Csup ) leaﬁgl(s)Hiw, (3.49)

0<s<t1<[9|<N 0<s<t]<|9|<N

where (3.48) has been used. As a consequence, (3.25a) and (3.49) imply

sup Y. [[wid’gi(s)|[wtsup Y [wi9%g2(5)]|

0<s<f1<|9|<N 0<s<f1<|9|<N

<C Y wd’fol| w- (3.50)
1<|8|<N

Thus, we get from (3.41) and (3.50) that

sup ||w;g1(s)||r=+a sup |lw;ga(s)||r=

0<s<t 0<s<t
+sup Y [[wd’gi(s)|| ot sup Y [wid®sa(s)|
0<s<t1<|9|<N 0<s<t1<|9|<N

<C Y ||wid’fol] - (3.51)

|8|<N
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Step 2.4. The estimates for mixture derivatives. In this final sub-step, we shall
deduce the L? estimates on aggz with >0 and || +|8| < N. To see this, we first

get from the inner product of aﬂ(a 35) and 9¢ 782 over (x,0) € T3 x R? that
(9:0782,0782) + (0 (v Vx82),0¢82) = B(3 (Vo (0g2)) 9 82)
— (agvv- (Avgz),aggz) Ao (aggzraggZ) (angz,aggz)
= (02 (1 -x)n2Kg1) Dlg2) +e ! (9T (g2,82),0882).
which gives
Hagng +2(31-A0) 82 ;

SC}}al’ng +C Y [Pl +C(ata®) ¥ [wdlsa;.
L 7]+ [9|<N

+’7Hagg2H +Cy Z leacngLw

according to Lemmas 4.3 and 4.2. Thus, it follows by Gronwall’s inequality

sup [|9¢82(5)|°
0<s<t
<C sup Haﬁgz H2+C sup Z Haé’gZH
0<s<t 0<s<t|¢/|+|¢'|<N
I'<¢
+C(a+a®) sup Y. leaggz}}Lﬁc sup Y. [[wiofigi(s )Hiw
0SS<H|Z|+[8]<N =te's
which further implies

sup Y [0fga(s)]

0<s<t|g|+[o|<N
7>0

<C Y, sup [[%(s)|*+Csup Y [[widlgi(s)] -
|,9|§N0§s§t 0<S<f\§|+\19\<N

+C(a+a?) ) leagngLw. (3.52)
Cl+[8|<N

On the other hand, from (3.22) and (3.23), it follows
sup ) [Jwidggi(s)]

0<s<t|g|+|8|<N
>0
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< ) wdhlle+Casup Y fwidiga(s)]-

ICl+[8[<N 0<s<t\g\+w\<N

+Ca sup ) [w,0°g2(s) HLW

0<s<t|9|<N

sup ), [[widgga(s)]

0<s<t|g|+|9|<N
>0

<Csup ¥ [wdlai(s)o+Csup ¥ [oleas)]

0<s<t|g|+|0|<N 0<s<t \§\+\19\<N
>0

TCsup 3, [wid’g1(s)l|pwtCsup 3 [[w0d°ga(s)l] e
0§s§t|19|§N 0<s f\0\<N

Now (3.51)-(3.54) lead us to

sup ) [[woigi(s)] e tasup Y [[wdiga(s)]
0<s<t)g|[3]<N 0<s<tig|+[5]<N

<C 3 [fwidgfoll

ICI+I8I<N

Thus, (3.7) is valid and this also confirms (1.17).

(3.53)

(3.54)

Finally, by the similar procedure as that of [14, Step 4, pp.47], one can show
that the solution of (1.13) and (1.14) is non-negative, and the details of the proof

is omitted for brevity. This ends the proof of Theorem 1.2.

4 Appendix

O

In this section, we provide those estimates that have been used in the previous
sections. We will first give the basic estimates on the linearized operator L as well
as the nonlinear operators I' and Q, then present a key estimate for the operator
KC in the case of hard potentials, and in the end derive a lower bound for a matrix

exponential.

The following lemma is concerned with the integral operator K given by (2.3),
and its proof in case of the hard sphere model (v =1) has been given by [24,

Lemma 3].

Lemma 4.1. Let K be defined as (2.3), then it holds that

Kf(o)= [ k(@0.)f(0.)do,
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with
e |lo2 o 2]

1
—zlv—o
8‘ * [o—vs |2

k(v,0,)] gc{|v—v*|’r+yv—v*|—2+7}e

Moreover, let
ko (v,05) =w; (0)k(v, v )w; (v,
with 1 >0, then it also holds that

C

elo—vx | v*\z
ky d
/ (v,v4)e 05 < r |v|
for e=0 or any e >0 small enough.

For the velocity weighted derivative estimates on the nonlinear operator T,
one has

Lemma4.2. Let 0<y<1and 6 €[0,1]. For any p € [1,+0c0] and any 1 >0, it holds that

[eorv=0:T(f,8)]| .1

<C Z { levl—f)ac
g'+"<g

Proof. Note that if I =0 and { =0, (4.1) was given in [29, Theorem 1.2.3]. Let us
now show that (4.1) can be generalized to [ >0 and ¢ > 0. For this, we first have
from definition (2.2) that

0T (1,8) =0 [, [ Bolcoso)o—v. it (0.)f(2))g (o)) deodo.

~0g [ [ Bolcose)lo—o.["ut (0.) f(0.)g (o) deodo,

=3c [ [ Bolcos®) o—o. 73 (0.) £ (g (o) deodo.
—eode[g(0) [ oot 0.0 (o).,

1_98€//gHL5}. (41)

where we have used [¢, By(cos8)dw = cq for a constant ¢y > 0. Then, by a change
of variable v, —v— u, one has
IT(f.8)

. cgcé”/ /BO cos0)|ul" (3 ) (u+0) (3 g0 f) (0+u1) (3grg) (0-+ ) dewdu
'<g'<g

I
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—Coé,ZéCg/ [(ag'g)(v)/w\uﬁ (3 orm? ) (o4u) (g f) (0+u)du |, (4.2)

/

I
where 1) = (t-w)w and 1| =u— 1. As
‘(ag oH? )(u—t—v)‘SCy}I(u—l—v),
one has by changing variable u back to v, — v that
T <C [ [ Bolcosd)ul et (u40) | 0 of) (0-+101) @) (01| et
=C [, [ Bolcos®) o —o| 7t (0.)] @) (21) (0418) (0 deodo,
which together with the inequality
(w1 (@) <C (1) (&) + (o *+) (o1 (43)
implies
w1 <€ (w1 (@) + (™ ) (@) ) v ()
< [ [ Bolcos®) o —o] it (0.)] @) (21) (348 (2 daodo,
<C{ [l gnf | ll0gg | o+ 18— f | o 0w 100 |
! v)/]RB/SZBO(COSOHU*—v|7y}1(v*)dwdv*
<C{ [l 10 gnf |l |0g8l o+ 18— f |l 1008 | }-

This confirms the L* estimate for I'y. If p € [1,00), by Hélder’s inequality, we get
/ -
wzv_9|F1| Snglv_g (/]R3/SZBO(COSQ)|U*_U|P/7V€1 (v*)dwdv*) ’

1

([ L Boteost| ((agf—g“f)(Ui)(ag"g)(?’/)Dpdﬂ)dv*) ”

1
SCgu)lV (/ ‘ ag/ g// ag//g /)}pd?)*) p,
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where %—1—% =1. Therefore, using (4.3) again and by a change of variable (v/,v,) —
(v,v.), one has

o =rallf, < [ wlv 47 [ 10— (@) @grg) (@) dodo
_ /m e (e v PO P )\(ag, ) (0.)(0z18) (0)|F dv.do

< [l 0 o)
X } (agl_guf) ("U* ) (agug) (’0) ’ de*dU

SC{ HZU]I/_Gagl_gu _g//f P _Gagl/gthg}
The corresponding estimates for I'; are similar and easier, so we omit them for
brevity. This completes the proof of Lemma 4.2. O

The following lemma is concerned with coercivity estimates for the linear col-
lision operator L.

Lemma 4.3. Let 0 <+ <1, then there is a constant 6y >0 such that

(Lf,f)=(LP1f,P1f) >5[ Prf]3, (4.4)
where || - ||, = ||1/% -||. Moreover, there are constants 61 >0 and C >0 such that for || >0
(cLf0cf) = allog £l —ClIFII1% (4.5)

Proof. Note that (4.4) has been already proved in [23, Lemma 3.2]. As for (4.5),
from [23, Lemma 3.3], we have

(0:Lf,9¢f) > 81119 15— CIIFIIE-

We now prove that this can be relaxed to (4.5), which is indeed true for Maxwell
molecular case because v ~ ¢y for some cg > 0 in this situation. For 0 <y <1, we
write

(OcLf.0¢f) = (9 (vf),0c f) = {9 (KS), 0 f)
=(Logf,0cf)+ Y CE@pvdg_of dgf)— Y. CE{@yK)d_gfdf). (46)

0<{'<C 0<’'<C

From (4.4), one has

(Logf,9¢f) > 00l|P13cf |17 = 00ll9g fIIS — ol Podc fII5 = Goll g fII5 —CIIFIIZ. (47)
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By definition (2.3), it follows
1€/>0|8§/1/| S C(1+ |U|)7_‘g | S C.

Thus, one has by Cauchy-Schwarz’s inequality with 77 >0 and Sobolev’s interpo-
lation inequality that

[(@gvd—1f 0z ) <mllog f1*+Cyllf11%. (4.8)

Next, in view of (2.4), we have by a change of variable v, —v—u

u UZ UZ
¢ Bo(cos®)[u| 70y {6_7 e }ag_gxf(v—i—u)du
Ogglgg IR3><w7-

—& Z Cg/

Ogglgg ]R3XCL)2

STEEN Y Gt
Bo(cos9)u7a€/{e sl s e }agg/f(v—i—u)du.

Furthermore, direct computations give

u Z}2 Z}2 u ‘Dz Z}2
ag,{e—ﬁ}gqg’)e—*s*,

’2 1 |Zv-u+\u\2

2
_l|u|2_l |22;-u+\u‘ —i\u\z—
ag/ e 8 8 u|2 §C(§/)e 16 16 u|2

’ 2

which further implies

0K, :f| <C(E) [ K(0,0.)[0 ¢ f(0.)ldo,

with
2 10212
i g g Lo
k(v,v*)§C{|v—v*|7+|v—v*|_2+7}e 16 6 P . (4.9)
In particular,
/ l_<(vv)dv<L / k(v,0:)dv, < ——
R3 A _1+|U*|’ R3 A *_1+|U’

Therefore, by Cauchy-Schwarz’s inequality, Fubini’s theorem and Sobolev’s in-
terpolation inequality, we obtain

[((0gK)3; ¢/ f,9¢f)]
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2
§n|lagf||2+CU/RB (/R3k(v,0*)|ag_g/f(v*)|dv*) dv
S17||a€f||2_|_c,7/]R?)/]RBI_((ZJ,U*)dU*/]R31_((ZJ,7J*)|a€_€/f(v*)|2dv*d0

<cfIP+C, [ | k(o )dofd; o f(o.) P,

<279z fI*+Cy I F11%. (4.10)
Finally, plugging (4.7), (4.8) and (4.10) into (4.6) gives (4.5). This ends the proof of
Lemma 4.3. ]

Remark 4.1. From (4.9), one can justify that d;/K is a compact operator from H il
to H m, which directly implies (4.10), cf. [22, Lemma 2.2].

Next, the following lemma which was proved in [14, Proposition 3.1] gives
the L*® estimates of the solutions in the case of Maxwell molecule model.

Lemma 4.4. Let v=0and I be given by (2.5), then for any nonnegative integer |(| >0,
there is C >0 such that for any arbitrarily large 1 >0, there is M= M(I) >0 such that it

holds that c
sup w9z (Kf)| < Y. lwdg fl| - (4.11)
0| >M 0<'<C

In particular, one can choose M = 12,

In the case of 0 <y <1, the following lemma which can be found in [1, Propo-
sition 3.1] enables us to gain the smallness property of K at large velocity.

Lemma 4.5. Let 0 <7 <1 and | >4, then there exists a function ¢(l) which satisfies
¢(1)—0 as | — +oo such that

Wi { | Qloss (f,8) |+ 1Qgain (f,8) |+ Qgain (8, )| }
<lwiflle={CDlwi1q28ll=+¢ (D) [[wsg L= (1+[0]) 7, (4.12)
where Qs denotes the negative part of Q in (1.2).
The following result is a direct consequence of Lemma 4.5.

Lemma 4.6. Let 0 <y <1, then there is a constant C > 0 such that for any arbitrarily
large | >0, there are sufficiently large M= M(1) >0 and suitably small g=¢(I) >0 such
that it holds that

sup v_leUCﬂSC{(l—i—M)_%—i—g}lefHLoo. (4.13)
o|>M
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Proof. Recall the definition (2.5) for . Let g=pu in (4.12), then we obtain
vl | KKF) < COvHwifl| e +6(1) wrf - (4.14)

Noticing that (/) :% according to the proof in [1, Proposition 3.1 ], we first choose
[ to be suitably large so that ¢ is small enough, then we set M >0 to be sufficiently
large such that C(I)(14+M)~ 2 <C thanks to y>0. Then (4.13) follows from (4.14).
This concludes the proof of Lemma 4.6. O

The following lemma concerning the polynomial weighted estimates on the
collision operator Q can be verified by using a parallel argument as for obtaining
[1, Proposition 3.1].

Lemma 4.7. For | >4 and v >0, then it holds that
’wlv_lagQ(Fl,Fz) } <C Z ||w18§/1-“1 ||Loo ||w18€uF2 ||Loo.
g+g"<¢
Finally, we give a technical lemma on the determinant of a matrix exponential

and we omit the proof for brevity.

Lemma 4.8. Let M =aM, where M= (a;;) € M33(RR) is an invertible constant matrix
with max{|a;;| } = Cy, and « >0 is suitably small.

(i) If £>1>0, then it holds that

3
’|M‘1||e’7M—I|‘>%.

(ii) Let v €R3 be a vector satisfying [v| < M with M >0, then for any 1 >0, it holds
that
MM = To| <yMeCuer, (4.15)
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